Understanding Nutrition and Metabolism of Threatened, Data-Poor Rheophilic Fishes in Context of Riverine Stocking Success- Barbel as a Model for Major European Drainages?

. 2021 Nov 29 ; 10 (12) : . [epub] 20211129

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34943160

Large-bodied, river-migrating, rheophilic fishes (cyprinids) such as barbel Barbus barbus, nase Chondrostoma nasus, asp Leuciscus aspius, and vimba bream Vimba vimba are threatened in major European drainages. This represents the subject of our present study. Their hatchery nutrition prior to river-release is mostly on a hit-and-trial or carp-based diet basis. The study demonstrates an alternative approach to decide optimum nutrition for these conservation-priority and nutritionally data-poor fishes. The study revealed barbel as a central representative species in terms of wild body composition among other native rheophilic cyprinids considered (asp, nase, vimba bream). Taking barbel as a model, the study shows that barbel or rheophilic cyprinids may have carnivorous-like metabolism and higher requirements of S-containing, aromatic, branched-chain amino acids (AAs) than carps. Besides, there are important interactions of AAs and fatty acids (FAs) biosynthesis to consider. Only proper feeding of nutritionally well-selected diets may contribute to river stocking mandates such as steepest growth trajectory (≈less time in captivity), ideal size-at-release, body fitness (≈blend-in with wild conspecifics, predator refuge), better gastrointestinal condition, maximized body reserves of functional nutrients, and retention efficiencies (≈uncompromised physiology). Considering important physiological functions and how AA-FA interactions shape them, hatchery-raised fishes on casually chosen diets may have high chances of physiological, morphological, and behavioral deficits (≈low post-stocking survivability). Based on the observations, optimum nutrient requirements of juvenile (0+ to 1+ age) barbels are suggested. Future efforts may consider barbels as a nutrition model for conservation aquaculture of threatened and data poor rheophilic cyprinids of the region.

Zobrazit více v PubMed

Mueller M., Pander J., Geist J. Comprehensive analysis of >30 years of data on stream fish population trends and conservation status in Bavaria, Germany. Biol. Conserv. 2018;226:311–320. doi: 10.1016/j.biocon.2018.08.006. DOI

Mueller M., Pander J., Geist J. The ecological value of stream restoration measures: An evaluation on ecosystem and target species scales. Ecol. Eng. 2014;62:129–139. doi: 10.1016/j.ecoleng.2013.10.030. DOI

Deinet S., Scott-Gatty K., Rotton H., Twardek W.M., Marconi V., McRae L., Baumgartner L.J., Brink K., Claussen J.E., Cooke S.J. The Living Planet Index (lpi) for Migratory Freshwater Fish: Technical Report. World Fish Migration Foundation; Groningen, The Netherlands: 2020.

Barbarossa V., Schmitt R.J., Huijbregts M.A., Zarfl C., King H., Schipper A.M. Impacts of current and future large dams on the geographic range connectivity of freshwater fish worldwide. Proc. Natl. Acad. Sci. USA. 2020;117:3648–3655. doi: 10.1073/pnas.1912776117. PubMed DOI PMC

García-Vega A., Leunda P.M., Ardaiz J., Sanz-Ronda F.J. Effect of restoration measures in Atlantic rivers: A 25-year overview of sea and riverine brown trout populations in the River Bidasoa. Fish. Manag. Ecol. 2020;27:580–590. doi: 10.1111/fme.12458. DOI

Bartoň D., Bretón F., Blabolil P., Souza A.T., Vejřík L., Sajdlová Z., Kolařík T., Kubečka J., Šmejkal M. Effects of hydropeaking on the attached eggs of a rheophilic cyprinid species. Ecohydrology. 2021;14:e2280. doi: 10.1002/eco.2280. DOI

Einum S., Fleming I. Implications of stocking: Ecological interactions between wild and released salmonids. Nord. J. Freshw. Res. 2001;75:56–70.

Brown C., Day R.L. The future of stock enhancements: Lessons for hatchery practice from conservation biology. Fish Fish. 2002;3:79–94. doi: 10.1046/j.1467-2979.2002.00077.x. DOI

Geist J. Seven Steps Towards Improving Freshwater Conservation. Aquat. Conserv. Mar. Freshw. Ecosyst. 2015;25:447–453. doi: 10.1002/aqc.2576. DOI

Geist J., Hawkins S.J. Habitat recovery and restoration in aquatic ecosystems: Current progress and future challenges. Aquat. Conserv. Mar. Freshw. Ecosyst. 2016;26:942–962. doi: 10.1002/aqc.2702. DOI

Bilton H., Alderdice D., Schnute J. Influence of time and size at release of juvenile coho salmon (Oncorhynchus kisutch) on returns at maturity. Can. J. Fish. Aquat. Sci. 1982;39:426–447. doi: 10.1139/f82-060. DOI

Hasegawa K., Honda K., Yoshiyama T., Suzuki K., Fukui S. Small biased body size of salmon fry preyed upon by piscivorous fish in riverine and marine habitats. Can. J. Fish. Aquat. Sci. 2021;78:631–638. doi: 10.1139/cjfas-2020-0339. DOI

Hyvärinen P., Vehanen T. Effect of brown trout body size on post-stocking survival and pike predation. Ecol. Freshw. Fish. 2004;13:77–84. doi: 10.1111/j.1600-0633.2004.00050.x. DOI

Huntingford F.A. Implications of domestication and rearing conditions for the behaviour of cultivated fishes. J. Fish Biol. 2004;65:122–142. doi: 10.1111/j.0022-1112.2004.00562.x. DOI

Thompson B.C., Porak W.F., Pouder W.F., Camp E.V. Survival of Advanced-Fingerlings of Florida Largemouth Bass Stocked in Small Florida Lakes. N. Am. J. Fish. Manag. 2020;40:1532–1544. doi: 10.1002/nafm.10522. DOI

Turek J., Sampels S., Khalili Tilami S., Červený D., Kolářová J., Randák T., Mráz J., Másílko J., Steinbach C., Burkina V. Insects in the feed of rainbow trout, oncorhynchus mykiss (actinopterygii, salmonidae): Effect on growth, fatty acid composition, and sensory attributes. Acta Ichthyol. Piscat. 2020;50:171–181. doi: 10.3750/AIEP/02785. DOI

Shiau J., Watson J.R., Cramp R.L., Gordos M.A., Franklin C.E. Interactions between water depth, velocity and body size on fish swimming performance: Implications for culvert hydrodynamics. Ecol. Eng. 2020;156:105987. doi: 10.1016/j.ecoleng.2020.105987. DOI

NRC, National Research Council . Nutrient Requirements of Fish and Shrimp. National Academies Press; Washington, DC, USA: 2011.

Guillaume J., Kaushik S., Bergot P., Metailler R. Nutrition and Feeding of Fish and Crustaceans. Springer Praxis Publishing; Chichester, UK: 2001.

Alavi S.M.H., Pšenička M., Policar T., Rodina M., Hamáčková J., Kozák P., Linhart O. Sperm quality in male Barbus barbus L. fed different diets during the spawning season. Fish Physiol. Biochem. 2009;35:683–693. doi: 10.1007/s10695-009-9325-7. PubMed DOI

Policar T., Podhorec P., Stejskal V., Hamackova J., Alavi S. Fertilization and hatching rates and larval performance in captive common barbel (Barbus barbus L.) throughout the spawning season. J. Appl. Ichthyol. 2010;26:812–815. doi: 10.1111/j.1439-0426.2010.01564.x. DOI

Policar T., Podhorec P., Stejskal V., Kozák P., Švinger V., Alavi S.H. Growth and survival rates, puberty and fecundity in captive common barbel (Barbus barbus L.) under controlled conditions. Czech J. Anim. Sci. 2011;56:433–442. doi: 10.17221/3236-CJAS. DOI

Fiala J., Spurny P. Intensive rearing of juvenile barbel (Barbus barbus) under controlled conditions; Proceedings of the 4. Czech Ichthyological Conference; Vodnany, Czech Republic. 10–12 May 2000.

Grund S., Keiter S., Böttcher M., Seitz N., Wurm K., Manz W., Hollert H., Braunbeck T. Assessment of fish health status in the Upper Danube River by investigation of ultrastructural alterations in the liver of barbel Barbus barbus. Dis. Aquat. Org. 2010;88:235–248. doi: 10.3354/dao02159. PubMed DOI

Poncin P. Effects of different photoperiods on the reproduction of the barbel, Barbus barbus (L.), reared at constant temperature. J. Fish Biol. 1989;35:395–400. doi: 10.1111/j.1095-8649.1989.tb02991.x. DOI

Mráz J., Pickova J. Differences between lipid content and composition of different parts of fillets from crossbred farmed carp (Cyprinus carpio) Fish Physiol. Biochem. 2009;35:615. doi: 10.1007/s10695-008-9291-5. PubMed DOI

Lunda R., Roy K., Dvorak P., Kouba A., Mraz J. Recycling biofloc waste as novel protein source for crayfish with special reference to crayfish nutritional standards and growth trajectory. Sci. Rep. 2020;10:19607. doi: 10.1038/s41598-020-76692-0. PubMed DOI PMC

Team, R . RStudio: Integrated Development for R. RStudio, PBC; Boston, MA, USA: 2020.

Sommerwerk N., Hein T., Schneider-Jakoby M., Baumgartner C., Ostojić A., Paunović M., Bloesch J., Siber R., Tockner K., Robinson C. Rivers of Europe. 1st ed. Academic Press; Cambridge, MA, USA: 2009. The Danube river basin; pp. 59–112.

Antony Jesu Prabhu P., Schrama J., Kaushik S. Quantifying dietary phosphorus requirement of fish—A meta-analytic approach. Aquac. Nutr. 2013;19:233–249. doi: 10.1111/anu.12042. DOI

Li P., Mai K., Trushenski J., Wu G. New developments in fish amino acid nutrition: Towards functional and environmentally oriented aquafeeds. Amino Acids. 2009;37:43–53. doi: 10.1007/s00726-008-0171-1. PubMed DOI

Li P., Guoyao W. Composition of amino acids and related nitrogenous nutrients in feedstuffs for animal diets. Amino Acids. 2020;52:523–542. doi: 10.1007/s00726-020-02833-4. PubMed DOI

Moher D., Liberati A., Tetzlaff J., Altman D.G., Group P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009;6:e1000097. doi: 10.1371/journal.pmed.1000097. PubMed DOI PMC

Sogard S.M. Size-selective mortality in the juvenile stage of teleost fishes: A review. Bull. Mar. Sci. 1997;60:1129–1157.

Kamiński R., Kamler E., Wolnicki J., Sikorska J., WaŁowski J. Condition, growth and food conversion in barbel, Barbus barbus (L.) juveniles under different temperature/diet combinations. J. Therm. Biol. 2010;35:422–427. doi: 10.1016/j.jtherbio.2010.09.003. DOI

Wolnicki J., Górny W. Survival and growth of larval and juvenile barbel (Barbus barbus L.) reared under controlled conditions. Aquaculture. 1995;129:258–259. doi: 10.1016/0044-8486(95)91979-6. DOI

Piria M., Treer T., Aničić I., Safner R., Odak T. The natural diet of five cyprinid fish species. Agric. Conspec. Sci. 2005;70:21–28.

Myszkowski L. Compensatory growth, condition and food utilization in barbel Barbus barbus juveniles reared at different feeding periodicities with a dry diet. J. Fish Biol. 2013;82:347–353. doi: 10.1111/j.1095-8649.2012.03482.x. PubMed DOI

Pegg J., Britton J.R. Effects of inter-and intra-specific competition on the growth rates of juvenile European barbel Barbus barbus used in the stock enhancement of UK fisheries. Fish. Res. 2011;112:8–12. doi: 10.1016/j.fishres.2011.08.003. DOI

Policar T., Kozák P., Hamáčková J., Lepičová A., Musil J., Kouřil J. Effects of short-time Artemia spp. feeding in larvae and different rearing environments in juveniles of common barbel (Barbus barbus) on their growth and survival under intensive controlled conditions. Aquat. Living Resour. 2007;20:175–183. doi: 10.1051/alr:2007029. DOI

Baras E., Philippart J.-C. Adaptive and evolutionary significance of a reproductive thermal threshold in Barbus barbus. J. Fish Biol. 1999;55:354–375. doi: 10.1111/j.1095-8649.1999.tb00684.x. DOI

Penaz M., Barus V., Prokes M., Homolka M. Movements of barbel, Barbus barbus (Pisces: Cyprinidae) Folia Zool. 2002;51:55–66.

Bischoff A., Freyhof J. Seasonal shifts in day-time resource use of 0+ barbel, Barbus barbus. Environ. Biol. Fishes. 1999;56:199–212. doi: 10.1023/A:1007552318543. DOI

Britton J., Pegg J. Ecology of European barbel Barbus barbus: Implications for river, fishery, and conservation management. Rev. Fish. Sci. 2011;19:321–330. doi: 10.1080/10641262.2011.599886. DOI

Bašić T., Britton J.R. Characterizing the trophic niches of stocked and resident cyprinid fishes: Consistency in partitioning over time, space and body sizes. Ecol. Evol. 2016;6:5093–5104. doi: 10.1002/ece3.2272. PubMed DOI PMC

Benitez J.P., Ovidio M. The influence of environmental factors on the upstream movements of rheophilic cyprinids according to their position in a river basin. Ecol. Freshw. Fish. 2018;27:660–671. doi: 10.1111/eff.12382. DOI

Carosi A., Ghetti L., La Porta G., Lorenzoni M. Ecological effects of the European barbel Barbus barbus (L., 1758) (Cyprinidae) invasion on native barbel populations in the Tiber River basin (Italy) Eur. Zool. J. 2017;84:420–435. doi: 10.1080/24750263.2017.1341959. DOI

Hunt P., Jones J. A population study of Barbus barbus L. in the River Severn, England: III. Growth. J. Fish Biol. 1975;7:361–376. doi: 10.1111/j.1095-8649.1975.tb04611.x. DOI

Prokes M., Sovcik P., Penaz M., Barus V., Spurny P., Vilizzi L. Growth of barbel, Barbus barbus, in the River Jihlava following major habitat alteration and estimated by two methods. Folia Zool. 2006;55:86.

Roberts C.G., Britton J.R. Spawning strategies in cypriniform fishes in a lowland river invaded by non-indigenous European barbel Barbus barbus. Hydrobiologia. 2020;847:4031–4047. doi: 10.1007/s10750-020-04394-9. DOI

Roy K., Vrba J., Kaushik S.J., Mraz J. Feed-based common carp farming and eutrophication: Is there a reason for concern? Rev. Aquac. 2020;12:1736–1758. doi: 10.1111/raq.12407. DOI

Cherghou S., Khodari M., Yaâkoubi F., Benabid M., Badri A. Contribution à l’étude du régime alimentairedu barbeau (Barbus barbus callensis Valenciennes, 1842) d’un cours d’eau du Moyen-Atlas (Maroc): Oued Boufekrane. Rev. Sci. L’eau/J. Water Sci. 2002;15:153–163. doi: 10.7202/705443ar. DOI

Sullam K.E., Dalton C.M., Russell J.A., Kilham S.S., El-Sabaawi R., German D.P., Flecker A.S. Changes in digestive traits and body nutritional composition accommodate a trophic niche shift in Trinidadian guppies. Oecologia. 2015;177:245–257. doi: 10.1007/s00442-014-3158-5. PubMed DOI

Zandonà E., Auer S.K., Kilham S.S., Reznick D.N. Contrasting population and diet influences on gut length of an omnivorous tropical fish, the Trinidadian guppy (Poecilia reticulata) PLoS ONE. 2015;10:e0136079. PubMed PMC

Baras E., Cherry B. Seasonal activities of female barbel Barbus barbus (L.) in the River Ourthe (Southern Belgium), as revealed by radio tracking. Aquat. Living Resour. 1990;3:283–294. doi: 10.1051/alr:1990029. DOI

Cardeilhac P., Childress K., Townsend H., Szabo N., Samuelson D., Stout R. Dietary associated incidence of hepatic lesions and tumors in largemouth bass Micropterus salmoides floridanus. In: Reidarson T., editor. Proceedings of the 39th Annual Conference of the International Association for Aquatic Animal Medicine; Rome, Italy. 10–14 May 2008; pp. 133–134.

Dinken C.P., Keretz K.R., Schramm H.L., Jr., Petrie-Hanson L., Wes Schilling M., Allen P.J. Changes in Physiology and Stress Responses of Pellet-Reared Largemouth Bass Fed Live-Forage Diets. N. Am. J. Aquac. 2020;82:3–23. doi: 10.1002/naaq.10120. DOI

Porak W., Johnson W., Crawford S., Renfro D., Schoeb T., Stout R., Krause R., DeMauro R. American Fisheries Society Symposium. American Fisheries Society; Bethesda, MD, USA: 2002. Factors affecting survival of largemouth bass raised on artificial diets and stocked into Florida lakes; pp. 649–666.

Wintzer A., Motta P. Diet-induced phenotypic plasticity in the skull morphology of hatchery-reared Florida largemouth bass, Micropterus salmoides floridanus. Ecol. Freshw. Fish. 2005;14:311–318. doi: 10.1111/j.1600-0633.2005.00105.x. DOI

Mikavica D., Grujic R., Komic J. Comparative growth analysis of the nase Chondrostoma nasus L. 1758, chub Leuciscus cephalus L. 1758 and barbel Barbus barbus L. 1758 in the river Drina [Republic of Srpska, Bosnia and Herzegovina] Ichthyology. 1997;29:1–17.

Taylor A., Britton J., Cowx I. Does the stock density of stillwater catch and release fisheries affect the growth performance of introduced cultured barbel? J. Fish Biol. 2004;65:308–313. doi: 10.1111/j.0022-1112.2004.00548.x. DOI

Brix O., Grüner R., Rønnestad I., Gemballa S. Whether depositing fat or losing weight, fish maintain a balance. Proc. R. Soc. B Biol. Sci. 2009;276:3777–3782. doi: 10.1098/rspb.2009.1079. PubMed DOI PMC

Zajic T., Mraz J., Sampels S., Pickova J. Fillet quality changes as a result of purging of common carp (Cyprinus carpio L.) with special regard to weight loss and lipid profile. Aquaculture. 2013;400:111–119. doi: 10.1016/j.aquaculture.2013.03.004. DOI

Rombenso A.N., Turchini G.M., Trushenski J.T. The omega-3 sparing effect of saturated fatty acids: A reason to reconsider common knowledge of fish oil replacement. Rev. Aquac. 2021 doi: 10.1111/raq.12593. DOI

Jonsson N., Jonsson B., Hansen L. Changes in proximate composition and estimates of energetic costs during upstream migration and spawning in Atlantic salmon Salmo salar. J. Anim. Ecol. 1997;66:425–436. doi: 10.2307/5987. DOI

Jørgensen C., Ernande B., Fiksen Ø., Dieckmann U. The logic of skipped spawning in fish. Can. J. Fish. Aquat. Sci. 2006;63:200–211. doi: 10.1139/f05-210. DOI

Eliasen K., Patursson E.J., McAdam B.J., Pino E., Morro B., Betancor M., Baily J., Rey S. Liver colour scoring index, carotenoids and lipid content assessment as a proxy for lumpfish (Cyclopterus lumpus L.) health and welfare condition. Sci. Rep. 2020;10:8927. doi: 10.1038/s41598-020-65535-7. PubMed DOI PMC

Kirchner S., Panserat S., Lim P.L., Kaushik S., Ferraris R.P. The role of hepatic, renal and intestinal gluconeogenic enzymes in glucose homeostasis of juvenile rainbow trout. J. Comp. Physiol. B. 2008;178:429–438. doi: 10.1007/s00360-007-0235-7. PubMed DOI

Polakof S., Panserat S., Soengas J.L., Moon T.W. Glucose metabolism in fish: A review. J. Comp. Physiol. B. 2012;182:1015–1045. doi: 10.1007/s00360-012-0658-7. PubMed DOI

Lall S.P. Fish Nutrition. Elsevier; Amsterdam, The Netherlands: 2003. The minerals; pp. 259–308.

Lall S.P., Kaushik S.J. Nutrition and Metabolism of Minerals in Fish. Animals. 2021;17:2711. doi: 10.3390/ani11092711. PubMed DOI PMC

Kaushik S.J., Seiliez I. Protein and amino acid nutrition and metabolism in fish: Current knowledge and future needs. Aquac. Res. 2010;41:322–332. doi: 10.1111/j.1365-2109.2009.02174.x. DOI

Rollin X., Mambrini M., Abboudi T., Larondelle Y., Kaushik S.J. The optimum dietary indispensable amino acid pattern for growing Atlantic salmon (Salmo salar L.) fry. Br. J. Nutr. 2003;90:865–876. doi: 10.1079/BJN2003973. PubMed DOI

Brosnan J.T., Brosnan M.E. The sulfur-containing amino acids: An overview. J. Nutr. 2006;136:1636S–1640S. doi: 10.1093/jn/136.6.1636S. PubMed DOI

Olsen T., Turner C., Øvrebø B., Bastani N.E., Refsum H., Vinknes K.J. Postprandial effects of a meal low in sulfur amino acids and high in polyunsaturated fatty acids compared to a meal high in sulfur amino acids and saturated fatty acids on stearoyl CoA-desaturase indices and plasma sulfur amino acids: A pilot study. BMC Res. Notes. 2020;13:379. doi: 10.1186/s13104-020-05222-y. PubMed DOI PMC

Poloni S., Blom H.J., Schwartz I.V. Stearoyl-CoA desaturase-1: Is it the link between sulfur amino acids and lipid metabolism? Biology. 2015;4:383–396. doi: 10.3390/biology4020383. PubMed DOI PMC

Perera E., Turkmen S., Simó-Mirabet P., Zamorano M.J., Xu H., Naya-Català F., Izquierdo M., Pérez-Sánchez J. Stearoyl-CoA desaturase (scd1a) is epigenetically regulated by broodstock nutrition in gilthead sea bream (Sparus aurata) Epigenetics. 2020;15:536–553. doi: 10.1080/15592294.2019.1699982. PubMed DOI PMC

Kaur G., Cameron-Smith D., Garg M., Sinclair A.J. Docosapentaenoic acid (22: 5n-3): A review of its biological effects. Prog. Lipid Res. 2011;50:28–34. doi: 10.1016/j.plipres.2010.07.004. PubMed DOI

Tocher D.R. Metabolism and functions of lipids and fatty acids in teleost fish. Rev. Fish. Sci. 2003;11:107–184. doi: 10.1080/713610925. DOI

Tocher D.R. Fatty acid requirements in ontogeny of marine and freshwater fish. Aquac. Res. 2010;41:717–732. doi: 10.1111/j.1365-2109.2008.02150.x. DOI

Salamanca N., Giráldez I., Morales E., de La Rosa I., Herrera M. Phenylalanine and Tyrosine as Feed Additives for Reducing Stress and Enhancing Welfare in Gilthead Seabream and Meagre. Animals. 2021;11:45. doi: 10.3390/ani11010045. PubMed DOI PMC

Braasch I., Schartl M., Volff J.-N. Evolution of pigment synthesis pathways by gene and genome duplication in fish. BMC Evol. Biol. 2007;7:74. doi: 10.1186/1471-2148-7-74. PubMed DOI PMC

Krauss J., Geiger-Rudolph S., Koch I., Nüsslein-Volhard C., Irion U. A dominant mutation in tyrp1 A leads to melanophore death in zebrafish. Pigment Cell Melanoma Res. 2014;27:827–830. doi: 10.1111/pcmr.12272. PubMed DOI

Tkaczewska J., Bukowski M., Mak P. Identification of antioxidant peptides in enzymatic hydrolysates of carp (Cyprinus carpio) skin gelatin. Molecules. 2019;24:97. doi: 10.3390/molecules24010097. PubMed DOI PMC

van Overveld F.W., Haenen G.R., Rhemrev J., Vermeiden J.P., Bast A. Tyrosine as important contributor to the antioxidant capacity of seminal plasma. Chem.-Biol. Interact. 2000;127:151–161. doi: 10.1016/S0009-2797(00)00179-4. PubMed DOI

Antanasijević D., Pocajt V., Perić-Grujić A., Ristić M. Modelling of dissolved oxygen in the Danube River using artificial neural networks and Monte Carlo Simulation uncertainty analysis. J. Hydrol. 2014;519:1895–1907. doi: 10.1016/j.jhydrol.2014.10.009. DOI

Csábrági A., Molnár S., Tanos P., Kovács J., Molnár M., Szabó I., Hatvani I.G. Estimation of dissolved oxygen in riverine ecosystems: Comparison of differently optimized neural networks. Ecol. Eng. 2019;138:298–309. doi: 10.1016/j.ecoleng.2019.07.023. DOI

Simčič T., Jesenšek D., Brancelj A. Effects of increased temperature on metabolic activity and oxidative stress in the first life stages of marble trout (Salmo marmoratus) Fish Physiol. Biochem. 2015;41:1005–1014. doi: 10.1007/s10695-015-0065-6. PubMed DOI

He W., Li P., Wu G. Amino acid nutrition and metabolism in chickens. Amino Acids Nutr. Health Amino Acids Nutr. Companion Zoo Farm Anim. 2021;1285:109–131. PubMed

Turchini G.M., Trushenski J.T., Glencross B.D. Thoughts for the future of aquaculture nutrition: Realigning perspectives to reflect contemporary issues related to judicious use of marine resources in aquafeeds. N. Am. J. Aquac. 2019;81:13–39. doi: 10.1002/naaq.10067. DOI

Marques V.H., Moreira R.G., Branco G.S., Honji R.M., Rombenso A.N., Viana M.T., de Mello P.H., Mata-Sotres J.A., Araújo B.C. Different saturated and monounsaturated fatty acids levels in fish oil-free diets to cobia (Rachycentron canadum) juveniles: Effects in growth performance and lipid metabolism. Aquaculture. 2021;541:736843. doi: 10.1016/j.aquaculture.2021.736843. DOI

Guan X., Fierke C.A. Understanding protein palmitoylation: Biological significance and enzymology. Sci. China Chem. 2011;54:1888–1897. doi: 10.1007/s11426-011-4428-2. PubMed DOI PMC

Carta G., Murru E., Banni S., Manca C. Palmitic acid: Physiological role, metabolism and nutritional implications. Front. Physiol. 2017;8:902. doi: 10.3389/fphys.2017.00902. PubMed DOI PMC

Yoshizawa F. Branched Chain Amino Acids in Clinical Nutrition. Springer; Berlin/Heidelberg, Germany: 2015. Effects of leucine and isoleucine on glucose metabolism; pp. 63–73.

Zhang S., Zeng X., Ren M., Mao X., Qiao S. Novel metabolic and physiological functions of branched chain amino acids: A review. J. Anim. Sci. Biotechnol. 2017;8:10. doi: 10.1186/s40104-016-0139-z. PubMed DOI PMC

Bai J., Greene E., Li W., Kidd M.T., Dridi S. Branched-chain amino acids modulate the expression of hepatic fatty acid metabolism-related genes in female broiler chickens. Mol. Nutr. Food Res. 2015;59:1171–1181. doi: 10.1002/mnfr.201400918. PubMed DOI

Crown S.B., Marze N., Antoniewicz M.R. Catabolism of branched chain amino acids contributes significantly to synthesis of odd-chain and even-chain fatty acids in 3T3-L1 adipocytes. PLoS ONE. 2015;10:e0145850. PubMed PMC

Ma C., Liu Y., Liu S., Lévesque C.L., Zhao F., Yin J., Dong B. Branched chain amino acids alter fatty acid profile in colostrum of sows fed a high fat diet. J. Anim. Sci. Biotechnol. 2020;11:9. doi: 10.1186/s40104-019-0423-9. PubMed DOI PMC

Li S., Zhang Y., Liu N., Chen J., Guo L., Dai Z., Wang C., Wu Z., Wu G. Dietary L-arginine supplementation reduces lipid accretion by regulating fatty acid metabolism in Nile tilapia (Oreochromis niloticus) J. Anim. Sci. Biotechnol. 2020;11:82. doi: 10.1186/s40104-020-00486-7. PubMed DOI PMC

Liang H., Habte-Tsion H.-M., Ge X., Ren M., Xie J., Miao L., Zhou Q., Lin Y., Pan W. Dietary arginine affects the insulin signaling pathway, glucose metabolism and lipogenesis in juvenile blunt snout bream Megalobrama amblycephala. Sci. Rep. 2017;7:7864. doi: 10.1038/s41598-017-06104-3. PubMed DOI PMC

Hamani D., Kuhn M., Charrueau C., Waligora-Dupriet A.-J., Neveux N., Butel M.-J., Cynober L., Moinard C. Interactions between ω3 polyunsaturated fatty acids and arginine on nutritional and immunological aspects in severe inflammation. Clin. Nutr. 2010;29:654–662. doi: 10.1016/j.clnu.2010.02.011. PubMed DOI

Ali M., Nicieza A., Wootton R.J. Compensatory growth in fishes: A response to growth depression. Fish Fish. 2003;4:147–190. doi: 10.1046/j.1467-2979.2003.00120.x. DOI

Won E.T., Borski R.J. Endocrine regulation of compensatory growth in fish. Front. Endocrinol. 2013;4:74. doi: 10.3389/fendo.2013.00074. PubMed DOI PMC

Philippart J.-C., Mélard C., Poncin P. Aquaculture: A Biotechnology in Progress. European Aquaculture Society; Bredene, Belgique: 1989. Intensive culture of the common barbel, Barbus barbus (L.) for restocking; pp. 483–491.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace