Are Biogenic and Pyrogenic Mesoporous SiO2 Nanoparticles Safe for Normal Cells?

. 2021 Mar 06 ; 26 (5) : . [epub] 20210306

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33800774

Grantová podpora
B010/0041/19 Uniwersytet Przyrodniczy we Wroclawiu
B030/0032/19 Uniwersytet Przyrodniczy we Wroclawiu

Silicon dioxide, in the form of nanoparticles, possesses unique physicochemical properties (size, shape, and a large surface to volume ratio). Therefore, it is one of the most promising materials used in biomedicine. In this paper, we compare the biological effects of both mesoporous silica nanoparticles extracted from Urtica dioica L. and pyrogenic material. Both SEM and TEM investigations confirmed the size range of tested nanoparticles was between 6 and 20 nanometers and their amorphous structure. The cytotoxic activity of the compounds and intracellular ROS were determined in relation to cells HMEC-1 and erythrocytes. The cytotoxic effects of SiO2 NPs were determined after exposure to different concentrations and three periods of incubation. The same effects for endothelial cells were tested under the same range of concentrations but after 2 and 24 h of exposure to erythrocytes. The cell viability was measured using spectrophotometric and fluorimetric assays, and the impact of the nanoparticles on the level of intracellular ROS. The obtained results indicated that bioSiO2 NPs, present higher toxicity than pyrogenic NPs and have a higher influence on ROS production. Mesoporous silica nanoparticles show good hemocompatibility but after a 24 h incubation of erythrocytes with silica, the increase in hemolysis process, the decrease in osmotic resistance of red blood cells, and shape of erythrocytes changed were observed.

Zobrazit více v PubMed

Bitar A., Ahmad N.M., Fessi H., Elaissari A. Silica-based nanoparticles for biomedical applications. Drug Discov. Today. 2012;17:1147–1154. doi: 10.1016/j.drudis.2012.06.014. PubMed DOI

Singh R.K., Patel K.D., Leong K.W., Kim H.W. Progress in Nanotheranostics Based on Mesoporous Silica Nanomaterial Platforms. ACS Appl. Mater. Interfaces. 2017;9:10309–10337. doi: 10.1021/acsami.6b16505. PubMed DOI

Hozayen W.G., Mahmoud A.M., Desouky E.M., El-Nahass E.S., Soliman H.A., Farghali A.A. Cardiac and pulmonary toxicity of mesoporous silica nanoparticles is associated with excessive ROS production and redox imbalance in Wistar rats. Biomed. Pharmacother. 2019;109:2527–2538. doi: 10.1016/j.biopha.2018.11.093. PubMed DOI

Klichko Y., Liong M., Choi E., Angelos S., Nel A.E., Stoddart J.F., Tamanoi F., Zink J.I. Mesostructured silica for optical functionality, nanomachines, and drug delivery. J. Am. Ceram. Soc. 2009;92:2–10. doi: 10.1111/j.1551-2916.2008.02722.x. PubMed DOI PMC

Teolato P., Rampazzo E., Arduini M., Mancin F., Tecilla P., Tonellato U. Silica nanoparticles for fluorescence sensing of ZnII: Exploring the covalent strategy. Chem. A Eur. J. 2007;13:2238–2245. doi: 10.1002/chem.200600624. PubMed DOI

Narayan R., Nayak U.Y., Raichur A.M., Garg S. Mesoporous silica nanoparticles: A comprehensive review on synthesis and recent advances. Pharmaceutics. 2018;10:118. doi: 10.3390/pharmaceutics10030118. PubMed DOI PMC

Yugandhar P., Haribabu R., Savithramma N. Synthesis, characterization and antimicrobial properties of green-synthesised silver nanoparticles from stem bark extract of Syzygium alternifolium (Wt.) Walp. 3 Biotech. 2015;5:1031–1039. doi: 10.1007/s13205-015-0307-4. PubMed DOI PMC

Babu R.H., Yugandhar P., Savithramma N. Synthesis, characterization and antimicrobial studies of bio silica nanoparticles prepared from Cynodon dactylon L.: A green approach. Bull. Mater. Sci. 2018;41 doi: 10.1007/s12034-018-1584-4. DOI

Di Virgilio N., Papazoglou E.G., Jankauskiene Z., Di Lonardo S., Praczyk M., Wielgusz K. The potential of stinging nettle (Urtica dioica L.) as a crop with multiple uses. Ind. Crop. Prod. 2015;68:42–49. doi: 10.1016/j.indcrop.2014.08.012. DOI

Action M.O.F. Stinging Nettle (Urtica dioica) Clin. Guid. Nutr. Diet. Suppl. Dis. Manag. 2003:665–667. doi: 10.1016/B978-0-443-07193-5.50099-6. DOI

Wolska J., Janda K., Szkyrpan S., Gutowska I. Wpływ ekstraktów z pokrzywy zwyczajnej (Urtica dioica L.) na aktywność katalazy w monocytach/makrofagach THP1. Pomeranian J. life Sci. 2015;61:315–318. doi: 10.21164/pomjlifesci.129. PubMed DOI

Spasojevic M. Resource Strategies of Wild Plants by Joseph M. Craine. J. Veg. Sci. 2010:802–803. doi: 10.1111/j.1654-1103.2010.01172.x. DOI

Boguszewska-Czubara A., Pasternak K. Silicon in medicine and therapy. J. Elem. 2011;16:489–497. doi: 10.5601/jelem.2011.16.3.13. DOI

Hernández-Ortiz M., Hernández-Padrón G., Bernal R., Cruz-Vázquez C., Castaño M. Nanocrystalline mimetic opals: Synthesis and comparative characterization vs. natural stones. Int. J. Basic Appl. Sci. 2015;4:238–243. doi: 10.14419/ijbas.v4i2.4174. DOI

Budiarti H.A., Puspitasari R.N., Hatta A.M., Risanti D.D., Risanti S. Synthesis and characterization of TiO2@SiO2 and SiO2@TiO2 core-shell structure using lapindo mud extract via sol-gel method. Procedia Eng. 2017;170:65–71. doi: 10.1016/j.proeng.2017.03.013. DOI

Heredia A., Figueira E., Rodrigues C.T., Rodríguez-Galván A., Basiuk V.A., Vrieling E.G., Almeida S.F.P. Cd2+ affects the growth, hierarchical structure and peptide composition of the biosilica of the freshwater diatom Nitzschia palea (Kützing) W. Smith. Phycol. Res. 2012;60:229–240. doi: 10.1111/j.1440-1835.2012.00652.x. DOI

Wysokowski M., Behm T., Born R., Bazhenov V.V., Meißner H., Richter G., Szwarc-Rzepka K., Makarova A., Vyalikh D., Schupp P., et al. Preparation of chitin-silica composites by in vitro silicification of two-dimensional Ianthella basta demosponge chitinous scaffolds under modified Stöber conditions. Mater. Sci. Eng. C. 2013;33:3935–3941. doi: 10.1016/j.msec.2013.05.030. PubMed DOI

Sprynskyy M., Pomastowski P., Hornowska M., Król A., Rafińska K., Buszewski B. Naturally organic functionalized 3D biosilica from diatom microalgae. Mater. Des. 2017;132:22–29. doi: 10.1016/j.matdes.2017.06.044. DOI

Rickert D., Schluter M., Wallmann K. Dissolution kinetics of biogenic silica from the water column to the sediments. Geochim. Cosmochim. Acta. 2002;66:439–455. doi: 10.1016/S0016-7037(01)00757-8. DOI

Bazhenov V.V., Wysokowski M., Petrenko I., Stawski D., Sapozhnikov P., Born R., Stelling A.L., Kaiser S., Jesionowski T. Preparation of monolithic silica-chitin composite under extreme biomimetic conditions. Int. J. Biol. Macromol. 2015;76:33–38. doi: 10.1016/j.ijbiomac.2015.02.012. PubMed DOI

Darmakkolla S.R., Tran H., Gupta A., Rananavare S.B. A method to derivatize surface silanol groups to Si-alkyl groups in carbon-doped silicon oxides. RSC Adv. 2016;6:93219–93230. doi: 10.1039/C6RA20355H. DOI

Musić S., Filipović-Vinceković N., Sekovanić L. Precipitation of amorphous SiO2 particles and their properties. Braz. J. Chem. Eng. 2011;28:89–94. doi: 10.1590/S0104-66322011000100011. DOI

Jesionowski T., Ciesielczyk F., Krysztafkiewicz A. Influence of selected alkoxysilanes on dispersive properties and surface chemistry of spherical silica precipitated in emulsion media. Mater. Chem. Phys. 2010;119:65–74. doi: 10.1016/j.matchemphys.2009.07.034. DOI

Milczarek G., Motylenko M., Modrzejewska-Sikorska A., Klapiszewski Ł., Wysokowski M., Bazhenov V.V., Piasecki A., Konował E., Ehrlich H., Jesionowski T. Deposition of silver nanoparticles on organically-modified silica in the presence of lignosulfonate. RSC Adv. 2014;4:52476–52484. doi: 10.1039/C4RA08418G. DOI

Hassan A.F., Abdelghny A.M., Elhadidy H., Youssef A.M. Synthesis and characterization of high surface area nanosilica from rice husk ash by surfactant-free sol-gel method. J. Sol-Gel Sci. Technol. 2014;69:465–472. doi: 10.1007/s10971-013-3245-9. DOI

Duan J., Yu Y., Li Y., Yu Y., Li Y., Zhou X., Huang P., Sun Z. Toxic Effect of Silica Nanoparticles on Endothelial Cells through DNA Damage Response via Chk1-Dependent G2/M Checkpoint. PLoS ONE. 2013;8 doi: 10.1371/journal.pone.0062087. PubMed DOI PMC

Alom-Ruiz S.P., Anilkumar N., Shah A.M. Reactive oxygen species and endothelial activation. Antioxid. Redox Signal. 2008;10:1089–1100. doi: 10.1089/ars.2007.2007. PubMed DOI

Nemmar A., Beegam S., Yuvaraju P., Yasin J., Shahin A., Ali B.H. Interaction of amorphous silica nanoparticles with erythrocytes in vitro: Role of oxidative stress. Cell. Physiol. Biochem. 2014;34:255–265. doi: 10.1159/000362996. PubMed DOI

Wilczewska A., Niemirowicz K., Markiewicz K.H., Car H. Nanoparticles as drug delivery systems. Pharmacol. Rep. 2012;64:020–1037. doi: 10.1016/S1734-1140(12)70901-5. PubMed DOI

Yu T., Malugin A., Ghandehari H. Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano. 2011;5:5717–5728. doi: 10.1021/nn2013904. PubMed DOI PMC

Napierska D., Thomassen L.C.J., Rabolli V., Lison D., Gonzalez L., Kirsch-Volders M., Martens J.A., Hoet P.H. Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small. 2009;5:846–853. doi: 10.1002/smll.200800461. PubMed DOI

Murugadoss S., Lison D., Godderis L., Van Den Brule S., Mast J., Brassinne F., Sebaihi N., Hoet P.H. Toxicology of silica nanoparticles: An update. Arch. Toxicol. 2017;91:2967–3010. doi: 10.1007/s00204-017-1993-y. PubMed DOI PMC

Yang Y., Du X., Wang Q., Liu J., Zhang E., Sai L., Peng C., Lavin M.F., Yeo A.J., Yang X., et al. Mechanism of cell death induced by silica nanoparticles in hepatocyte cells is by apoptosis. Int. J. Mol. Med. 2019;44:903–912. doi: 10.3892/ijmm.2019.4265. PubMed DOI PMC

BernhardDeuticke Transformation and restoration of biconcave shape of human erythrocyte induced by amphiphilic agents and changes of ionic environment. Biochim. Biophys. Acta Biomembr. 1968;163:494–500. doi: 10.1016/0005-2736(68)90078-3. PubMed DOI

Stasiuk M., Kijanka G., Kozubek A. Zmiany kształtu erytrocytów i czynniki je wywołujące. Postepy Biochem. 2009;55:425–433. PubMed

Joglekar M., Roggers R.A., Zhao Y., Trewyn B.G. Interaction effects of mesoporous silica nanoparticles with different morphologies on human red blood cells. RSC Adv. 2013;3:2454–2461. doi: 10.1039/c2ra22264g. DOI

Tsamesidis I., Pouroutzidou G.K., Lymperaki E., Kazeli K., Lioutas C.B., Christodoulou E., Perio P., Reybier K., Pantaleo A., Kontonasaki E. Effect of ion doping in silica-based nanoparticles on the hemolytic and oxidative activity in contact with human erythrocytes. Chem. Biol. Interact. 2020;318:108974. doi: 10.1016/j.cbi.2020.108974. PubMed DOI

Jiang L., Yu Y., Li Y., Yu Y., Duan J., Zou Y., Li Q., Sun Z. Oxidative Damage and Energy Metabolism Disorder Contribute to the Hemolytic Effect of Amorphous Silica Nanoparticles. Nanoscale Res. Lett. 2016;11:1–12. doi: 10.1186/s11671-016-1280-5. PubMed DOI PMC

Zhao Y., Sun X., Zhang G., Trewyn B.G., Slowing I.I., Lin V.S.Y. Interaction of mesoporous silica nanoparticles with human red blood cell membranes: Size and surface effects. ACS Nano. 2011;5:1366–1375. doi: 10.1021/nn103077k. PubMed DOI

Adach K., Kroisova D., Fijalkowski M. Biogenic silicon dioxide nanoparticles processed from natural sources. Part. Sci. Technol. 2020:1–9. doi: 10.1080/02726351.2020.1758857. DOI

Pruchnik H., Włoch A., Bonarska-Kujawa D., Kleszczyńska H. An In Vitro Study of the Effect of Cytotoxic Triorganotin Dimethylaminophenylazobenzoate Complexes on Red Blood Cells. J. Membr. Biol. 2018;251:735–745. doi: 10.1007/s00232-018-0051-x. PubMed DOI PMC

Cyboran S., Oszmiański J., Kleszczyńska H. Interaction between plant polyphenols and the erythrocyte membrane. Cell. Mol. Biol. Lett. 2012;17:77–88. doi: 10.2478/s11658-011-0038-4. PubMed DOI PMC

Bernhardt I., Ellory J.C. In: Red Cell Membrane Transport in Health and Disease. Bernhardt I., Ellory J.C., editors. Volume 110. Springer Science & Business Media; Berlin, Germany: 2003.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace