Urinary I-FABP, L-FABP, TFF-3, and SAA Can Diagnose and Predict the Disease Course in Necrotizing Enterocolitis at the Early Stage of Disease
Jazyk angličtina Země Egypt Médium electronic-ecollection
Typ dokumentu srovnávací studie, časopisecké články
PubMed
32190704
PubMed Central
PMC7072107
DOI
10.1155/2020/3074313
Knihovny.cz E-zdroje
- MeSH
- biologické markery moč MeSH
- časná diagnóza MeSH
- diferenciální diagnóza MeSH
- faktor TFF3 moč MeSH
- lidé MeSH
- nekrotizující enterokolitida diagnóza MeSH
- novorozenec MeSH
- prognóza MeSH
- progrese nemoci MeSH
- proteiny vázající mastné kyseliny moč MeSH
- sepse diagnóza MeSH
- sérový amyloid A moč MeSH
- střevní sliznice patologie MeSH
- vény fyziologie MeSH
- zánět diagnóza MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- biologické markery MeSH
- FABP1 protein, human MeSH Prohlížeč
- FABP2 protein, human MeSH Prohlížeč
- faktor TFF3 MeSH
- proteiny vázající mastné kyseliny MeSH
- sérový amyloid A MeSH
- TFF3 protein, human MeSH Prohlížeč
Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease affecting mainly preterm newborns. It is characterized by unexpected onset and rapid progression with specific diagnostic signs as pneumatosis intestinalis or gas in the portal vein appearing later in the course of the disease. Therefore, we analyzed diagnostic and prognostic potential of the markers of early NEC pathogenesis, such as excessive inflammatory response (serum amyloid A (SAA)) and gut epithelium damage (intestinal and liver fatty acid-binding protein (I-FABP and L-FABP, respectively) and trefoil factor-3 (TFF-3)). We used ELISA to analyze these biomarkers in the urine of patients with suspected NEC, either spontaneous or surgery-related, or in infants without gut surgery (controls). Next, we compared their levels with the type of the disease (NEC or sepsis) and its severity. Already at the time of NEC suspicion, infants who developed NEC had significantly higher levels of all tested biomarkers than controls and higher levels of I-FABP and L-FABP than those who will later develop sepsis. Infants who will develop surgery-related NEC had higher levels of I-FABP and L-FABP than those who will develop sepsis already during the first 6 hours after the abdominal surgery. I-FABP was able to discriminate between infants who will develop NEC or sepsis and the SAA was able to discriminate between medical and surgical NEC. Moreover, the combination of TFF-3 with I-FABP and SAA could predict pneumatosis intestinalis, and the combination of I-FABP, L-FABP, and SAA could predict gas in the portal vein or long-term hospitalization and low SAA predicts early full enteral feeding. Thus, these biomarkers may be useful not only in the early, noninvasive diagnostics but also in the subsequent NEC management.
Zobrazit více v PubMed
Lin P. W., Stoll B. J. Necrotising enterocolitis. The Lancet. 2006;368(9543):1271–1283. doi: 10.1016/S0140-6736(06)69525-1. PubMed DOI
Vongbhavit K., Underwood M. A. Prevention of necrotizing enterocolitis through manipulation of the intestinal microbiota of the premature infant. Clinical Therapeutics. 2016;38(4):716–732. doi: 10.1016/j.clinthera.2016.01.006. PubMed DOI PMC
Mestecky J. Homeostasis of the mucosal immune system: human milk and lactation. Advances in Experimental Medicine and Biology. 2001;501:197–205. doi: 10.1007/978-1-4615-1371-1_26. PubMed DOI
Mathias A., Corthésy B. Recognition of gram-positive intestinal bacteria by hybridoma- and colostrum-derived secretory immunoglobulin A is mediated by carbohydrates. The Journal of Biological Chemistry. 2011;286(19):17239–17247. doi: 10.1074/jbc.M110.209015. PubMed DOI PMC
Holman R. C., Stoll B. J., Clarke M. J., Glass R. I. The epidemiology of necrotizing enterocolitis infant mortality in the United States. American Journal of Public Health. 1997;87(12):2026–2031. doi: 10.2105/AJPH.87.12.2026. PubMed DOI PMC
Yee W. H., Soraisham A. S., Shah V. S., et al. Incidence and timing of presentation of necrotizing enterocolitis in preterm infants. Pediatrics. 2012;129(2):e298–e304. doi: 10.1542/peds.2011-2022. PubMed DOI
Hsueh W., Caplan M. S., Qu X.-W., Tan X.-D., de Plaen I. G., Gonzalez-Crussi F. Neonatal necrotizing enterocolitis: clinical considerations and pathogenetic concepts. Pediatric and Developmental Pathology. 2019;6(1):6–23. doi: 10.1007/s10024-002-0602-z. PubMed DOI PMC
Eltayeb A. A., Mostafa M. M., Ibrahim N. H., Eltayeb A. A. The role of surgery in management of necrotizing enterocolitis. International Journal of Surgery. 2010;8(6):458–461. doi: 10.1016/j.ijsu.2010.06.005. PubMed DOI
Walsh M. C., Kliegman R. M. Necrotizing enterocolitis: treatment based on staging criteria. Pediatric Clinics of North America. 1986;33(1):179–201. doi: 10.1016/s0031-3955(16)34975-6. PubMed DOI PMC
Shanbhogue L. K., Tam P. K., Lloyd D. A. Necrotizing enterocolitis following operation in the neonatal period. The British Journal of Surgery. 1991;78(9):1045–1047. doi: 10.1002/bjs.1800780906. PubMed DOI
Ballance W. A., Dahms B. B., Shenker N., Kliegman R. M. Pathology of neonatal necrotizing enterocolitis: a ten-year experience. The Journal of Pediatrics. 1990;117(1):S6–S13. doi: 10.1016/s0022-3476(05)81124-2. PubMed DOI
Coufal S., Kokesova A., Tlaskalova-hogenova H., Snajdauf J., Rygl M., Kverka M. Urinary intestinal fatty acid-binding protein can distinguish necrotizing enterocolitis from sepsis in early stage of the disease. Journal of Immunology Research. 2016;2016:8. doi: 10.1155/2016/5727312.5727312 PubMed DOI PMC
Pelsers M. M. A. L., Namiot Z., Kisielewski W., et al. Intestinal-type and liver-type fatty acid-binding protein in the intestine. Tissue distribution and clinical utility. Clinical Biochemistry. 2003;36(7):529–535. doi: 10.1016/S0009-9120(03)00096-1. PubMed DOI
Guthmann F., Börchers T., Wolfrum C., Wustrack T., Bartholomäus S., Spener F. Plasma concentration of intestinal- and liver-FABP in neonates suffering from necrotizing enterocolitis and in healthy preterm neonates. Molecular and Cellular Biochemistry. 2002;239(1/2):227–234. doi: 10.1023/A:1020508420058. PubMed DOI
Thuijls G., Wijck K. v., Grootjans J., et al. Early diagnosis of intestinal ischemia using urinary and plasma fatty acid binding proteins. Annals of Surgery. 2011;253(2):303–308. doi: 10.1097/SLA.0b013e318207a767. PubMed DOI
Machado M. C., Barbeiro H., da Silva F., de Souza H. Circulating fatty acid binding protein as a marker of intestinal failure in septic patients. Critical Care. 2012;16(6):455–456. doi: 10.1186/cc11653. PubMed DOI PMC
Bingold T. M., Franck K., Holzer K., et al. Intestinal fatty acid binding protein: a sensitive marker in abdominal surgery and abdominal infection. Surgical Infections. 2015;16(3):247–253. doi: 10.1089/sur.2014.073. PubMed DOI
Kokesova A., Coufal S., Frybova B., Kverka M., Rygl M. The intestinal fatty acid-binding protein as a marker for intestinal damage in gastroschisis. PLoS One. 2019;14(1, article e0210797) doi: 10.1371/journal.pone.0210797. PubMed DOI PMC
Cheng S., Yu J., Zhou M., Tu Y., Lu Q. Serologic intestinal-fatty acid binding protein in necrotizing enterocolitis diagnosis: a meta-analysis. BioMed Research International. 2015;2015:8. doi: 10.1155/2015/156704.156704 PubMed DOI PMC
Verey F., Nexo E., Greenwood R., Berry M., Corfield A. P. Trefoil factor family peptides are increased in the saliva of children with mucositis. Clinical Chemistry and Laboratory Medicine. 2011;49(12):2051–2055. doi: 10.1515/CCLM.2011.667. PubMed DOI
Kinoshita K., Taupin D. R., Itoh H., Podolsky D. K. Distinct pathways of cell migration and antiapoptotic response to epithelial injury: structure-function analysis of human intestinal trefoil factor. Molecular and Cellular Biology. 2000;20(13):4680–4690. doi: 10.1128/MCB.20.13.4680-4690.2000. PubMed DOI PMC
Nakov R., Velikova T., Nakov V., Gerova V., Tankova L. Trefoil factor 3 is highly predictive of complete mucosal healing independently and in combination with C-reactive protein in patients with ulcerative colitis. Journal of Gastrointestinal and Liver Diseases. 2019;28:169–174. doi: 10.15403/jgld-177. PubMed DOI
Ge H., Gardner J., Wu X., et al. Trefoil factor 3 (TFF3) is regulated by food intake, improves glucose tolerance and induces mucinous metaplasia. PLoS One. 2015;10(6, article e0126924) doi: 10.1371/journal.pone.0126924. PubMed DOI PMC
Grønbæk H., Vestergaard E. M., Hey H., Nielsen J. N., Nexø E. Serum trefoil factors in patients with inflammatory bowel disease. Digestion. 2006;74(1):33–39. doi: 10.1159/000096591. PubMed DOI
Sun W., Qin J., Shan R.-F., Zhu Y.-A., Zhu H.-Y. Elevated serum levels of trefoil factor 3 are correlated with severity of sepsis patients. International Journal of Clinical and Experimental Pathology. 2016;9:8122–8131.
Coufal S., Galanova N., Bajer L., et al. Inflammatory bowel disease types differ in markers of inflammation, gut barrier and in specific anti-bacterial response. Cells. 2019;8(7):p. 719. doi: 10.3390/cells8070719. PubMed DOI PMC
Yi X., Chang X., Wang J., Yan C., Zhang B. Intestinal trefoil factor increased the Bcl-2 level in a necrotizingenterocolitis neonate rat model. Turkish Journal of Medical Sciences. 2016;46(3):921–925. doi: 10.3906/sag-1501-65. PubMed DOI
Chambers R. E., Macfarlane D. G., Whicher J. T., Dieppe P. A. Serum amyloid-A protein concentration in rheumatoid arthritis and its role in monitoring disease activity. Annals of the Rheumatic Diseases. 1983;42(6):665–667. doi: 10.1136/ard.42.6.665. PubMed DOI PMC
Mayer J. M., Raraty M., Slavin J., et al. Serum amyloid A is a better early predictor of severity than C-reactive protein in acute pancreatitis. The British Journal of Surgery. 2002;89(2):163–171. doi: 10.1046/j.0007-1323.2001.01972.x. PubMed DOI
Bozinovski S., Hutchinson A., Thompson M., et al. Serum amyloid A is a biomarker of acute exacerbations of chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine. 2008;177(3):269–278. doi: 10.1164/rccm.200705-678OC. PubMed DOI
Arnon S., Litmanovitz I., Regev R. H., Bauer S., Shainkin-Kestenbaum R., Dolfin T. Serum amyloid A: an early and accurate marker of neonatal early-onset sepsis. Journal of Perinatology. 2007;27(5):297–302. doi: 10.1038/sj.jp.7211682. PubMed DOI
Cetinkaya M., Ozkan H., Köksal N., Akaci O., Ozgür T. The efficacy of serial serum amyloid A measurements for diagnosis and follow-up of necrotizing enterocolitis in premature infants. Pediatric Surgery International. 2010;26(8):835–841. doi: 10.1007/s00383-010-2635-0. PubMed DOI
Cetinkaya M., Ozkan H., Köksal N., Akaci O., Ozgür T. Comparison of the efficacy of serum amyloid A, C-reactive protein, and procalcitonin in the diagnosis and follow-up of necrotizing enterocolitis in premature infants. Journal of Pediatric Surgery. 2011;46(8):1482–1489. doi: 10.1016/j.jpedsurg.2011.03.069. PubMed DOI
The young infants clinical signs study group. Clinical signs that predict severe illness in children under age 2 months: a multicentre study. The Lancet. 2008;371(9607):135–142. doi: 10.1016/s0140-6736(08)60106-3. PubMed DOI
Strunk T., Doherty D., Jacques MBiostat A., et al. Histologic chorioamnionitis is associated with reduced risk of late-onset sepsis in preterm infants. Pediatrics. 2012;129(1):e134–e141. doi: 10.1542/peds.2010-3493. PubMed DOI
Morales P., Bustamante D., Espina-Marchant P., et al. Pathophysiology of perinatal asphyxia: can we predict and improve individual outcomes? The EPMA Journal. 2011;2(2):211–230. doi: 10.1007/s13167-011-0100-3. PubMed DOI PMC
Gu Z., Eils R., Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 2016;32(18):2847–2849. doi: 10.1093/bioinformatics/btw313. PubMed DOI
Vinall J., Miller S. P., Bjornson B. H., et al. Invasive procedures in preterm children: brain and cognitive development at school age. Pediatrics. 2014;133(3):412–421. doi: 10.1542/peds.2013-1863. PubMed DOI PMC
Derikx J. P. M., van Waardenburg D. A., Thuijls G., et al. New insight in loss of gut barrier during major non-abdominal surgery. PLoS One. 2008;3(12):e3954–e3957. doi: 10.1371/journal.pone.0003954. PubMed DOI PMC
Kittaka H., Akimoto H., Takeshita H., et al. Usefulness of intestinal fatty acid-binding protein in predicting strangulated small bowel obstruction. PLoS One. 2014;9(6, article e99915) doi: 10.1371/journal.pone.0099915. PubMed DOI PMC
Ng E. W. Y., Poon T. C. W., Lam H. S., et al. Gut-associated biomarkers L-FABP , I-FABP, and TFF3 and LIT score for diagnosis of surgical necrotizing enterocolitis in preterm infants. Annals of Surgery. 2013;258(6):1111–1118. doi: 10.1097/SLA.0b013e318288ea96. PubMed DOI
Hotchkiss R. S., Karl I. E. The pathophysiology and treatment of sepsis. The New England Journal of Medicine. 2003;348(2):138–150. doi: 10.1056/NEJMra021333. PubMed DOI
Reisinger K. W., Kramer B. W., Van der Zee D. C., et al. Non-invasive serum amyloid A (SAA) measurement and plasma platelets for accurate prediction of surgical intervention in severe necrotizing enterocolitis (NEC) PLoS One. 2014;9(3, article e90834) doi: 10.1371/journal.pone.0090834. PubMed DOI PMC
Short S. S., Papillon S., Berel D., Ford H. R., Frykman P. K., Kawaguchi A. Late onset of necrotizing enterocolitis in the full-term infant is associated with increased mortality: results from a two-center analysis. Journal of Pediatric Surgery. 2014;49(6):950–953. doi: 10.1016/j.jpedsurg.2014.01.028. PubMed DOI PMC
Tam A. L., Camberos A., Applebaum H. Surgical decision making in necrotizing enterocolitis and focal intestinal perforation: predictive value of radiologic findings. Journal of Pediatric Surgery. 2002;37(12):1688–1691. doi: 10.1053/jpsu.2002.36696. PubMed DOI
Ganapathy V., Hay J. W., Kim J. H., Lee M. L., Rechtman D. J. Long term healthcare costs of infants who survived neonatal necrotizing enterocolitis: a retrospective longitudinal study among infants enrolled in Texas Medicaid. BMC Pediatrics. 2013;13(1, article 127) doi: 10.1186/1471-2431-13-127. PubMed DOI PMC
Mazrani W., McHugh K., Marsden P. J. The radiation burden of radiological investigations. Archives of Disease in Childhood. 2007;92(12):1127–1131. doi: 10.1136/adc.2006.101782. PubMed DOI PMC
Dani C., Cecchi A., Bertini G. Role of oxidative stress as physiopathologic factor in the preterm infant. Minerva Pediatrica. 2004;56(4):381–394. PubMed
Aly H., Hamed Z., Mohsen L., Ramy N., Arnaoot H., Lotfy A. Serum amyloid A protein and hypoxic ischemic encephalopathy in the newborn. Journal of Perinatology. 2011;31(4):263–268. doi: 10.1038/jp.2010.130. PubMed DOI
Nawar E., Shaaban H., El-Aty R., Emam H. Predictive value of serum amyloid A protein in newborn infants with hypoxic ischemic encephalopathy. The Medical Journal of Cairo University. 2016;84:29–34.
Mozes G., Friedman N., Shainkin-Kestenbaum R. Serum amyloid A. The Journal of Trauma: Injury, Infection, and Critical Care. 1989;29(1):71–74. doi: 10.1097/00005373-198901000-00014. PubMed DOI
Xu L. F., Li J., Sun M., Sun H. W. Expression of intestinal trefoil factor, proliferating cell nuclear antigen and histological changes in intestine of rats after intrauterine asphyxia. World Journal of Gastroenterology. 2005;11(15):2291–2295. doi: 10.3748/wjg.v11.i15.2291. PubMed DOI PMC
Schurink M., Kooi E. M. W., Hulzebos C. V., et al. Intestinal fatty acid-binding protein as a diagnostic marker for complicated and uncomplicated necrotizing enterocolitis: a prospective cohort study. PLoS One. 2015;10(3, article e0121336) doi: 10.1371/journal.pone.0121336. PubMed DOI PMC
Cikrit D., West K. W., Schreiner R., Grosfeld J. L. Long-term follow-up after surgical management of necrotizing enterocolitis: sixty-three cases. Journal of Pediatric Surgery. 1986;21(6):533–535. doi: 10.1016/S0022-3468(86)80227-5. PubMed DOI
Ladd A. P., Rescorla F. J., West K. W., Scherer L. R., III, Engum S. A., Grosfeld J. L. Long-term follow-up after bowel resection for necrotizing enterocolitis: factors affecting outcome. Journal of Pediatric Surgery. 1998;33(7):967–972. doi: 10.1016/s0022-3468(98)90516-4. PubMed DOI
Rees C. M., Pierro A., Eaton S. Neurodevelopmental outcomes of neonates with medically and surgically treated necrotizing enterocolitis. Archives of Disease in Childhood - Fetal and Neonatal Edition. 2007;92(3):F193–F198. doi: 10.1136/adc.2006.099929. PubMed DOI PMC
Serum TGF-β1 and CD14 Predicts Response to Anti-TNF-α Therapy in IBD