Temperature Dependence of Photodegradation of Dissolved Organic Matter to Dissolved Inorganic Carbon and Particulate Organic Carbon
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26106898
PubMed Central
PMC4479578
DOI
10.1371/journal.pone.0128884
PII: PONE-D-15-02951
Knihovny.cz E-zdroje
- MeSH
- fotolýza MeSH
- huminové látky analýza účinky záření MeSH
- kinetika MeSH
- oxidace-redukce MeSH
- pevné částice chemie účinky záření MeSH
- rozpustnost MeSH
- statistické modely * MeSH
- světlo MeSH
- teplota MeSH
- uhlík chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- huminové látky MeSH
- pevné částice MeSH
- uhlík MeSH
Photochemical transformation of dissolved organic matter (DOM) has been studied for more than two decades. Usually, laboratory or "in-situ" experiments are used to determine photodegradation variables. A common problem with these experiments is that the photodegradation experiments are done at higher than ambient temperature. Five laboratory experiments were done to determine the effect of temperature on photochemical degradation of DOM. Experimental results showed strong dependence of photodegradation on temperature. Mathematical modeling of processes revealed that two different pathways engaged in photochemical transformation of DOM to dissolved inorganic carbon (DIC) strongly depend on temperature. Direct oxidation of DOM to DIC dominated at low temperatures while conversion of DOM to intermediate particulate organic carbon (POC) prior to oxidation to DIC dominated at high temperatures. It is necessary to consider this strong dependence when the results of laboratory experiments are interpreted in regard to natural processes. Photodegradation experiments done at higher than ambient temperature will necessitate correction of rate constants.
Environmental and Resource Studies Trent University Peterborough Ontario Canada
Faculty of Environmental Studies York University Toronto Ontario Canada
Zobrazit více v PubMed
Wetzel RG. Gradient-dominated ecosystems: Sources and regulatory functions of dissolved organic matter in freshwater ecosystems. Hydrobiologia. 1992; 229: 181–198.
Osburn CL, Morris DP, Thorn KA, Moeller RE. Chemical and optical changes in freshwater dissolved organic matter exposed to solar radiation. Biogeochemistry. 2001; 54: 251–278.
Zepp RG, Calaghan TV, Erickson DJ. Effects of increased solar ultraviolet radiation on biogeochemical cycles. Ambio. 1995; 24: 181–187.
Mopper K, Zhou X, Kieber RJ, Kieber DJ, Sikorski RJ, Jones RD. Photochemical degradation of dissolved organic carbon and its impact on the oceanic carbon cycle. Nature. 1991; 353: 60–62.
Granéli W, Lindell M, Tranvik L. Photooxidative production of dissolved inorganic carbon in lakes of different humic content. Limnol Oceanogr. 1996; 41: 698–706.
Kieber DJ, McDaniel J, Mopper K. Photochemical source of biological substrates in sea water: Implications for carbon cycling. Nature. 1989; 341: 637–639.
Bertilsson S, Tranvik L. Photochemically produced carboxylic acids as substrates for freshwater bacterioplankton. Limnol Oceanogr. 1998; 43: 885–895.
Porcal P, Hejzlar J, Kopáček J. Seasonal and photochemical changes of DOM in an acidified forest lake and its tributaries. Aquat Sci. 2004; 66: 211–222.
Molot LA, Dillon PJ. Photolytic regulation of dissolved organic carbon in northern lakes. Global Biogeochem Cycles. 1997; 11: 357–365.
Molot LA, Hudson JJ, Dillon PJ, Miller SA. Effect of pH on photo-oxidation of dissolved organic carbon by hydroxyl radicals in a coloured, softwater stream. Aquat Sci. 2005; 67: 189–195.
Gao H, Zepp RG. Factors influencing photoreactions of dissolved organic matter in a costal river of the Southeastern United States. Environ Sci Technol. 1998; 32: 2940–2946.
Moran MA, Sheldon WM Jr, Zepp RG. Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter. Limnol Oceanogr. 2000; 45: 1254–1264.
Kopáček J, Marešová M, Norton SA, Porcal P, Veselý J. Photochemical source of metals for sediments. Environ Sci Technol. 2006; 40: 4455–4459. PubMed
Porcal P, Amirbahman A, Kopáček J, Novák F, Norton SA. Photochemical release of humic and fulvic acid-bound metals from simulated soil and streamwater. J Environ Monit. 2009; 11: 1064–1071. 10.1039/b812330f PubMed DOI
Dillon PJ, Molot LA, Scheider WA. Phosphorus and nitrogen export from forested catchments in central Ontario. J Environ Qual. 1991; 20: 857–864.
Kelton N, Molot LA, Dillon PJ. Spectrofluorometric properties of dissolved organic matter from Central and Southern Ontario streams and the influence of iron and irradiation. Wat Res. 2007; 41: 638–646. PubMed
Porcal P, Dillon PJ, Molot LA. Photochemical production and decomposition of particulate organic carbon in a freshwater stream. Aquat Sci. 2013; 75: 469–482.
Porcal P, Dillon PJ, Molot LA. Seasonal changes in photochemical properties of dissolved organic matter in small boreal streams. Biogeosciences. 2013; 10: 5533–5543.
Ontario Ministry of the Environment. Handbook of Analytical Methods for Environmental Samples. Toronto, Ontario, Canada; 1983.
Hagreaves BR. Water column optics and penetration of UVR In: Helbling EW and Zagarese H, editors. UV Effects in Aquatic Organisms and Ecosystems. The Royal Society of Chemistry, Cambridge; 2003. pp. 59–105.
Morris DP, Zagarese H, Williamson CE, Balseiro EG, Hagreaves BR, Modenutti B, et al. The attenuation of solar UV radiation in lakes and the role of dissolved organic carbon. Limnol Oceanogr. 1995; 40: 1381–1391.
von Wachenfeldt E, Sobek S, Bastviken D, Tranvik LJ. Linking allochthonous dissolved organic matter and boreal lake sediment carbon sequestration: The role of light-mediated flocculation. Limnol Oceanogr. 2008; 53: 2416–2426.
Escobedo JF, Gomes EN, Oliveira AP, Soares J. Ratios of UV, PAR and NIR components to global solar radiation measured at Botucatu site in Brazil. Renewable Energy. 2010. 10.1016/j.renene.2010.06.018 DOI
Petty GW. A first course in atmospheric radiation (2nd Ed.). Sundog Publishing, Madison, Wisconsin, USA; 2006.
Upadhyay SA. Chemical kinetics and reaction dynamics Springer; 2006.
Porcal P, Amirbahman A, Kopáček J, Norton SA. Experimental photochemical release of organically-bound aluminum and iron in three streams in Maine, USA. Environ Monit Assess. 2010; 171: 71–81. 10.1007/s10661-010-1529-x PubMed DOI
Chin W-C, Orellana MV, Verdugo P. Spontaneous assembly of marine dissolved organic matter into polymer gels. Nature. 1998; 391: 568–572.
Kang LS, Cleasby JL. Temperature effect on flocculation kinetics using Fe(III) coagulant. J Environ Eng. 1995; 121: 893–901.
Hanson AT, Cleasby JL. The effect of temperature on turbulent flocculation: fluid dynamic and chemistry. J Am Water Works Assoc. 1990; 80: 168–175.
Driscoll CT, Letterman RD. Chemistry and fate of Al(III) in treated drinking water. J Environ Eng Div. 1988; 114: 21–37.
Van Benschoten JE, Edzwald JK. Chemical aspects of coagulation using amuminum salts—I. hydrologic reactions of alum and polyaluminum chloride. Water Res. 1990; 24: 1519–1526.
Stumm W, Morgan JJ. Aquatic chemistry: chemical equilibria and rates in natural waters Wiley, New York; 1996.
von Wachenfeldt E, Tranvik LJ. Sedimentation in Boreal Lakes—The Role of Flocculation of Allochthonous Dissolved Organic Matter in the Water Column. Ecosystems. 2008; 11: 803–814.
Kieber RJ, Whitehead RF, Skrabal SA. Photochemical production of dissolved organic carbon from resuspended sediments. Limnol Oceanogr. 2006; 51: 2187–2195.
Mayer LM, Schick LL, Skorko K, Boss E. Photodissolution of particulate organic matter from sediments. Limnol Oceanogr. 2006; 51: 1064–1071.
Vähätalo AV, Sondergaard M, Schlüter L, Markager S. The impact of solar radiation on the decomposition of detrital leaves of eelgrass (Zostera marina). Mar Ecol Prog Ser. 1998; 170: 107–117.
Anesio AM, Tranvik LJ, Graneli W. Production of Inorganic Carbon from Aquatic Macrophytes by Solar Radiation. Ecology. 1999; 80: 1852–1859.
Köhler S, Buffam I, Jonsson A, Bishop K. Photochemical and microbial processing of stream and soil water dissolved organic matter in a boreal forested catchment in northern Sweden. Aquat Sci. 2002; 64: 269–281.
Mayer LM, Schick LL, Skorko K, Boss E. Photodissolution of particulate organic matter from sediments. Limnol Oceanogr. 2006; 51: 1064–1071.
Estapa ML, Mayer LM. Photooxidation of particulate organic matter, carbon/oxygen stoichiometry, and related photoreactions. Mar Chem. 2010; 122: 138–147.
Eimers MC, Buttle J, Watmough SA. Influence of seasonal changes in runoff and extreme events on dissolved organic carbon trends in wetland- and upland-draining streams. Can J Fish Aquat. Sci. 2008; 65: 796–808.