Identifying the Molecular Mechanisms and Types of Cell Death Induced by bio- and pyr-Silica Nanoparticles in Endothelial Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
B010/0014/20
This work was supported by funds of the statutory activities of the Department of Physics and Biophysics, Wroclaw University of Environmental and Life Sciences. This research was partially funded by the Ministry of Education and Science (Poland).
HyHi, CZ.02.1.01/0.0/0.0/16_019/0000843
This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic and the European Union - European Structural and Investment Funds in the Framework of the Operational Program Research, Development and Education - Project Hybrid
PubMed
35563494
PubMed Central
PMC9100598
DOI
10.3390/ijms23095103
PII: ijms23095103
Knihovny.cz E-zdroje
- Klíčová slova
- HMEC-1, cell death, cell migration, oxidative stress, silica nanoparticles,
- MeSH
- apoptóza MeSH
- endoteliální buňky MeSH
- lidé MeSH
- nanočástice * chemie MeSH
- nekróza MeSH
- oxid křemičitý * chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- oxid křemičitý * MeSH
The term "nanosilica" refers to materials containing ultrafine particles. They have gained a rapid increase in popularity in a variety of applications and in numerous aspects of human life. Due to their unique physicochemical properties, SiO2 nanoparticles have attracted significant attention in the field of biomedicine. This study aimed to elucidate the mechanism underlying the cellular response to stress which is induced by the exposure of cells to both biogenic and pyrogenic silica nanoparticles and which may lead to their death. Both TEM and fluorescence microscopy investigations confirmed molecular changes in cells after treatment with silica nanoparticles. The cytotoxic activity of the compounds and intracellular RNS were determined in relation to HMEC-1 cells using the fluorimetric method. Apoptosis was quantified by microscopic assessment and by flow cytometry. Furthermore, the impact of nanosilica on cell migration and cell cycle arrest were determined. The obtained results compared the biological effects of mesoporous silica nanoparticles extracted from Urtica dioica L. and pyrogenic material and indicated that both types of NPs have an impact on RNS production causing apoptosis, necrosis, and autophagy. Although mesoporous silica nanoparticles did not cause cell cycle arrest, at the concentration of 50 μg/mL and higher they could disturb redox balance and stimulate cell migration.
Zobrazit více v PubMed
Lee K., Lee J., Kwak M., Cho Y.L., Hwang B., Cho M.J., Lee N.G., Park J., Lee S.H., Park G.-J., et al. Two distinct cellular pathways leading to endothelial cell cytotoxicity by silica nanoparticle size. J. Nanobiotechnol. 2019;17:24. doi: 10.1186/s12951-019-0456-4. PubMed DOI PMC
Solarska-Ściuk K., Adach K., Cyboran-Mikołajczyk S., Bonarska-Kujawa D., Rusak A., Cwynar-Zając Ł., Machałowski T., Jesionowski T., Grzywacz K., Fijałkowski M. Are biogenic and pyrogenic mesoporous SiO2 nanoparticles safe for normal cells? Molecules. 2021;26:1427. doi: 10.3390/molecules26051427. PubMed DOI PMC
Ahamed M. Silica nanoparticles-induced cytotoxicity, oxidative stress and apoptosis in cultured A431 and A549 cells. Hum. Exp. Toxicol. 2013;32:186–195. doi: 10.1177/0960327112459206. PubMed DOI
Mohammadinejad R., Amin M., Tavakol S., Özkan D., Hosseini A., Ag P. Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy. 2019;15:4–33. doi: 10.1080/15548627.2018.1509171. PubMed DOI PMC
Yang Y., Du X., Wang Q., Liu J., Zhang E., Sai L., Peng C., Lavin M.F., Yeo A.J., Yang X., et al. Mechanism of cell death induced by silica nanoparticles in hepatocyte cells is by apoptosis. Int. J. Mol. Med. 2019;44:903–912. doi: 10.3892/ijmm.2019.4265. PubMed DOI PMC
Susan Elmore Apoptosis: A Review of Programmed Cell Death. Toxicol. Pathol. 2007;35:495–516. doi: 10.1080/01926230701320337. PubMed DOI PMC
Madala J. Apoptosis-Biochemistry: A Mini Review. J. Clin. Exp. Pathol. 2015;5:205. doi: 10.4172/2161-0681.1000205. DOI
Paduch R., Klatka M., Klatka J. Rodzaje śmierci komórki Types of cell death. Pom. J. Life Sci. 2015;61:411–418. PubMed
Garg A.D., Maes H., Romano E., Agostinis P. Autophagy, a major adaptation pathway shaping cancer cell death and anticancer immunity responses following photodynamic therapy. Photochem. Photobiol. Sci. 2015;14:1410–1424. doi: 10.1039/C4PP00466C. PubMed DOI
Heymann D. Autophagy: A protective mechanism in response to stress and inflammation. Curr. Opin. Investig. Drugs. 2014;7:443–450. PubMed PMC
Liao X., Sluimer J.C., Wang Y., Subramanian M., Pattison J.S., Robbins J., Martinez J., Tabas I. Macrophage Autophagy Plays a Protective Role in Advanced Atherosclerosis. Cell Metab. 2012;15:545–553. doi: 10.1016/j.cmet.2012.01.022. PubMed DOI PMC
Chen N., Song Z.M., Tang H., Xi W.S., Cao A., Liu Y., Wang H. Toxicological effects of Caco-2 cells following short-term and long-term exposure to Ag nanoparticles. Int. J. Mol. Sci. 2016;17:974. doi: 10.3390/ijms17060974. PubMed DOI PMC
Sarmiento D., Montorfano I., Cerda O., Cáceres M., Becerra A., Cabello-verrugio C., Elorza A.A., Riedel C., Tapia P., Velásquez L.A., et al. Increases in reactive oxygen species enhance vascular endothelial cell migration through a mechanism dependent on the transient receptor potential melastatin 4 ion channel. Microvasc. Res. 2015;98:187–196. doi: 10.1016/j.mvr.2014.02.001. PubMed DOI
Coso S., Harrison I., Harrison C.B., Vinh A., Sobey C.G., Drummond G.R., Williams E.D., Selemidis S. NADPH oxidases as regulators of tumor angiogenesis: Current and emerging concepts. Antioxid. Redox Signal. 2012;16:1229–1247. doi: 10.1089/ars.2011.4489. PubMed DOI
Ispanixtlahuatl-meráz O., Schins R.P.F., Chirino Y.I. Environmental Science Nano Cell type specific cytoskeleton disruption induced by engineered nanoparticles. Environ. Sci. Nano. 2017;5:228–245. doi: 10.1039/C7EN00704C. DOI
Larsson P.V.J.L. Actin microdomains on endothelial cells: Association with CD44, ERM proteins, and signaling molecules during quiescence and wound healing. Histochem. Cell Biol. 2004;121:361–369. doi: 10.1007/s00418-004-0648-2. PubMed DOI
Resnick N., Yahav H., Shay-salit A., Shushy M., Schubert S., Chen L., Zilberman M., Wofovitz E. Fluid shear stress and the vascular endothelium: For better and for worse. Prog. Biophys. Mol. Biol. 2003;81:177–199. doi: 10.1016/S0079-6107(02)00052-4. PubMed DOI
Peggy R., Girard R.M.N. Shear Stress Modulates Endothelial Cell Morphology and F-Actin Organization through the Regulation of Focal Ad hesion-Associated Proteins. J. Cell. Physiol. 1995;163:179–193. PubMed
Tousoulis D., Kampoli A., Tentolouris C., Papageorgiou N. The Role of Nitric Oxide on Endothelial Function. Curr. Vasc. Pharmacol. 2012;10:4–18. doi: 10.2174/157016112798829760. PubMed DOI
Dymkowska D. Oksydacyjne uszkodzenia śródbłonka naczyniowego w cukrzycy typu 2-udział mitochondriów i oksydazy NAD(P)H. Postepy Biochem. 2016;62:116–126. PubMed
Duan J., Yu Y., Yu Y., Li Y., Huang P., Zhou X., Peng S. Silica nanoparticles enhance autophagic activity, disturb endothelial cell homeostasis and impair angiogenesis. Part. Fibre Toxicol. 2014;11:50. doi: 10.1186/s12989-014-0050-8. PubMed DOI PMC
Yao Y., Lacroix D., Mak A.F.T. Effects of oxidative stress-induced changes in the actin cytoskeletal structure on myoblast damage under compressive stress: Confocal-based cell-specific finite element analysis. Biomech. Model. Mechanobiol. 2016;15:1495–1508. doi: 10.1007/s10237-016-0779-0. PubMed DOI
Czikora I., Alli A.A., Sridhar S., Matthay M.A., Pillich H. Epithelial Sodium Channel-α Mediates the Protective Effect of the TNF-Derived TIP Peptide in Pneumolysin-Induced Endothelial Barrier Dysfunction. Front. Immunol. 2017;8:842. doi: 10.3389/fimmu.2017.00842. PubMed DOI PMC
Lipski A.M., Pino C.J., Haselton F.R., Chen I.W., Shastri V.P. The effect of silica nanoparticle-modified surfaces on cell morphology, cytoskeletal organization and function. Biomaterials. 2008;29:3836–3846. doi: 10.1016/j.biomaterials.2008.06.002. PubMed DOI PMC
Lucas R., Sridhar S., Rick F.G., Gorshkov B., Umapathy N.S., Yang G. Agonist of growth hormone-releasing hormone reduces pneumolysin-induced pulmonary permeability edema. Proc. Natl. Acad. Sci. USA. 2012;109:2084–2089. doi: 10.1073/pnas.1121075109. PubMed DOI PMC
Liu X., Sun J. Silica nanoparticles induce apoptosis in human endothelial cells via reactive oxygen species; Proceedings of the 2010 3rd International Nanoelectronics Conference (INEC); Hong Kong, China. 3–8 January 2010; pp. 824–825. DOI
Ye Y., Liu J., Xu J., Sun L., Chen M., Lan M. Toxicology in Vitro Nano-SiO2 induces apoptosis via activation of p53 and Bax mediated by oxidative stress in human hepatic cell line. Toxicol. Vitr. 2010;24:751–758. doi: 10.1016/j.tiv.2010.01.001. PubMed DOI
Siddiqui M.A., Alhadlaq H.A., Ahmad J., Al-khedhairy A.A., Musarrat J., Ahamed M. Copper Oxide Nanoparticles Induced Mitochondria Mediated Apoptosis in Human Hepatocarcinoma Cells. PLoS ONE. 2013;8:e69534. doi: 10.1371/journal.pone.0069534. PubMed DOI PMC
Lipiński P., Tylki-Szymańska A. Zaburzenie homeostazy lipidowej w deficycie lizosomalnej lipazy—Patomechanizm, diagnostyka i leczenie. Postepy Biochem. 2021;67:231–235. doi: 10.18388/pb.2021_389. PubMed DOI
Duan J., Yu Y., Li Y., Yu Y., Li Y., Zhou X., Huang P., Sun Z. Toxic Effect of Silica Nanoparticles on Endothelial Cells through DNA Damage Response via Chk1-Dependent G2/M Checkpoint. PLoS ONE. 2013;8:e62087. doi: 10.1371/journal.pone.0062087. PubMed DOI PMC
Zhou Y., Quan G., Wu Q., Zhang X., Niu B., Wu B., Huang Y., Pan X., Wu C. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm. Sin. B. 2018;8:165–177. doi: 10.1016/j.apsb.2018.01.007. PubMed DOI PMC
Shin T.H., Ketebo A.A., Lee D.Y., Lee S., Kang S.H., Basith S., Manavalan B., Kwon D.H., Park S., Lee G. Decrease in membrane fluidity and traction force induced by silica-coated magnetic nanoparticles. J. Nanobiotechnol. 2021;19:21. doi: 10.1186/s12951-020-00765-5. PubMed DOI PMC
Wilczewska A., Niemirowicz K., Markiewicz K., Car H. Nanoparticles as drug delivery systems. Pharmacol. Rep. 2012;64:1020–1037. doi: 10.1016/S1734-1140(12)70901-5. PubMed DOI
Kim S., Jang J., Kim H., Choi H., Lee K., Choi I. The Effects of Silica Nanoparticles in Macrophage Cells. IMMUNE Netw. 2012;12:296–300. doi: 10.4110/in.2012.12.6.296. PubMed DOI PMC
Watermann A., Brieger J. Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nanomaterials. 2017;7:189. doi: 10.3390/nano7070189. PubMed DOI PMC