Spirochetes isolated from arthropods constitute a novel genus Entomospira genus novum within the order Spirochaetales
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33051478
PubMed Central
PMC7554043
DOI
10.1038/s41598-020-74033-9
PII: 10.1038/s41598-020-74033-9
Knihovny.cz E-zdroje
- MeSH
- členovci genetika MeSH
- DNA bakterií genetika MeSH
- fylogeneze MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenční analýza DNA metody MeSH
- Spirochaeta genetika MeSH
- Spirochaetales klasifikace genetika izolace a purifikace MeSH
- techniky typizace bakterií metody MeSH
- zastoupení bazí genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA bakterií MeSH
- RNA ribozomální 16S MeSH
Spirochetal bacteria were successfully isolated from mosquitoes (Culex pipiens, Aedes cinereus) in the Czech Republic between 1999 and 2002. Preliminary 16S rRNA phylogenetic sequence analysis showed that these strains differed significantly from other spirochetal genera within the family Spirochaetaceae and suggested a novel bacterial genus in this family. To obtain more comprehensive genomic information of these isolates, we used Illumina MiSeq and Oxford Nanopore technologies to sequence four genomes of these spirochetes (BR151, BR149, BR193, BR208). The overall size of the genomes varied between 1.68 and 1.78 Mb; the GC content ranged from 38.5 to 45.8%. Draft genomes were compared to 36 publicly available genomes encompassing eight genera from the class Spirochaetes. A phylogeny generated from orthologous genes across all taxa and the percentage of conserved proteins (POCP) confirmed the genus status of these novel spirochetes. The genus Entomospira gen. nov. is proposed with BR151 selected as type species of the genus. For this isolate and the closest related isolate, BR149, we propose the species name Entomospira culicis sp. nov. The two other isolates BR208 and BR193 are named Entomospira nematocera sp. nov. (BR208) and Entomospira entomophilus sp. nov. (BR193). Finally, we discuss their interesting phylogenetic positioning.
Zobrazit více v PubMed
Sikutova S, Halouzka J, Mendel J, Knoz J, Rudolf I. Novel spirochetes isolated from mosquitoes and black flies in the Czech Republic. J. Vector Ecol. 2010;35:50–55. doi: 10.1111/j.1948-7134.2010.00057.x. PubMed DOI
Bankevich A, et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC
Wick RR, Schultz MB, Zobel J, Holt KE. Bandage: Interactive visualization of de novo genome assemblies. Bioinformatics. 2015;31:3350–3352. doi: 10.1093/bioinformatics/btv383. PubMed DOI PMC
Aziz RK, et al. The RAST server: Rapid annotations using subsystems technology. BMC Genomics. 2008;9:75. doi: 10.1186/1471-2164-9-75. PubMed DOI PMC
Antipov D, Korobeynikov A, McLean JS, Pevzner PA. hybridSPAdes: An algorithm for hybrid assembly of short and long reads. Bioinformatics. 2016;32:1009–1015. doi: 10.1093/bioinformatics/btv688. PubMed DOI PMC
Antipov D, et al. plasmidSPAdes: Assembling plasmids from whole genome sequencing data. Bioinformatics. 2016;32:3380–3387. doi: 10.1093/bioinformatics/btv688. PubMed DOI
Antipov D, Raiko M, Lapidus A, Pevzner PA. Plasmid detection and assembly in genomic and metagenomic data sets. Genome Res. 2019;29:961–968. doi: 10.1101/gr.241299.118. PubMed DOI PMC
Gevers D, et al. Opinion: Re-evaluating prokaryotic species. Nat. Rev. Microbiol. 2005;3:733–739. doi: 10.1038/nrmicro1236. PubMed DOI
Parte AC. LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res. 2014;42:D613–616. doi: 10.1093/nar/gkt1111. PubMed DOI PMC
Stamatakis A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Loytynoja A. Phylogeny-aware alignment with PRANK. Methods Mol. Biol. 2014;1079:155–170. doi: 10.1007/978-1-62703-646-7_10. PubMed DOI
Qin Q-L, et al. A proposed genus boundary for the prokaryotes based on genomic insights. J. Bacteriol. 2014;196:2210–2215. doi: 10.1128/JB.01688-14. PubMed DOI PMC
Bayliss SC, Thorpe HA, Coyle NM, Sheppard SK, Feil EJ. PIRATE: A fast and scalable pangenomics toolbox for clustering diverged orthologues in bacteria. GigaScience. 2019 doi: 10.1093/gigascience/giz119. PubMed DOI PMC
Leimbach A. Bac-Genomics-Scripts: Bovine E. coli Mastitis Comparative Genomics. Geneva: Zenodo; 2016.
Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: A tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28:33–36. doi: 10.1093/nar/28.1.33. PubMed DOI PMC
Mastronarde DN. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 2005;152:36–51. doi: 10.1016/j.jsb.2005.07.007. PubMed DOI
Kremer JR, Mastronarde DN, McIntosh JR. Computer visualization of three-dimensional image data using IMOD. J. Struct. Biol. 1996;116:71–76. doi: 10.1006/jsbi.1996.0013. PubMed DOI
Margos G, et al. The genus Borrelia reloaded. PLoS ONE. 2018;13:e0208432. doi: 10.1371/journal.pone.0208432. PubMed DOI PMC
Konstantinidis KT, Ramette A, Tiedje JM. Toward a more robust assessment of intraspecies diversity, using fewer genetic markers. Appl. Environ. Microbiol. 2006;72:7286–7293. doi: 10.1128/AEM.01398-06. PubMed DOI PMC
Yoon SH, et al. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017;67:1613–1617. doi: 10.1099/ijsem.0.001755. PubMed DOI PMC
Zhang W, et al. Whole-genome sequence comparison as a method for improving bacterial species definition. J. General Appl. Microbiol. 2014;60:75–78. doi: 10.2323/jgam.60.75. PubMed DOI
Magnarelli LA, et al. Spirochetes in ticks and antibodies to Borrelia burgdorferi in white-tailed deer from Connecticut, New York State, and North Carolina. J. Wildl. Dis. 1986;22:178–188. doi: 10.7589/0090-3558-22.2.178. PubMed DOI
Magnarelli LA, Anderson JF. Ticks and biting insects infected with the etiologic agent of Lyme disease, Borrelia burgdorferi. J. Clin. Microbiol. 1988;26:1482–1486. doi: 10.1128/JCM.26.8.1482-1486.1988. PubMed DOI PMC
Zeman P. Borrelia-infection rates in tick and insect vectors accompanying human risk of acquiring Lyme borreliosis in a highly endemic region in Central Europe. Folia Parasitol. (Praha) 1998;45:319–325. PubMed
Magnarelli LA, Freier JE, Anderson JF. Experimental infections of mosquitoes with Borrelia burgdorferi, the etiologic agent of Lyme disease. J. Infect. Dis. 1987;156:694–695. doi: 10.1093/infdis/156.4.694. PubMed DOI
Melaun C, et al. Occurrence of Borrelia burgdorferi s.l. in different genera of mosquitoes (Culicidae) in Central Europe. Ticks Tick Borne Dis. 2016;7:256–263. doi: 10.1016/j.ttbdis.2015.10.018. PubMed DOI
Halouzka J, Postic D, Hubalek Z. Isolation of the spirochaete Borrelia afzelii from the mosquito Aedes vexans in the Czech Republic. Med. Vet. Entomol. 1998;12:103–105. doi: 10.1046/j.1365-2915.1998.00086.x. PubMed DOI
Halouzka J, Wilske B, Stunzner D, Sanogo YO, Hubalek Z. Isolation of Borrelia afzelii from overwintering Culex pipiens biotype molestus mosquitoes. Infection. 1999;27:275–277. doi: 10.1007/s150100050029. PubMed DOI
Sanogo YO, Halouzka J, Hubalek Z, Nemec M. Detection of spirochetes in, and isolation from, culicine mosquitoes. Folia Parasitol. (Praha) 2000;47:79–80. doi: 10.14411/fp.2000.017. PubMed DOI
Sanogo YO, Reipert S, Halouzka J, Hubalek Z, Nemec M. Isolation and morphological characterization of mosquito spirochetes from a Lyme disease endemic area. Ann. N. Y. Acad. Sci. 2000;916:672–675. doi: 10.1111/j.1749-6632.2000.tb05359.x. PubMed DOI
Cechova L, Durnova E, Sikutova S, Halouzka J, Nemec M. Characterization of spirochetal isolates from arthropods collected in South Moravia, Czech Republic, using fatty acid methyl esters analysis. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2004;808:249–254. doi: 10.1016/j.jchromb.2004.05.014. PubMed DOI
Shivani Y, Subhash Y, Sasikala C, Ramana CV. Spirochaeta sinaica to a new genus Sediminispirochaeta gen. nov. as Sediminispirochaeta bajacaliforniensis comb. nov., Sediminispirochaeta smaragdinae comb. nov. and Sediminispirochaeta sinaica comb. nov. Int. J. Syst. Evol. Microbiol. 2016;66:5485–5492. doi: 10.1099/ijsem.0.001545. PubMed DOI
Ben Hania W, et al. Complete genome sequence and description of Salinispira pacifica gen. nov., sp. nov., a novel spirochaete isolated form a hypersaline microbial mat. Stand. Genom. Sci. 2015;10:7. doi: 10.1186/1944-3277-10-7. PubMed DOI PMC
Subhash Y, Lee SS. Description of Oceanispirochaeta sediminicola gen. nov., sp. nov., an obligately anaerobic bacterium isolated from coastal marine sediments, and reclassification of Spirochaeta litoralis as Oceanispirochaeta litoralis comb. nov. Int. J. Syst. Evol. Microbiol. 2017;67:3403–3409. doi: 10.1099/ijsem.0.002130. PubMed DOI
Goldstein SF, Charon NW, Kreiling JA. Borrelia burgdorferi swims with a planar waveform similar to that of eukaryotic flagella. Proc. Natl. Acad. Sci. U.S.A. 1994;91:3433–3437. doi: 10.1073/pnas.91.8.3433. PubMed DOI PMC
Cox CD. Shape of Treponema pallidum. J. Bacteriol. 1972;109:943–944. doi: 10.1128/JB.109.2.943-944.1972. PubMed DOI PMC
Tahara H, et al. The mechanism of two-phase motility in the spirochete Leptospira: Swimming and crawling. Sci. Adv. 2018;4:7975. doi: 10.1126/sciadv.aar7975. PubMed DOI PMC
Mirajkar NS, Phillips ND, La T, Hampson DJ, Gebhart CJ. Characterization and Recognition of Brachyspira hampsonii sp. nov., a novel intestinal spirochete that is pathogenic to pigs. J. Clin. Microbiol. 2016;54:2942–2949. doi: 10.1128/JCM.01717-16. PubMed DOI PMC
Li C, et al. The spirochete FlaA periplasmic flagellar sheath protein impacts flagellar helicity. J. Bacteriol. 2000;182:6698–6706. doi: 10.1128/JB.182.23.6698-6706.2000. PubMed DOI PMC
Hovind-Hougen K. Ultrastructure of spirochetes isolated from Ixodes ricinus and Ixodes dammini. Yale J. Biol. Med. 1984;57:543–548. PubMed PMC
Hampson DJ. The spirochete Brachyspira pilosicoli, enteric pathogen of animals and humans. Clin. Microbiol. Rev. 2017 doi: 10.1128/CMR.00087-17. PubMed DOI PMC
Holt SC. Anatomy and chemistry of spirochetes. Microbiol. Rev. 1978;42:114–160. doi: 10.1128/MMBR.42.1.114-160.1978. PubMed DOI PMC
Goldstein SF, Charon NW. Motility of the spirochete Leptospira. Cell Motil. Cytoskel. 1988;9:101–110. doi: 10.1002/cm.970090202. PubMed DOI
Briegel A, et al. Universal architecture of bacterial chemoreceptor arrays. Proc. Natl. Acad. Sci. U.S.A. 2009;106:17181–17186. doi: 10.1073/pnas.0905181106. PubMed DOI PMC
Kudryashev M, et al. Comparative cryo-electron tomography of pathogenic Lyme disease spirochetes. Mol. Microbiol. 2009;71:1415–1434. doi: 10.1111/j.1365-2958.2009.06613.x. PubMed DOI
Izard J, et al. Cryo-electron tomography elucidates the molecular architecture of Treponema pallidum, the syphilis spirochete. J. Bacteriol. 2009;191:7566–7580. doi: 10.1128/JB.01031-09. PubMed DOI PMC
Raddi G, et al. Three-dimensional structures of pathogenic and saprophytic Leptospira species revealed by cryo-electron tomography. J. Bacteriol. 2012;194:1299–1306. doi: 10.1128/JB.06474-11. PubMed DOI PMC
Murphy GE, Matson EG, Leadbetter JR, Berg HC, Jensen GJ. Novel ultrastructures of Treponema primitia and their implications for motility. Mol. Microbiol. 2008;67:1184–1195. doi: 10.1111/j.1365-2958.2008.06120.x. PubMed DOI PMC
Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: Assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–1055. doi: 10.1101/gr.186072.114. PubMed DOI PMC
Darling AC, Mau B, Blattner FR, Perna NT. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14:1394–1403. doi: 10.1101/gr.2289704. PubMed DOI PMC
Seemann T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–2069. doi: 10.1093/bioinformatics/btu153. PubMed DOI
Fouts DE, Brinkac L, Beck E, Inman J, Sutton G. PanOCT: Automated clustering of orthologs using conserved gene neighborhood for pan-genomic analysis of bacterial strains and closely related species. Nucleic Acids Res. 2012;40:e172. doi: 10.1093/nar/gks757. PubMed DOI PMC
Adamek M, et al. Comparative genomics reveals phylogenetic distribution patterns of secondary metabolites in Amycolatopsis species. BMC Genomics. 2018;19:426. doi: 10.1186/s12864-018-4809-4. PubMed DOI PMC
Bily T, et al. Electron tomography analysis of tick-borne encephalitis virus infection in human neurons. Sci. Rep. 2015;5:10745. doi: 10.1038/srep10745. PubMed DOI PMC
Description of genome sequences of arthropod-associated spirochetes of the genus Entomospira