Multimodal combination of neuroimaging methods for localizing the epileptogenic zone in MR-negative epilepsy
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
36071087
PubMed Central
PMC9452535
DOI
10.1038/s41598-022-19121-8
PII: 10.1038/s41598-022-19121-8
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- elektroencefalografie MeSH
- epilepsie * diagnostické zobrazování chirurgie MeSH
- fluorodeoxyglukosa F18 * MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- mladý dospělý MeSH
- neurozobrazování metody MeSH
- zobrazování difuzních tenzorů MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fluorodeoxyglukosa F18 * MeSH
The objective was to determine the optimal combination of multimodal imaging methods (IMs) for localizing the epileptogenic zone (EZ) in patients with MR-negative drug-resistant epilepsy. Data from 25 patients with MR-negative focal epilepsy (age 30 ± 10 years, 16M/9F) who underwent surgical resection of the EZ and from 110 healthy controls (age 31 ± 9 years; 56M/54F) were used to evaluate IMs based on 3T MRI, FDG-PET, HD-EEG, and SPECT. Patients with successful outcomes and/or positive histological findings were evaluated. From 38 IMs calculated per patient, 13 methods were selected by evaluating the mutual similarity of the methods and the accuracy of the EZ localization. The best results in postsurgical patients for EZ localization were found for ictal/ interictal SPECT (SISCOM), FDG-PET, arterial spin labeling (ASL), functional regional homogeneity (ReHo), gray matter volume (GMV), cortical thickness, HD electrical source imaging (ESI-HD), amplitude of low-frequency fluctuation (ALFF), diffusion tensor imaging, and kurtosis imaging. Combining IMs provides the method with the most accurate EZ identification in MR-negative epilepsy. The PET, SISCOM, and selected MRI-post-processing techniques are useful for EZ localization for surgical tailoring.
Zobrazit více v PubMed
Kwan P, et al. Definition of drug resistant epilepsy: Consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2010;51:1069–1077. doi: 10.1111/j.1528-1167.2009.02397.x. PubMed DOI
Rosenow F. Presurgical evaluation of epilepsy. Brain. 2001;124:1683–1700. doi: 10.1093/brain/124.9.1683. PubMed DOI
Baud MO, et al. European trends in epilepsy surgery. Neurology. 2018;91:e96–e106. doi: 10.1212/WNL.0000000000005776. PubMed DOI
Ryvlin P, Cross JH, Rheims S. Epilepsy surgery in children and adults. Lancet Neurol. 2014;13:1114–1126. doi: 10.1016/S1474-4422(14)70156-5. PubMed DOI
Schuele SU, Lüders HO. Intractable epilepsy: Management and therapeutic alternatives. Lancet Neurol. 2008;7:514–524. doi: 10.1016/S1474-4422(08)70108-X. PubMed DOI
Juhász C, John F. Utility of MRI, PET, and ictal SPECT in presurgical evaluation of non-lesional pediatric epilepsy. Seizure. 2020;77:15–28. doi: 10.1016/j.seizure.2019.05.008. PubMed DOI PMC
Hong SJ, et al. Multimodal MRI profiling of focal cortical dysplasia type II. Neurology. 2017;88:734–742. doi: 10.1212/WNL.0000000000003632. PubMed DOI PMC
Kini LG, Gee JC, Litt B. Computational analysis in epilepsy neuroimaging: A survey of features and methods. NeuroImage Clin. 2016;11:515–529. doi: 10.1016/j.nicl.2016.02.013. PubMed DOI PMC
Bernhardt BC, et al. The spectrum of structural and functional imaging abnormalities in temporal lobe epilepsy. Ann. Neurol. 2016;80:142–153. doi: 10.1002/ana.24691. PubMed DOI
Middlebrooks EH, Ver Hoef L, Szaflarski JP. Neuroimaging in epilepsy. Curr. Neurol. Neurosci. Rep. 2017;17:25. doi: 10.1007/s11910-017-0746-x. PubMed DOI
Muhlhofer W, Tan Y-L, Mueller SG, Knowlton R. MRI-negative temporal lobe epilepsy—what do we know? Epilepsia. 2017;58:727–742. doi: 10.1111/epi.13699. PubMed DOI
Jianxiao, W. U. Accurate nonlinear mapping between Mni152/Colin27 volumetric and freesurfer surface coordinate systems. (2018). PubMed PMC
Ashburner J, Friston KJ. Voxel-based morphometry—the methods. Neuroimage. 2000;11:805–821. doi: 10.1006/nimg.2000.0582. PubMed DOI
Huppertz HJ, et al. Enhanced visualization of blurred gray-white matter junctions in focal cortical dysplasia by voxel-based 3D MRI analysis. Epilepsy Res. 2005;67:35–50. doi: 10.1016/j.eplepsyres.2005.07.009. PubMed DOI
Adler S, et al. Novel surface features for automated detection of focal cortical dysplasias in paediatric epilepsy. NeuroImage Clin. 2017;14:18–27. doi: 10.1016/j.nicl.2016.12.030. PubMed DOI PMC
Besson P, Andermann F, Dubeau F, Bernasconi A. Small focal cortical dysplasia lesions are located at the bottom of a deep sulcus. Brain. 2008;131:3246–3255. doi: 10.1093/brain/awn224. PubMed DOI
Focke NK, et al. Automated normalized FLAIR imaging in MRI-negative patients with refractory focal epilepsy. Epilepsia. 2009;50:1484–1490. doi: 10.1111/j.1528-1167.2009.02022.x. PubMed DOI
Lim YM, et al. Usefulness of pulsed arterial spin labeling MR imaging in mesial temporal lobe epilepsy. Epilepsy Res. 2008;82:183–189. doi: 10.1016/j.eplepsyres.2008.08.001. PubMed DOI PMC
Gajdoš M, et al. Epileptogenic zone detection in MRI negative epilepsy using adaptive thresholding of arterial spin labeling data. Sci. Rep. 2021;11:10904. doi: 10.1038/s41598-021-89774-4. PubMed DOI PMC
Kojan M, et al. Arterial spin labeling is a useful MRI method for presurgical evaluation in MRI-negative focal epilepsy. Brain Topogr. 2021 doi: 10.1007/s10548-021-00833-5. PubMed DOI
Zeng H, Pizarro R, Nair VA, La C, Prabhakaran V. Alterations in regional homogeneity of resting-state brain activity in mesial temporal lobe epilepsy. Epilepsia. 2013;54:658–666. doi: 10.1111/epi.12066. PubMed DOI PMC
Zang Y, Jiang T, Lu Y, He Y, Tian L. Regional homogeneity approach to fMRI data analysis. Neuroimage. 2004;22:394–400. doi: 10.1016/j.neuroimage.2003.12.030. PubMed DOI
Arfanakis K, et al. Diffusion tensor MRI in temporal lobe epilepsy. Magn. Reson. Imaging. 2002;20:511–519. doi: 10.1016/S0730-725X(02)00509-X. PubMed DOI
Bonilha L, et al. Altered microstructure in temporal lobe epilepsy: A diffusional kurtosis imaging study. Am. J. Neuroradiol. 2015;36:719–724. doi: 10.3174/ajnr.A4185. PubMed DOI PMC
Kojan M, et al. Predictive value of preoperative statistical parametric mapping of regional glucose metabolism in mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsy Behav. 2018;79:46–52. doi: 10.1016/j.yebeh.2017.11.014. PubMed DOI
Sulc V, et al. Statistical SPECT processing in MRI-negative epilepsy surgery. Neurology. 2014;82:932–939. doi: 10.1212/WNL.0000000000000209. PubMed DOI PMC
Mégevand P, Seeck M. Electric source imaging for presurgical epilepsy evaluation: Current status and future prospects. Expert Rev. Med. Devices. 2020;17:405–412. doi: 10.1080/17434440.2020.1748008. PubMed DOI
Schevon CA, et al. Cortical abnormalities in epilepsy revealed by local EEG synchrony. Neuroimage. 2007;35:140–148. doi: 10.1016/j.neuroimage.2006.11.009. PubMed DOI PMC
LUDERS & HO General principles. Surg. Treat. Epilepsies. 1993;20:137–153.
Casse R. Positron emission tomography and epilepsy. Mol. Imaging Biol. 2002;4:338–351. doi: 10.1016/S1536-1632(02)00071-9. PubMed DOI
Chen T, Guo L. The role of SISCOM in preoperative evaluation for patients with epilepsy surgery: A meta-analysis. Seizure. 2016;41:43–50. doi: 10.1016/j.seizure.2016.06.024. PubMed DOI
Mareček R, et al. Automated fusion of multimodal imaging data for identifying epileptogenic lesions in patients with inconclusive magnetic resonance imaging. Hum. Brain Mapp. 2021 doi: 10.1002/hbm.25413. PubMed DOI PMC
Rossi Sebastiano D, et al. Identifying the epileptogenic zone by four non-invasive imaging techniques versus stereo-EEG in MRI-negative pre-surgery epilepsy patients. Clin. Neurophysiol. 2020;131:1815–1823. doi: 10.1016/j.clinph.2020.05.015. PubMed DOI
Juhász C, et al. Relationship between EEG and positron emission tomography abnormalities in clinical epilepsy. J. Clin. Neurophysiol. 2000;17:29–42. doi: 10.1097/00004691-200001000-00004. PubMed DOI
Lee SM, Kwon S, Lee YJ. Diagnostic usefulness of arterial spin labeling in MR negative children with new onset seizures. Seizure. 2019;65:151–158. doi: 10.1016/j.seizure.2019.01.024. PubMed DOI
Jackson GD, Pedersen M, Harvey AS. How small can the epileptogenic region be?: A case in point. Neurology. 2017;88:2017–2019. doi: 10.1212/WNL.0000000000003962. PubMed DOI
Martin P, et al. Voxel-based magnetic resonance image postprocessing in epilepsy. Epilepsia. 2017;58:1653–1664. doi: 10.1111/epi.13851. PubMed DOI PMC
Huppertz H-J, et al. Voxel-based 3D MRI analysis helps to detect subtle forms of subcortical band heterotopia. Epilepsia. 2008;49:772–785. doi: 10.1111/j.1528-1167.2007.01436.x. PubMed DOI
Thesen T, et al. Detection of epileptogenic cortical malformations with surface-based MRI morphometry. PLoS One. 2011;6:e16430. doi: 10.1371/journal.pone.0016430. PubMed DOI PMC
Wagner J, Weber B, Urbach H, Elger CE, Huppertz HJ. Morphometric MRI analysis improves detection of focal cortical dysplasia type II. Brain. 2011;134:2844–2854. doi: 10.1093/brain/awr204. PubMed DOI
Wang ZI, et al. Voxel-based morphometric magnetic resonance imaging (MRI) postprocessing in MRI-negative epilepsies. Ann. Neurol. 2015;77:1060–1075. doi: 10.1002/ana.24407. PubMed DOI PMC
Ahmed B, et al. Cortical feature analysis and machine learning improves detection of ‘MRI-negative’ focal cortical dysplasia. Epilepsy Behav. 2015;48:21–28. doi: 10.1016/j.yebeh.2015.04.055. PubMed DOI PMC
Foged MT, et al. Diagnostic added value of electrical source imaging in presurgical evaluation of patients with epilepsy: A prospective study. Clin. Neurophysiol. 2020;131:324–329. doi: 10.1016/j.clinph.2019.07.031. PubMed DOI
Sharma P, Seeck M, Beniczky S. Accuracy of interictal and ictal electric and magnetic source imaging: A systematic review and meta-analysis. Front. Neurol. 2019;10:25. doi: 10.3389/fneur.2019.00025. PubMed DOI PMC
Duncan JS, Winston GP, Koepp MJ, Ourselin S. Brain imaging in the assessment for epilepsy surgery. Lancet Neurol. 2016;15:420–433. doi: 10.1016/S1474-4422(15)00383-X. PubMed DOI PMC
Winston GP, et al. Advanced diffusion imaging sequences could aid assessing patients with focal cortical dysplasia and epilepsy. Epilepsy Res. 2014;108:336–339. doi: 10.1016/j.eplepsyres.2013.11.004. PubMed DOI PMC
Winston GP. The potential role of novel diffusion imaging techniques in the understanding and treatment of epilepsy. Quant. Imaging Med. Surg. 2015;5:279–27987. PubMed PMC
Bartoňová M, et al. The benefit of the diffusion kurtosis imaging in presurgical evaluation in patients with focal MR-negative epilepsy. Sci. Rep. 2021;11:14208. doi: 10.1038/s41598-021-92804-w. PubMed DOI PMC