The benefit of the diffusion kurtosis imaging in presurgical evaluation in patients with focal MR-negative epilepsy

. 2021 Jul 09 ; 11 (1) : 14208. [epub] 20210709

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34244544
Odkazy

PubMed 34244544
PubMed Central PMC8270902
DOI 10.1038/s41598-021-92804-w
PII: 10.1038/s41598-021-92804-w
Knihovny.cz E-zdroje

The effectivity of diffusion-weighted MRI methods in detecting the epileptogenic zone (EZ) was tested. Patients with refractory epilepsy (N=25) who subsequently underwent resective surgery were recruited. First, the extent of white matter (WM) asymmetry from mean kurtosis (MK) was calculated in order to detect the lobe with the strongest impairment. Second, a newly developed metric was used, reflecting a selection of brain areas with concurrently increased mean Diffusivity, reduced fractional Anisotropy, and reduced mean Kurtosis (iDrArK). A two-step EZ detection was performed as (1) lobe-specific detection, (2) iDrArK voxel-wise detection (with a possible lobe-specific restriction if the result of the first step was significant in a given subject). The method results were compared with the surgery resection zones. From the whole cohort (N=25), the numbers of patients with significant results were: 10 patients in lobe detection and 9 patients in EZ detection. From these subsets of patients with significant results, the impaired lobe was successfully detected with 100% accuracy; the EZ was successfully detected with 89% accuracy. The detection of the EZ using iDrArK was substantially more successful when compared with solo diffusional parameters (or their pairwise combinations). For a subgroup with significant results from step one (N=10), iDrArK without lobe restriction achieved 37.5% accuracy; lobe-restricted iDrArK achieved 100% accuracy. The study shows the plausibility of MK for detecting widespread WM changes and the benefit of combining different diffusional voxel-wise parameters.

Zobrazit více v PubMed

Kwan P, et al. Definition of drug resistant epilepsy: Consensus proposal by the ad hoc task force of the ILAE commission on therapeutic strategies. Epilepsia. 2010;51:1069–1077. doi: 10.1111/j.1528-1167.2009.02397.x. PubMed DOI

Leeman-Markowski B. Review of MRI-negative epilepsy. JAMA Neurol. 2016;73:1377. doi: 10.1001/jamaneurol.2016.3698. DOI

Duncan JS, Winston GP, Koepp MJ, Ourselin S. Brain imaging in the assessment for epilepsy surgery. Lancet Neurol. 2016;15:420–433. doi: 10.1016/S1474-4422(15)00383-X. PubMed DOI PMC

Tournier JD. Diffusion MRI in the brain–theory and concepts. Prog. Nucl. Magn. Reson. Spectrosc. 2019;112–113:1–16. doi: 10.1016/j.pnmrs.2019.03.001. PubMed DOI

Chapman K, et al. Seizure outcome after epilepsy surgery in patients with normal preoperative MRI. J. Neurol. Neurosurg. Psychiatry. 2005;76:710–713. doi: 10.1136/jnnp.2003.026757. PubMed DOI PMC

Kabat J, Król P. Focal cortical dysplasia–review. Pol. J. Radiol. 2012;77:35–43. doi: 10.12659/PJR.882968. PubMed DOI PMC

Winston GP, et al. Advanced diffusion imaging sequences could aid assessing patients with focal cortical dysplasia and epilepsy. Epilepsy Res. 2014;108:336–339. doi: 10.1016/j.eplepsyres.2013.11.004. PubMed DOI PMC

Adler S, et al. Towards in vivo focal cortical dysplasia phenotyping using quantitative MRI. NeuroImage Clin. 2017;15:95–105. doi: 10.1016/j.nicl.2017.04.017. PubMed DOI PMC

Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC. NODDI: Practical in vivo neurite orientation dispersion and density imaging of the human brain. Neuroimage. 2012;61:1000–1016. doi: 10.1016/j.neuroimage.2012.03.072. PubMed DOI

Assaf Y, Basser PJ. Composite hindered and restricted model of diffusion (CHARMED) MR imaging of the human brain. Neuroimage. 2005;27:48–58. doi: 10.1016/j.neuroimage.2005.03.042. PubMed DOI

Winston GP. The potential role of novel diffusion imaging techniques in the understanding and treatment of epilepsy. Quant. Imag. Med. Surg. 2015;5:279–27987. PubMed PMC

Kamiya K, Hori M, Aoki S. NODDI in clinical research. J. Neurosci. Methods. 2020;346:108908. doi: 10.1016/j.jneumeth.2020.108908. PubMed DOI

Van Hecke W, Emsell L, Sunaert S. Diffusion Tensor Imaging. Springer; 2016.

Bonilha L, et al. Altered microstructure in temproal lobe epilepsy: A diffusional kurtosis imaging study. Am. J. Neuroradiol. 2015;36:719–724. doi: 10.3174/ajnr.A4185. PubMed DOI PMC

Zhang Y, et al. A preliminary study of epilepsy in children using diffusional kurtosis imaging. Clin. Neuroradiol. 2013;23:293–300. doi: 10.1007/s00062-013-0212-3. PubMed DOI

Rugg-Gunn FJ, Eriksson SH, Symms MR, Barker GJ, Duncan JS. Diffusion tensor imaging of cryptogenic and acquired partial epilepsies. Brain. 2001;124:627–636. doi: 10.1093/brain/124.3.627. PubMed DOI

Muhlhofer W, Tan YL, Mueller SG, Knowlton R. MRI-negative temporal lobe epilepsy—What do we know? Epilepsia. 2017;58:727–742. doi: 10.1111/epi.13699. PubMed DOI

Otte WM, et al. A meta-analysis of white matter changes in temporal lobe epilepsy as studied with diffusion tensor imaging. Epilepsia. 2012;53:659–667. doi: 10.1111/j.1528-1167.2012.03426.x. PubMed DOI

Hatton SN, et al. White matter abnormalities across different epilepsy syndromes in adults: An ENIGMA-Epilepsy study. Brain. 2020;143:2454–2473. doi: 10.1093/brain/awaa200. PubMed DOI PMC

Wang Y, et al. Voxel-based automated detection of focal cortical dysplasia lesions using diffusion tensor imaging and T2-weighted MRI data. Epilepsy Behav. 2018;84:127–134. doi: 10.1016/j.yebeh.2018.04.005. PubMed DOI

Yin X, et al. Inferior frontal white matter asymmetry correlates with executive control of attention. Hum. Brain Mapp. 2013;34:796–813. doi: 10.1002/hbm.21477. PubMed DOI PMC

Zhao X, et al. Reduced interhemispheric white matter asymmetries in medial temporal lobe epilepsy with hippocampal sclerosis. Front. Neurol. 2019;10:1–10. doi: 10.3389/fneur.2019.00001. PubMed DOI PMC

Aparicio J, et al. Combined 18F-FDG-PET and diffusion tensor imaging in mesial temporal lobe epilepsy with hippocampal sclerosis. NeuroImage Clin. 2015;12:976–989. doi: 10.1016/j.nicl.2016.05.002. PubMed DOI PMC

Tae W-S, Ham B-J, Pyun S-B, Kang S-H, Kim B. Current clinical applications of diffusion-tensor imaging in neurological disorders. J. Clin. Neurol. 2018;14:129–140. doi: 10.3988/jcn.2018.14.2.129. PubMed DOI PMC

Campos BM, et al. White matter abnormalities associate with type and localization of focal epileptogenic lesions. Epilepsia. 2015;56:125–132. doi: 10.1111/epi.12871. PubMed DOI

Wellmer J, et al. Proposal for a magnetic resonance imaging protocol for the detection of epileptogenic lesions at early outpatient stages. Epilepsia. 2013;54:1977–1987. doi: 10.1111/epi.12375. PubMed DOI

Bernasconi A, et al. Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: A consensus report from the international league against epilepsy neuroimaging task force. Epilepsia. 2019 doi: 10.1111/epi.15612. PubMed DOI

Tournier J-D, et al. MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. Neuroimage. 2019;202:116137. doi: 10.1016/j.neuroimage.2019.116137. PubMed DOI

Smith SM, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage. 2004;23:S208–S219. doi: 10.1016/j.neuroimage.2004.07.051. PubMed DOI

Maximov II, Alnæs D, Westlye LT. Towards an optimised processing pipeline for diffusion magnetic resonance imaging data: Effects of artefact corrections on diffusion metrics and their age associations in UK Biobank. Hum. Brain Mapp. 2019;40:4146–4162. doi: 10.1002/hbm.24691. PubMed DOI PMC

Veraart J, et al. Denoising of diffusion MRI using random matrix theory. Neuroimage. 2016;142:394–406. doi: 10.1016/j.neuroimage.2016.08.016. PubMed DOI PMC

Veraart J, Fieremans E, Novikov DS. Diffusion MRI noise mapping using random matrix theory. Magn. Reson. Med. 2016;76:1582–1593. doi: 10.1002/mrm.26059. PubMed DOI PMC

Kellner E, Dhital B, Kiselev VG, Reisert M. Gibbs-ringing artifact removal based on local subvoxel-shifts. Magn. Reson. Med. 2016;76:1574–1581. doi: 10.1002/mrm.26054. PubMed DOI

Andersson JLR, Sotiropoulos SN. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage. 2016;125:1063–1078. doi: 10.1016/j.neuroimage.2015.10.019. PubMed DOI PMC

Andersson JLR, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: Application to diffusion tensor imaging. Neuroimage. 2003;20:870–888. doi: 10.1016/S1053-8119(03)00336-7. PubMed DOI

Zhang Y, Brady M, Smith S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans. Med. Imag. 2001;20:45–57. doi: 10.1109/42.906424. PubMed DOI

Ades-Aron B, et al. Evaluation of the accuracy and precision of the diffusion parameter EStImation with Gibbs and NoisE removal pipeline. Neuroimage. 2018;183:532–543. doi: 10.1016/j.neuroimage.2018.07.066. PubMed DOI PMC

Veraart J, et al. More accurate estimation of diffusion tensor parameters using diffusion kurtosis imaging. Magn. Reson. Med. 2011;65:138–145. doi: 10.1002/mrm.22603. PubMed DOI

Smith SM, et al. Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage. 2006;31:1487–1505. doi: 10.1016/j.neuroimage.2006.02.024. PubMed DOI

Staljanssens W, et al. EEG source connectivity to localize the seizure onset zone in patients with drug resistant epilepsy. NeuroImage Clin. 2017;16:689–698. doi: 10.1016/j.nicl.2017.09.011. PubMed DOI PMC

Mareček R, et al. Automated fusion of multimodal imaging data for identifying epileptogenic lesions in patients with inconclusive magnetic resonance imaging. Hum. Brain Mapp. 2021 doi: 10.1002/hbm.25413. PubMed DOI PMC

Kanber B, et al. Detection of covert lesions in focal epilepsy using computational analysis of multimodal magnetic resonance imaging data. Epilepsia. 2021;62:807–816. doi: 10.1111/epi.16836. PubMed DOI PMC

Del Gaizo J, et al. Using machine learning to classify temporal lobe epilepsy based on diffusion MRI. Brain Behav. 2017;7:e00801. doi: 10.1002/brb3.801. PubMed DOI PMC

Huang J, Xu J, Kang L, Zhang T. Identifying epilepsy based on deep learning using DKI images. Front. Hum. Neurosci. 2020;14:465. doi: 10.3389/fnins.2020.00465. PubMed DOI PMC

Zijlmans M, Zweiphenning W, van Klink N. Changing concepts in presurgical assessment for epilepsy surgery. Nat. Rev. Neurol. 2019;15:594–606. doi: 10.1038/s41582-019-0224-y. PubMed DOI

Kramer MA, Cash SS. Epilepsy as a disorder of cortical network organization. Neuroscience. 2012;18:360–372. PubMed PMC

Liu M, Concha L, Lebel C, Beaulieu C, Gross DW. Mesial temporal sclerosis is linked with more widespread white matter changes in temporal lobe epilepsy. NeuroImage Clin. 2012;1:99–105. doi: 10.1016/j.nicl.2012.09.010. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Multimodal combination of neuroimaging methods for localizing the epileptogenic zone in MR-negative epilepsy

. 2022 Sep 07 ; 12 (1) : 15158. [epub] 20220907

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...