Are Biogenic and Pyrogenic Mesoporous SiO2 Nanoparticles Safe for Normal Cells?
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
B010/0041/19
Uniwersytet Przyrodniczy we Wroclawiu
B030/0032/19
Uniwersytet Przyrodniczy we Wroclawiu
PubMed
33800774
PubMed Central
PMC7961954
DOI
10.3390/molecules26051427
PII: molecules26051427
Knihovny.cz E-zdroje
- Klíčová slova
- biogenic and pyrogenic silicon dioxide, cytotoxicity, mesoporous silica, nanoparticles,
- MeSH
- endoteliální buňky účinky léků MeSH
- erytrocyty účinky léků MeSH
- hemolýza účinky léků MeSH
- lidé MeSH
- nanočástice aplikace a dávkování chemie MeSH
- oxid křemičitý aplikace a dávkování chemie MeSH
- oxidační stres účinky léků MeSH
- poréznost MeSH
- povrchové vlastnosti MeSH
- reaktivní formy kyslíku metabolismus MeSH
- viabilita buněk MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- oxid křemičitý MeSH
- reaktivní formy kyslíku MeSH
Silicon dioxide, in the form of nanoparticles, possesses unique physicochemical properties (size, shape, and a large surface to volume ratio). Therefore, it is one of the most promising materials used in biomedicine. In this paper, we compare the biological effects of both mesoporous silica nanoparticles extracted from Urtica dioica L. and pyrogenic material. Both SEM and TEM investigations confirmed the size range of tested nanoparticles was between 6 and 20 nanometers and their amorphous structure. The cytotoxic activity of the compounds and intracellular ROS were determined in relation to cells HMEC-1 and erythrocytes. The cytotoxic effects of SiO2 NPs were determined after exposure to different concentrations and three periods of incubation. The same effects for endothelial cells were tested under the same range of concentrations but after 2 and 24 h of exposure to erythrocytes. The cell viability was measured using spectrophotometric and fluorimetric assays, and the impact of the nanoparticles on the level of intracellular ROS. The obtained results indicated that bioSiO2 NPs, present higher toxicity than pyrogenic NPs and have a higher influence on ROS production. Mesoporous silica nanoparticles show good hemocompatibility but after a 24 h incubation of erythrocytes with silica, the increase in hemolysis process, the decrease in osmotic resistance of red blood cells, and shape of erythrocytes changed were observed.
Zobrazit více v PubMed
Bitar A., Ahmad N.M., Fessi H., Elaissari A. Silica-based nanoparticles for biomedical applications. Drug Discov. Today. 2012;17:1147–1154. doi: 10.1016/j.drudis.2012.06.014. PubMed DOI
Singh R.K., Patel K.D., Leong K.W., Kim H.W. Progress in Nanotheranostics Based on Mesoporous Silica Nanomaterial Platforms. ACS Appl. Mater. Interfaces. 2017;9:10309–10337. doi: 10.1021/acsami.6b16505. PubMed DOI
Hozayen W.G., Mahmoud A.M., Desouky E.M., El-Nahass E.S., Soliman H.A., Farghali A.A. Cardiac and pulmonary toxicity of mesoporous silica nanoparticles is associated with excessive ROS production and redox imbalance in Wistar rats. Biomed. Pharmacother. 2019;109:2527–2538. doi: 10.1016/j.biopha.2018.11.093. PubMed DOI
Klichko Y., Liong M., Choi E., Angelos S., Nel A.E., Stoddart J.F., Tamanoi F., Zink J.I. Mesostructured silica for optical functionality, nanomachines, and drug delivery. J. Am. Ceram. Soc. 2009;92:2–10. doi: 10.1111/j.1551-2916.2008.02722.x. PubMed DOI PMC
Teolato P., Rampazzo E., Arduini M., Mancin F., Tecilla P., Tonellato U. Silica nanoparticles for fluorescence sensing of ZnII: Exploring the covalent strategy. Chem. A Eur. J. 2007;13:2238–2245. doi: 10.1002/chem.200600624. PubMed DOI
Narayan R., Nayak U.Y., Raichur A.M., Garg S. Mesoporous silica nanoparticles: A comprehensive review on synthesis and recent advances. Pharmaceutics. 2018;10:118. doi: 10.3390/pharmaceutics10030118. PubMed DOI PMC
Yugandhar P., Haribabu R., Savithramma N. Synthesis, characterization and antimicrobial properties of green-synthesised silver nanoparticles from stem bark extract of Syzygium alternifolium (Wt.) Walp. 3 Biotech. 2015;5:1031–1039. doi: 10.1007/s13205-015-0307-4. PubMed DOI PMC
Babu R.H., Yugandhar P., Savithramma N. Synthesis, characterization and antimicrobial studies of bio silica nanoparticles prepared from Cynodon dactylon L.: A green approach. Bull. Mater. Sci. 2018;41 doi: 10.1007/s12034-018-1584-4. DOI
Di Virgilio N., Papazoglou E.G., Jankauskiene Z., Di Lonardo S., Praczyk M., Wielgusz K. The potential of stinging nettle (Urtica dioica L.) as a crop with multiple uses. Ind. Crop. Prod. 2015;68:42–49. doi: 10.1016/j.indcrop.2014.08.012. DOI
Action M.O.F. Stinging Nettle (Urtica dioica) Clin. Guid. Nutr. Diet. Suppl. Dis. Manag. 2003:665–667. doi: 10.1016/B978-0-443-07193-5.50099-6. DOI
Wolska J., Janda K., Szkyrpan S., Gutowska I. Wpływ ekstraktów z pokrzywy zwyczajnej (Urtica dioica L.) na aktywność katalazy w monocytach/makrofagach THP1. Pomeranian J. life Sci. 2015;61:315–318. doi: 10.21164/pomjlifesci.129. PubMed DOI
Spasojevic M. Resource Strategies of Wild Plants by Joseph M. Craine. J. Veg. Sci. 2010:802–803. doi: 10.1111/j.1654-1103.2010.01172.x. DOI
Boguszewska-Czubara A., Pasternak K. Silicon in medicine and therapy. J. Elem. 2011;16:489–497. doi: 10.5601/jelem.2011.16.3.13. DOI
Hernández-Ortiz M., Hernández-Padrón G., Bernal R., Cruz-Vázquez C., Castaño M. Nanocrystalline mimetic opals: Synthesis and comparative characterization vs. natural stones. Int. J. Basic Appl. Sci. 2015;4:238–243. doi: 10.14419/ijbas.v4i2.4174. DOI
Budiarti H.A., Puspitasari R.N., Hatta A.M., Risanti D.D., Risanti S. Synthesis and characterization of TiO2@SiO2 and SiO2@TiO2 core-shell structure using lapindo mud extract via sol-gel method. Procedia Eng. 2017;170:65–71. doi: 10.1016/j.proeng.2017.03.013. DOI
Heredia A., Figueira E., Rodrigues C.T., Rodríguez-Galván A., Basiuk V.A., Vrieling E.G., Almeida S.F.P. Cd2+ affects the growth, hierarchical structure and peptide composition of the biosilica of the freshwater diatom Nitzschia palea (Kützing) W. Smith. Phycol. Res. 2012;60:229–240. doi: 10.1111/j.1440-1835.2012.00652.x. DOI
Wysokowski M., Behm T., Born R., Bazhenov V.V., Meißner H., Richter G., Szwarc-Rzepka K., Makarova A., Vyalikh D., Schupp P., et al. Preparation of chitin-silica composites by in vitro silicification of two-dimensional Ianthella basta demosponge chitinous scaffolds under modified Stöber conditions. Mater. Sci. Eng. C. 2013;33:3935–3941. doi: 10.1016/j.msec.2013.05.030. PubMed DOI
Sprynskyy M., Pomastowski P., Hornowska M., Król A., Rafińska K., Buszewski B. Naturally organic functionalized 3D biosilica from diatom microalgae. Mater. Des. 2017;132:22–29. doi: 10.1016/j.matdes.2017.06.044. DOI
Rickert D., Schluter M., Wallmann K. Dissolution kinetics of biogenic silica from the water column to the sediments. Geochim. Cosmochim. Acta. 2002;66:439–455. doi: 10.1016/S0016-7037(01)00757-8. DOI
Bazhenov V.V., Wysokowski M., Petrenko I., Stawski D., Sapozhnikov P., Born R., Stelling A.L., Kaiser S., Jesionowski T. Preparation of monolithic silica-chitin composite under extreme biomimetic conditions. Int. J. Biol. Macromol. 2015;76:33–38. doi: 10.1016/j.ijbiomac.2015.02.012. PubMed DOI
Darmakkolla S.R., Tran H., Gupta A., Rananavare S.B. A method to derivatize surface silanol groups to Si-alkyl groups in carbon-doped silicon oxides. RSC Adv. 2016;6:93219–93230. doi: 10.1039/C6RA20355H. DOI
Musić S., Filipović-Vinceković N., Sekovanić L. Precipitation of amorphous SiO2 particles and their properties. Braz. J. Chem. Eng. 2011;28:89–94. doi: 10.1590/S0104-66322011000100011. DOI
Jesionowski T., Ciesielczyk F., Krysztafkiewicz A. Influence of selected alkoxysilanes on dispersive properties and surface chemistry of spherical silica precipitated in emulsion media. Mater. Chem. Phys. 2010;119:65–74. doi: 10.1016/j.matchemphys.2009.07.034. DOI
Milczarek G., Motylenko M., Modrzejewska-Sikorska A., Klapiszewski Ł., Wysokowski M., Bazhenov V.V., Piasecki A., Konował E., Ehrlich H., Jesionowski T. Deposition of silver nanoparticles on organically-modified silica in the presence of lignosulfonate. RSC Adv. 2014;4:52476–52484. doi: 10.1039/C4RA08418G. DOI
Hassan A.F., Abdelghny A.M., Elhadidy H., Youssef A.M. Synthesis and characterization of high surface area nanosilica from rice husk ash by surfactant-free sol-gel method. J. Sol-Gel Sci. Technol. 2014;69:465–472. doi: 10.1007/s10971-013-3245-9. DOI
Duan J., Yu Y., Li Y., Yu Y., Li Y., Zhou X., Huang P., Sun Z. Toxic Effect of Silica Nanoparticles on Endothelial Cells through DNA Damage Response via Chk1-Dependent G2/M Checkpoint. PLoS ONE. 2013;8 doi: 10.1371/journal.pone.0062087. PubMed DOI PMC
Alom-Ruiz S.P., Anilkumar N., Shah A.M. Reactive oxygen species and endothelial activation. Antioxid. Redox Signal. 2008;10:1089–1100. doi: 10.1089/ars.2007.2007. PubMed DOI
Nemmar A., Beegam S., Yuvaraju P., Yasin J., Shahin A., Ali B.H. Interaction of amorphous silica nanoparticles with erythrocytes in vitro: Role of oxidative stress. Cell. Physiol. Biochem. 2014;34:255–265. doi: 10.1159/000362996. PubMed DOI
Wilczewska A., Niemirowicz K., Markiewicz K.H., Car H. Nanoparticles as drug delivery systems. Pharmacol. Rep. 2012;64:020–1037. doi: 10.1016/S1734-1140(12)70901-5. PubMed DOI
Yu T., Malugin A., Ghandehari H. Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. ACS Nano. 2011;5:5717–5728. doi: 10.1021/nn2013904. PubMed DOI PMC
Napierska D., Thomassen L.C.J., Rabolli V., Lison D., Gonzalez L., Kirsch-Volders M., Martens J.A., Hoet P.H. Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small. 2009;5:846–853. doi: 10.1002/smll.200800461. PubMed DOI
Murugadoss S., Lison D., Godderis L., Van Den Brule S., Mast J., Brassinne F., Sebaihi N., Hoet P.H. Toxicology of silica nanoparticles: An update. Arch. Toxicol. 2017;91:2967–3010. doi: 10.1007/s00204-017-1993-y. PubMed DOI PMC
Yang Y., Du X., Wang Q., Liu J., Zhang E., Sai L., Peng C., Lavin M.F., Yeo A.J., Yang X., et al. Mechanism of cell death induced by silica nanoparticles in hepatocyte cells is by apoptosis. Int. J. Mol. Med. 2019;44:903–912. doi: 10.3892/ijmm.2019.4265. PubMed DOI PMC
BernhardDeuticke Transformation and restoration of biconcave shape of human erythrocyte induced by amphiphilic agents and changes of ionic environment. Biochim. Biophys. Acta Biomembr. 1968;163:494–500. doi: 10.1016/0005-2736(68)90078-3. PubMed DOI
Stasiuk M., Kijanka G., Kozubek A. Zmiany kształtu erytrocytów i czynniki je wywołujące. Postepy Biochem. 2009;55:425–433. PubMed
Joglekar M., Roggers R.A., Zhao Y., Trewyn B.G. Interaction effects of mesoporous silica nanoparticles with different morphologies on human red blood cells. RSC Adv. 2013;3:2454–2461. doi: 10.1039/c2ra22264g. DOI
Tsamesidis I., Pouroutzidou G.K., Lymperaki E., Kazeli K., Lioutas C.B., Christodoulou E., Perio P., Reybier K., Pantaleo A., Kontonasaki E. Effect of ion doping in silica-based nanoparticles on the hemolytic and oxidative activity in contact with human erythrocytes. Chem. Biol. Interact. 2020;318:108974. doi: 10.1016/j.cbi.2020.108974. PubMed DOI
Jiang L., Yu Y., Li Y., Yu Y., Duan J., Zou Y., Li Q., Sun Z. Oxidative Damage and Energy Metabolism Disorder Contribute to the Hemolytic Effect of Amorphous Silica Nanoparticles. Nanoscale Res. Lett. 2016;11:1–12. doi: 10.1186/s11671-016-1280-5. PubMed DOI PMC
Zhao Y., Sun X., Zhang G., Trewyn B.G., Slowing I.I., Lin V.S.Y. Interaction of mesoporous silica nanoparticles with human red blood cell membranes: Size and surface effects. ACS Nano. 2011;5:1366–1375. doi: 10.1021/nn103077k. PubMed DOI
Adach K., Kroisova D., Fijalkowski M. Biogenic silicon dioxide nanoparticles processed from natural sources. Part. Sci. Technol. 2020:1–9. doi: 10.1080/02726351.2020.1758857. DOI
Pruchnik H., Włoch A., Bonarska-Kujawa D., Kleszczyńska H. An In Vitro Study of the Effect of Cytotoxic Triorganotin Dimethylaminophenylazobenzoate Complexes on Red Blood Cells. J. Membr. Biol. 2018;251:735–745. doi: 10.1007/s00232-018-0051-x. PubMed DOI PMC
Cyboran S., Oszmiański J., Kleszczyńska H. Interaction between plant polyphenols and the erythrocyte membrane. Cell. Mol. Biol. Lett. 2012;17:77–88. doi: 10.2478/s11658-011-0038-4. PubMed DOI PMC
Bernhardt I., Ellory J.C. In: Red Cell Membrane Transport in Health and Disease. Bernhardt I., Ellory J.C., editors. Volume 110. Springer Science & Business Media; Berlin, Germany: 2003.