Microcystin-LR Does Not Alter Cell Survival and Intracellular Signaling in Human Bronchial Epithelial Cells

. 2020 Mar 07 ; 12 (3) : . [epub] 20200307

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32156079

Grantová podpora
GJ17-25279Y Grantová Agentura České Republiky - International
722493 EU Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant NaToxAq to B.K. - International
LM2018121 Czech Ministry of Education, Youth and Sports - International
857560 and 02.1.01/0.0/0.0/18_046/0015975 CETOCOEN EXCELLENCE Teaming 2 project supported by Horizon 2020 and the Czech ministry of Education, Youth and Sports - International

Changes in ecological and environmental factors lead to an increased occurrence of cyanobacterial water blooms, while secondary metabolites-producing cyanobacteria pose a threat to both environmental and human health. Apart from oral and dermal exposure, humans may be exposed via inhalation and/or swallowing of contaminated water and aerosols. Although many studies deal with liver toxicity, less information about the effects in the respiratory system is available. We investigated the effects of a prevalent cyanotoxin, microcystin-LR (MC-LR), using respiratory system-relevant human bronchial epithelial (HBE) cells. The expression of specific organic-anion-transporting polypeptides was evaluated, and the western blot analysis revealed the formation and accumulation of MC-LR protein adducts in exposed cells. However, MC-LR up to 20 μM neither caused significant cytotoxic effects according to multiple viability endpoints after 48-h exposure, nor reduced impedance (cell layer integrity) over 96 h. Time-dependent increase of putative MC-LR adducts with protein phosphatases was not associated with activation of mitogen-activated protein kinases ERK1/2 and p38 during 48-h exposure in HBE cells. Future studies addressing human health risks associated with inhalation of toxic cyanobacteria and cyanotoxins should focus on complex environmental samples of cyanobacterial blooms and alterations of additional non-cytotoxic endpoints while adopting more advanced in vitro models.

Zobrazit více v PubMed

Lee J., Lee S., Jiang X. Cyanobacterial toxins in freshwater and food: Important sources of exposure to humans. Annu. Rev. Food Sci. Technol. 2017;8:281–304. doi: 10.1146/annurev-food-030216-030116. PubMed DOI

Codd G.A., Morrison L.F., Metcalf J.S. Cyanobacterial toxins: Risk management for health protection. Toxicol. Appl. Pharmacol. 2005;203:264–272. doi: 10.1016/j.taap.2004.02.016. PubMed DOI

Paerl H.W., Otten T.G. Harmful cyanobacterial blooms: Causes, consequences, and controls. Microb. Ecol. 2013;65:995–1010. doi: 10.1007/s00248-012-0159-y. PubMed DOI

Buratti F.M., Manganelli M., Vichi S., Stefanelli M., Scardala S., Testai E., Funari E. Cyanotoxins: Producing organisms, occurrence, toxicity, mechanism of action and human health toxicological risk evaluation. Arch. Toxicol. 2017;91:1049–1130. doi: 10.1007/s00204-016-1913-6. PubMed DOI

Grosse Y., Baan R., Straif K., Secretan B., El Ghissassi F., Cogliano V., Cantor K.P., Falconer I.R., Levallois P., Verger P., et al. Carcinogenicity of nitrate, nitrite, and cyanobacterial peptide toxins. Lancet Oncol. 2006;7:628–629. doi: 10.1016/S1470-2045(06)70789-6. PubMed DOI

Giannuzzi L., Krock B., Minaglia M.C.C., Rosso L., Houghton C., Sedan D., Malanga G., Espinosa M., Andrinolo D., Hernando M. Growth, toxin production, active oxygen species and catalase activity of Microcystis aeruginosa (Cyanophyceae) exposed to temperature stress. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2016;189:22–30. doi: 10.1016/j.cbpc.2016.07.001. PubMed DOI

Visser P.M., Verspagen J.M.H., Sandrini G., Stal L.J., Matthijs H.C.P., Davis T.W., Paerl H.W., Huisman J. How rising CO2 and global warming may stimulate harmful cyanobacterial blooms. Harmful Algae. 2016;54:145–159. doi: 10.1016/j.hal.2015.12.006. PubMed DOI

Carmichael W.W. Health effects of toxin-producing cyanobacteria: “The CyanoHABs”. Hum. Ecol. Risk Assess. An. Int. J. 2001;7:1393–1407. doi: 10.1080/20018091095087. DOI

Zhou M., Tu W.W., Xu J. Mechanisms of microcystin-LR-induced cytoskeletal disruption in animal cells. Toxicon. 2015;101:92–100. doi: 10.1016/j.toxicon.2015.05.005. PubMed DOI

Wiśniewska K., Lewandowska A.U., Śliwińska-Wilczewska S. The importance of cyanobacteria and microalgae present in aerosols to human health and the environment—Review study. Environ. Int. 2019;131:104964. doi: 10.1016/j.envint.2019.104964. PubMed DOI

Facciponte D.N., Bough M.W., Seidler D., Carroll J.L., Ashare A., Andrew A.S., Tsongalis G.J., Vaickus L.J., Henegan P.L., Butt T.H., et al. Identifying aerosolized cyanobacteria in the human respiratory tract: A proposed mechanism for cyanotoxin-associated diseases. Sci. Total Environ. 2018;645:1003–1013. doi: 10.1016/j.scitotenv.2018.07.226. PubMed DOI PMC

Lewandowska A.U., Śliwińska-Wilczewska S., Woźniczka D. Identification of cyanobacteria and microalgae in aerosols of various sizes in the air over the Southern Baltic Sea. Mar. Pollut. Bull. 2017;125:30–38. doi: 10.1016/j.marpolbul.2017.07.064. PubMed DOI

May N.W., Olson N.E., Panas M., Axson J.L., Tirella P.S., Kirpes R.M., Craig R.L., Gunsch M.J., Laskin A., Ault A.P., et al. Aerosol emissions from Great lakes harmful algal blooms. Environ. Sci. Technol. 2018;52:397–405. doi: 10.1021/acs.est.7b03609. PubMed DOI

Backer L.C., McNeel S.V., Barber T., Kirkpatrick B., Williams C., Irvin M., Zhou Y., Johnson T.B., Nierenberg K., Aubel M., et al. Recreational exposure to microcystins during algal blooms in two California lakes. Toxicon. 2010;55:909–921. doi: 10.1016/j.toxicon.2009.07.006. PubMed DOI

Scherer P.I., Raeder U., Geist J., Zwirglmaier K. Influence of temperature, mixing, and addition of microcystin-LR on microcystin gene expression in Microcystis aeruginosa. Microbiologyopen. 2017;6:1–10. doi: 10.1002/mbo3.393. PubMed DOI PMC

Nishiwaki-Matsushima R., Ohta T., Nishiwaki S., Suganuma M., Kohyama K., Ishikawa T., Carmichael W.W., Fujiki H. Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. J. Cancer Res. Clin. Oncol. 1992;118:420–424. doi: 10.1007/BF01629424. PubMed DOI

Svirčev Z., Drobac D., Tokodi N., Mijović B., Codd G.A., Meriluoto J. Toxicology of microcystins with reference to cases of human intoxications and epidemiological investigations of exposures to cyanobacteria and cyanotoxins. Arch. Toxicol. 2017;91:621–650. doi: 10.1007/s00204-016-1921-6. PubMed DOI

McLellan N.L., Manderville R.A. Toxic mechanisms of microcystins in mammals. Toxicol. Res. 2017;6:391–405. doi: 10.1039/C7TX00043J. PubMed DOI PMC

Bouaïcha N., Miles C.O., Beach D.G., Labidi Z., Djabri A., Benayache N.Y., Nguyen-Quang T. Structural diversity, characterization and toxicology of microcystins. Toxins. 2019;11:714. doi: 10.3390/toxins11120714. PubMed DOI PMC

Li Y., Huang H., Xue L., Zhuang D. Effects of MC-LR on ROS level in human bronchial epithelia cells and Chinese hamster ovary cells. Life Sci. J. 2015;12:170–173.

Fischer A., Hoeger S.J., Stemmer K., Feurstein D.J., Knobeloch D., Nussler A., Dietrich D.R. The role of organic anion transporting polypeptides (OATPs/SLCOs) in the toxicity of different microcystin congeners in vitro: A comparison of primary human hepatocytes and OATP-transfected HEK293 cells. Toxicol. Appl. Pharmacol. 2010;245:9–20. doi: 10.1016/j.taap.2010.02.006. PubMed DOI

He X., Liu Y.L., Conklin A., Westrick J., Weavers L.K., Dionysiou D.D., Lenhart J.J., Mouser P.J., Szlag D., Walker H.W. Toxic cyanobacteria and drinking water: Impacts, detection, and treatment. Harmful Algae. 2016;54:174–193. doi: 10.1016/j.hal.2016.01.001. PubMed DOI

International Agency for Research on Cancer (IARC) IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Ingested Nitrate and Nitrite, and Cyanobacterial Peptide Toxins. Volume 94. International Agency for Research on Cancer (IARC); Lyon, France: 2010. PubMed PMC

Liu J., Wang B., Huang P., Wang H., Xu K., Wang X., Xu L., Guo Z. Microcystin-LR promotes cell proliferation in the mice liver by activating Akt and p38/ERK/JNK cascades. Chemosphere. 2016;163:14–21. doi: 10.1016/j.chemosphere.2016.08.002. PubMed DOI

Wang H., Xu K., Wang B., Liu J., Wang X., Xing M., Huang P., Guo Z., Xu L. Microcystin-LR induces a wide variety of biochemical changes in the A549 human non-small cell lung cancer cell line: Roles for protein phosphatase 2A and its substrates. Environ. Toxicol. 2017;32:1065–1078. doi: 10.1002/tox.22305. PubMed DOI

Zegura B. An Overview of the mechanisms of Microcystin-LR genotoxicity and potential carcinogenicity. Mini Rev. Med. Chem. 2016;16:1042–1062. doi: 10.2174/1389557516666160308141549. PubMed DOI

Zhang X., Xie P., Zhang X., Zhou W., Zhao S., Zhao Y., Cai Y. Toxic effects of microcystin-LR on the HepG2 cell line under hypoxic and normoxic conditions. J. Appl. Toxicol. 2013;33:1180–1186. doi: 10.1002/jat.2749. PubMed DOI

Žegura B., Sedmak B., Filipič M. Microcystin-LR induces oxidative DNA damage in human hepatoma cell line HepG2. Toxicon. 2003;41:41–48. doi: 10.1016/S0041-0101(02)00207-6. PubMed DOI

Li Y., Li J., Huang H., Yang M., Zhuang D., Cheng X., Zhang H., Fu X. Microcystin-LR induces mitochondria-mediated apoptosis in human bronchial epithelial cells. Exp. Ther. Med. 2016;12:633–640. doi: 10.3892/etm.2016.3423. PubMed DOI PMC

Lone Y., Bhide M., Koiri R.K. Microcystin-LR induced immunotoxicity in mammals. J. Toxicol. 2016;2016:1–5. doi: 10.1155/2016/8048125. PubMed DOI PMC

Adamovsky O., Moosova Z., Pekarova M., Basu A., Babica P., Svihalkova Sindlerova L., Kubala L., Blaha L. Immunomodulatory potency of microcystin, an important water-polluting cyanobacterial toxin. Environ. Sci. Technol. 2015;49:12457–12464. doi: 10.1021/acs.est.5b02049. PubMed DOI

Chen L., Chen J., Zhang X., Xie P. A review of reproductive toxicity of microcystins. J. Hazard. Mater. 2016;301:381–399. doi: 10.1016/j.jhazmat.2015.08.041. PubMed DOI

Wu Q., Yan W., Liu C., Li L., Yu L., Zhao S., Li G. Microcystin-LR exposure induces developmental neurotoxicity in zebrafish embryo. Environ. Pollut. 2016;213:793–800. doi: 10.1016/j.envpol.2016.03.048. PubMed DOI

Stebbing J., Lit L.C., Zhang H., Darrington R.S., Melaiu O., Rudraraju B., Giamas G. The regulatory roles of phosphatases in cancer. Oncogene. 2014;33:939–953. doi: 10.1038/onc.2013.80. PubMed DOI

Martínez Hernández J., López-Rodas V., Costas E. Microcystins from tap water could be a risk factor for liver and colorectal cancer: A risk intensified by global change. Med. Hypotheses. 2009;72:539–540. doi: 10.1016/j.mehy.2008.11.041. PubMed DOI

Kubickova B., Babica P., Hilscherová K., Šindlerová L. Effects of cyanobacterial toxins on the human gastrointestinal tract and the mucosal innate immune system. Environ. Sci. Eur. 2019;31 doi: 10.1186/s12302-019-0212-2. DOI

Carvalho G.M.C., Oliveira V.R., Soares R.M., Azevedo S.M.F.O., Lima L.M., Barreiro E.J., dos Santos Valenca S., Saldiva P.H.N., Faffe D.S., Zin W.A. Can LASSBio 596 and dexamethasone treat acute lung and liver inflammation induced by microcystin-LR? Toxicon. 2010;56:604–612. doi: 10.1016/j.toxicon.2010.06.005. PubMed DOI

Gupta N., Pant S.C., Vijayaraghavan R., Rao P.V.L. Comparative toxicity evaluation of cyanobacterial cyclic peptide toxin microcystin variants (LR, RR, YR) in mice. Toxicology. 2003;188:285–296. doi: 10.1016/S0300-483X(03)00112-4. PubMed DOI

Soares R.M., Cagido V.R., Ferraro R.B., Meyer-Fernandes J.R., Rocco P.R.M., Zin W.A., Azevedo S.M.F.O. Effects of microcystin-LR on mouse lungs. Toxicon. 2007;50:330–338. doi: 10.1016/j.toxicon.2007.04.003. PubMed DOI

Zhao S., Sun H., Yan W., Xu D., Shen T. A proteomic study of the pulmonary injury induced by microcystin-LR in mice. Toxicon. 2018;150:304–314. doi: 10.1016/j.toxicon.2018.06.072. PubMed DOI

Carvalho G.M.C., Oliveira V.R., Casquilho N.V., Araujo A.C.P., Soares R.M., Azevedo S.M.F.O., Pires K.M.P., Valença S.S., Zin W.A. Pulmonary and hepatic injury after sub-chronic exposure to sublethal doses of microcystin-LR. Toxicon. 2016;112:51–58. doi: 10.1016/j.toxicon.2016.01.066. PubMed DOI

Oliveira V.R., Mancin V.G.L., Pinto E.F., Soares R.M., Azevedo S.M.F.O., Macchione M., Carvalho A.R., Zin W.A. Repeated intranasal exposure to microcystin-LR affects lungs but not nasal epithelium in mice. Toxicon. 2015;104:14–18. doi: 10.1016/j.toxicon.2015.07.331. PubMed DOI

Li X., Xu L., Zhou W., Zhao Q., Wang Y. Chronic exposure to microcystin-LR affected mitochondrial DNA maintenance and caused pathological changes of lung tissue in mice. Environ. Pollut. 2016;210:48–56. doi: 10.1016/j.envpol.2015.12.001. PubMed DOI

Benson M.J., Hutt A.J., Rein K., Boggs E.S., Barr B.E., Fleming E.L. The toxicity of microcystin LR in mice following 7 days of inhalation exposure. Toxicon. 2005;45:691–698. doi: 10.1016/j.toxicon.2005.01.004. PubMed DOI PMC

Wang C., Gu S., Yin X., Yuan M., Xiang Z., Li Z., Cao H., Meng X., Hu K., Han X. The toxic effects of microcystin-LR on mouse lungs and alveolar type II epithelial cells. Toxicon. 2016;115:81–88. doi: 10.1016/j.toxicon.2016.03.007. PubMed DOI PMC

Wang P.J., Chien M.S., Wu F.J., Chou H.N., Lee S.J. Inhibition of embryonic development by microcystin-LR in zebrafish, Danio Rerio. Toxicon. 2005;45:303–308. doi: 10.1016/j.toxicon.2004.10.016. PubMed DOI

Overgaard C.E., Mitchell L.A., Koval M. Roles for claudins in alveolar epithelial barrier function. Ann. N. Y. Acad. Sci. 2012;1257:167–174. doi: 10.1111/j.1749-6632.2012.06545.x. PubMed DOI PMC

Repetto G., Peso A., Zurita J.L. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat. Protoc. 2008;3:1125–1131. doi: 10.1038/nprot.2008.75. PubMed DOI

Organisation for Economic Co-Operation and Development (OECD) Test No. 432: In Vitro 3T3 NRU Phototoxicity Test. Organisation for Economic Co-Operation and Development (OECD); Paris, France: 2019. OECD Guidelines for the Testing of Chemicals, Section 4.

Fischer W.J., Altheimer S., Cattori V., Meier P.J., Dietrich D.R., Hagenbuch B. Organic anion transporting polypeptides expressed in liver and brain mediate uptake of microcystin. Toxicol. Appl. Pharmacol. 2005;203:257–263. doi: 10.1016/j.taap.2004.08.012. PubMed DOI

Bleasby K., Castle J.C., Roberts C.J., Cheng C., Bailey W.J., Sina J.F., Kulkarni A.V., Hafey M.J., Evers R., Johnson J.M., et al. Expression profiles of 50 xenobiotic transporter genes in humans and pre-clinical species: A resource for investigations into drug disposition. Xenobiotica. 2006;36:963–988. doi: 10.1080/00498250600861751. PubMed DOI

Tamai I., Nezu J., Uchino H., Sai Y., Oku A., Shimane M., Tsuji A. molecular identification and characterization of novel members of the human organic anion transporter (OATP) family. Biochem. Biophys. Res. Commun. 2000;273:251–260. doi: 10.1006/bbrc.2000.2922. PubMed DOI

Sakamoto A., Matsumaru T., Yamamura N., Uchida Y., Tachikawa M., Ohtsuki S., Terasaki T. Quantitative expression of human drug transporter proteins in lung tissues: Analysis of regional, gender, and interindividual differences by liquid chromatography-tandem mass spectrometry. J. Pharm. Sci. 2013;102:3395–3406. doi: 10.1002/jps.23606. PubMed DOI

Kreft M.E., Jerman U.D., Lasič E., Hevir-Kene N., Rižner T.L., Peternel L., Kristan K. The characterization of the human cell line Calu-3 under different culture conditions and its use as an optimized in vitro model to investigate bronchial epithelial function. Eur. J. Pharm. Sci. 2015;69:1–9. doi: 10.1016/j.ejps.2014.12.017. PubMed DOI

Endter S., Francombe D., Gumbleton M., Ehrhardt C. RT-PCR analysis of ABC, SLC and SLCO drug transporters in human lung epithelial cell models. J. Pharm. Pharmacol. 2009;61:583–591. doi: 10.1211/jpp.61.05.0006. PubMed DOI

Raska J., Ctverackova L., Dydowiczova A., Sovadinova I., Blaha L., Babica P. Tumor-Promoting cyanotoxin microcystin-LR does not induce procarcinogenic events in adult human liver stem cells. Toxicol. Appl. Pharmacol. 2018;345:103–113. doi: 10.1016/j.taap.2018.03.011. PubMed DOI

MacKintosh C., Beattie K.A., Klumpp S., Cohen P., Codd G.A. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett. 1990;264:187–192. doi: 10.1016/0014-5793(90)80245-E. PubMed DOI

Mikhailov A., Härmälä-Braskén A.-S., Hellman J., Meriluoto J., Eriksson J.E. Identification of ATP-synthase as a novel intracellular target for microcystin-LR. Chem. Biol. Interact. 2003;142:223–237. doi: 10.1016/S0009-2797(02)00075-3. PubMed DOI

Chen T., Cui J., Liang Y., Xin X., Owen Young D., Chen C., Shen P. Identification of human liver mitochondrial aldehyde dehydrogenase as a potential target for microcystin-LR. Toxicology. 2006;220:71–80. doi: 10.1016/j.tox.2005.12.001. PubMed DOI

Zhu Z., Zhang L., Shi G. Proteasome as a molecular target of microcystin-LR. Toxins. 2015;7:2221–2231. doi: 10.3390/toxins7062221. PubMed DOI PMC

Huang H., Liu C., Fu X., Zhang S., Xin Y., Li Y., Xue L., Cheng X., Zhang H. Microcystin-LR induced apoptosis in rat sertoli cells via the mitochondrial caspase-dependent pathway: Role of reactive oxygen species. Front. Physiol. 2016;7:1–10. doi: 10.3389/fphys.2016.00397. PubMed DOI PMC

Takser L., Benachour N., Husk B., Cabana H., Gris D. Cyanotoxins at low doses induce apoptosis and inflammatory effects in murine brain cells: Potential implications for neurodegenerative diseases. Toxicol. Rep. 2016;3:180–189. doi: 10.1016/j.toxrep.2015.12.008. PubMed DOI PMC

Basu A., Dydowiczová A., Čtveráčková L., Jaša L., Trosko J.E., Bláha L., Babica P. Assessment of hepatotoxic potential of cyanobacterial toxins using 3D In Vitro model of adult human liver stem cells. Environ. Sci. Technol. 2018;52:10078–10088. doi: 10.1021/acs.est.8b02291. PubMed DOI

Menezes C., Alverca E., Dias E., Sam-Bento F., Pereira P. Involvement of endoplasmic reticulum and autophagy in microcystin-LR toxicity in Vero-E6 and HepG2 cell lines. Toxicol. Vitr. 2013;27:138–148. doi: 10.1016/j.tiv.2012.09.009. PubMed DOI

Chong M.W.K., Gu K.D., Lam P.K.S., Yang M., Fong W.F. Study on the cytotoxicity of microcystin-LR on cultured cells. Chemosphere. 2000;41:143–147. doi: 10.1016/S0045-6535(99)00402-6. PubMed DOI

Huguet A., Henri J., Petitpas M., Hogeveen K., Fessard V. Comparative cytotoxicity, oxidative stress, and cytokine secretion induced by two cyanotoxin variants, microcystin-LR and-RR, in human intestinal Caco-2 cells. J. Biochem. Mol. Toxicol. 2013;27:253–258. doi: 10.1002/jbt.21482. PubMed DOI

Kubickova B., Laboha P., Hildebrandt J.P., Hilscherová K., Babica P. Effects of cylindrospermopsin on cultured immortalized human airway epithelial cells. Chemosphere. 2019;220:620–628. doi: 10.1016/j.chemosphere.2018.12.157. PubMed DOI

Zihni C., Mills C., Matter K., Balda M.S. Tight junctions: From simple barriers to multifunctional molecular gates. Nat. Rev. Mol. Cell Biol. 2016;17:564–580. doi: 10.1038/nrm.2016.80. PubMed DOI

Zhou Y., Geng X., Chen Y., Shi H., Yang Y., Zhu C., Yu G., Tang Z. Essential roles of Akt/Snail pathway in microcystin-LR-induced tight junction toxicity in Sertoli cell. Food Chem. Toxicol. 2018;112:290–298. doi: 10.1016/j.fct.2018.01.004. PubMed DOI

Upadhyay S., Palmberg L. Air-Liquid interface: Relevant In Vitro models for investigating air pollutant-induced pulmonary toxicity. Toxicol. Sci. 2018;164:21–30. doi: 10.1093/toxsci/kfy053. PubMed DOI

Qian F., Deng J., Wang G., Ye R.D., Christman J.W. Pivotal role of mitogen-activated protein kinase-activated protein kinase 2 in inflammatory pulmonary diseases. Curr. Protein Pept. Sci. 2016;17:332–342. doi: 10.2174/1389203716666150629121324. PubMed DOI PMC

Sun Y., Yu X., Li M., Liu J. P44/42 MAPK signal pathway-mediated hyperphosphorylation of paxillin and redistribution of E-cadherin was involved in microcystin-LR-reduced cellular adhesion in a human liver cell line. Chemosphere. 2018;200:594–602. doi: 10.1016/j.chemosphere.2018.02.170. PubMed DOI

Díez-Quijada L., Prieto A.I., Guzmán-Guillén R., Jos A., Cameán A.M. Occurrence and toxicity of microcystin congeners other than MC-LR and MC-RR: A review. Food Chem. Toxicol. 2019;125:106–132. doi: 10.1016/j.fct.2018.12.042. PubMed DOI

Faassen E.J., Lürling M. Occurrence of the microcystins MC-LW and MC-LF in dutch surface waters and their contribution to total microcystin toxicity. Mar. Drugs. 2013;11:2643–2654. doi: 10.3390/md11072643. PubMed DOI PMC

Mantzouki E., Lürling M., Fastner J., de Senerpont Domis L., Wilk-Woźniak E., Koreivienė J., Seelen L., Teurlincx S., Verstijnen Y., Krztoń W., et al. Temperature effects explain continental scale distribution of cyanobacterial toxins. Toxins. 2018;10:156. doi: 10.3390/toxins10040156. PubMed DOI PMC

World Health Organization (WHO) Guidelines for Safe Recreational Water Environments. 1st-Coasta ed. World Health Organization (WHO); Geneva, Switzerland: 2003.

United States Environmental Protection Agency (EPA) Recommended Human Health Recreational Ambient Water Quality Criteria or Swimming Advisories for Microcystins and Cylindrospermopsin. United States Environmental Protection Agency (EPA); Washington, DC, USA: 2019. (EPA 822-R-19-001)

Pilotto L.S., Douglas R.M., Burch M.D., Cameron S. Health effects of exposure to cyanobacteria (blue-green algae ) during recreational water-related activities. Aust. N. Z. J. Public Health. 1997;21:562–566. doi: 10.1111/j.1467-842X.1997.tb01755.x. PubMed DOI

Stewart I., Webb P.M., Schluter P.J., Fleming L.E., Burns J.W., Gantar M., Backer L.C., Shaw G.R. Epidemiology of recreational exposure to freshwater cyanobacteria—An international prospective cohort study. BMC Public Health. 2006;6:93. doi: 10.1186/1471-2458-6-93. PubMed DOI PMC

Yankaskas J.R., Haizlip J.E., Conrad M., Koval D., Lazarowski E., Paradiso A.M., Rinehart C.A., Sarkadi B., Schlegel R., Boucher R.C. Papilloma-Virus immortalized tracheal epithelial cells retail a well-differentiated phenotype. Am. J. Physiol. 1993;264:C1219–C1230. doi: 10.1152/ajpcell.1993.264.5.C1219. PubMed DOI

Gruenert D.C., Willems M., Cassiman J.J., Frizzell R.A. Established cell lines used in cystic fibrosis research. J. Cyst. Fibros. 2004;3:191–196. doi: 10.1016/j.jcf.2004.05.040. PubMed DOI

Cozens A.L., Yezzi M.J., Kunzelmann K., Ohrui T., Chin L., Eng K., Finkbeiner W.E., Widdicombe J.H., Gruenert D.C. CFTR expression and chloride secretion in polarized immortal human bronchial epithelial cells. Am. J. Respir. Cell Mol. Biol. 1994;10:38–47. doi: 10.1165/ajrcmb.10.1.7507342. PubMed DOI

ACEA Biosciences . Calculation Principles of RTCA Software. ACEA Biosciences; San Diego, CA, USA: 2016.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...