Serum TGF-β1 and CD14 Predicts Response to Anti-TNF-α Therapy in IBD

. 2023 ; 2023 () : 1535484. [epub] 20230620

Jazyk angličtina Země Egypt Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37383609

BACKGROUND: Tumor necrosis factor-alpha (TNF-α) agonists revolutionized therapeutic algorithms in inflammatory bowel disease (IBD) management. However, approximately every third IBD patient does not respond to this therapy in the long term, which delays efficient control of the intestinal inflammation. METHODS: We analyzed the power of serum biomarkers to predict the failure of anti-TNF-α. We collected serum of 38 IBD patients at therapy prescription and 38 weeks later and analyzed them with relation to therapy response (no-, partial-, and full response). We used enzyme-linked immunosorbent assay to quantify 16 biomarkers related to gut barrier (intestinal fatty acid-binding protein, liver fatty acid-binding protein, trefoil factor 3, and interleukin (IL)-33), microbial translocation, immune system regulation (TNF-α, CD14, lipopolysaccharide-binding protein, mannan-binding lectin, IL-18, transforming growth factor-β1 (TGF-β1), osteoprotegerin (OPG), insulin-like growth factor 2 (IGF-2), endocrine-gland-derived vascular endothelial growth factor), and matrix metalloproteinase system (MMP-9, MMP-14, and tissue inhibitors of metalloproteinase-1). RESULTS: We found that future full-responders have different biomarker profiles than non-responders, while partial-responders cannot be distinguished from either group. When future non-responders were compared to responders, their baseline contained significantly more TGF-β1, less CD14, and increased level of MMP-9, and concentration of these factors could predict non-responders with high accuracy (AUC = 0.938). Interestingly, during the 38 weeks, levels of MMP-9 decreased in all patients, irrespective of the outcome, while OPG, IGF-2, and TGF-β1 were higher in non-responders compared to full-responders both at the beginning and the end of the treatment. CONCLUSIONS: The TGF-β1 and CD14 can distinguish non-responders from responders. The changes in biomarker dynamics during the therapy suggest that growth factors (such as OPG, IGF-2, and TGF-β) are not markedly influenced by the treatment and that anti-TNF-α therapy decreases MMP-9 without influencing the treatment outcome.

Zobrazit více v PubMed

Ng S. C., Shi H. Y., Hamidi N., et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. The Lancet . 2017;390(10114):2769–2778. doi: 10.1016/S0140-6736(17)32448-0. PubMed DOI

Osei J. A., Peña-Sánchez J. N., Fowler S. A., Muhajarine N., Kaplan G. G., Lix L. M. Population-based evidence from a western Canadian province of the decreasing incidence rates and trends of inflammatory bowel disease among adults. Journal of the Canadian Association of Gastroenterology . 2021;4(4):186–193. doi: 10.1093/jcag/gwaa028. PubMed DOI PMC

Underhill D. M., Braun J. Fungal microbiome in inflammatory bowel disease: a critical assessment. Journal of Clinical Investigation . 2022;132(5) doi: 10.1172/JCI155786. PubMed DOI PMC

Hanauer S. B., Feagan B. G., Lichtenstein G. R., et al. Maintenance infliximab for Crohn’s disease: the ACCENT I randomised trial. The Lancet . 2002;359(9317):1541–1549. doi: 10.1016/S0140-6736(02)08512-4. PubMed DOI

Sprakes M. B., Ford A. C., Warren L., Greer D., Hamlin J. Efficacy, tolerability, and predictors of response to infliximab therapy for Crohn’s disease: a large single centre experience. Journal of Crohn’s and Colitis . 2012;6(2):143–153. doi: 10.1016/j.crohns.2011.07.011. PubMed DOI

Peyrin-Biroulet L., Deltenre P., de Suray N., Branche J., Sandborn W. J., Colombel J.-F. Efficacy and safety of tumor necrosis factor antagonists in Crohn’s disease: meta-analysis of placebo-controlled trials. Clinical Gastroenterology and Hepatology . 2008;6(6):644–653. doi: 10.1016/j.cgh.2008.03.014. PubMed DOI

Ford A. C., Sandborn W. J., Khan K. J., Hanauer S. B., Talley N. J., Moayyedi P. Efficacy of biological therapies in inflammatory bowel disease: systematic review and meta-analysis. American Journal of Gastroenterology . 2011;106(4):644–659. doi: 10.1038/ajg.2011.73. PubMed DOI

Rahier J.-F., Buche S., Peyrin-Biroulet L., et al. Severe skin lesions cause patients with inflammatory bowel disease to discontinue anti-tumor necrosis factor therapy. Clinical Gastroenterology and Hepatology . 2010;8(12):1048–1055. doi: 10.1016/j.cgh.2010.07.022. PubMed DOI

Krusiński A., Grzywa-Celińska A., Szewczyk K., Grzycka-Kowalczyk L., Emeryk-Maksymiuk J., Milanowski J. Various forms of tuberculosis in patients with inflammatory bowel diseases treated with biological agents. International Journal of Inflammation . 2021;2021:8. doi: 10.1155/2021/6284987.6284987 PubMed DOI PMC

He B., Li Y., Luo W.-W., et al. The risk of adverse effects of TNF-α inhibitors in patients with rheumatoid arthritis: a network meta-analysis. Frontiers in Immunology . 2022;13 doi: 10.3389/fimmu.2022.814429.814429 PubMed DOI PMC

Lopetuso L. R., Gerardi V., Papa V., et al. Can we predict the efficacy of anti-TNF-α agents? International Journal of Molecular Sciences . 2017;18(9) doi: 10.3390/ijms18091973.1973 PubMed DOI PMC

Colombel J.-F., Reinisch W., Mantzaris G. J., et al. Randomised clinical trial: deep remission in biologic and immunomodulator naïve patients with Crohn’s disease—a SONIC post hoc analysis. Alimentary Pharmacology & Therapeutics . 2015;41(8):734–746. doi: 10.1111/apt.13139. PubMed DOI

Juillerat P., Sokol H., Froehlich F., et al. Factors associated with durable response to infliximab in Crohn’s disease 5 years and beyond: a multicenter international cohort. Inflammatory Bowel Diseases . 2015;21(1):60–70. doi: 10.1097/MIB.0000000000000225. PubMed DOI

Louis E., Vermeire S., Rutgeerts P., et al. Inflammatory bowel disease a positive response to infliximab in crohn disease: association with a higher systemic inflammation before treatment but not with -308 TNF gene polymorphism. Scandinavian Journal of Gastroenterology . 2002;37(7):818–824. doi: 10.1080/gas.37.7.818.824. PubMed DOI

Reinisch W., Wang Y., Oddens B. J., Link R. C-reactive protein, an indicator for maintained response or remission to infliximab in patients with Crohn’s disease: a post-hoc analysis from ACCENT I. Alimentary Pharmacology & Therapeutics . 2012;35(5):568–576. doi: 10.1111/j.1365-2036.2011.04987.x. PubMed DOI

Macaluso F. S., Fries W., Privitera A. C., et al. A propensity score-matched comparison of infliximab and adalimumab in tumour necrosis factor-α inhibitor-naïve and non-naïve patients with Crohn’s disease: real-life data from the sicilian network for inflammatory bowel disease. Journal of Crohn’s and Colitis . 2019;13(2):209–217. doi: 10.1093/ecco-jcc/jjy156. PubMed DOI

Lee K.-M., Jeen Y. T., Cho J. Y., et al. Efficacy, safety, and predictors of response to infliximab therapy for ulcerative colitis: a Korean multicenter retrospective study. Journal of Gastroenterology and Hepatology . 2013;28(12):1829–1833. doi: 10.1111/jgh.12324. PubMed DOI

Harper J. W., Sinanan M. N., Zisman T. L. Increased body mass index is associated with earlier time to loss of response to infliximab in patients with inflammatory bowel disease. Inflammatory Bowel Diseases . 2013;19(10):2118–2124. doi: 10.1097/MIB.0b013e31829cf401. PubMed DOI

Reinisch W., Sandborn W. J., Hommes D. W., et al. Adalimumab for induction of clinical remission in moderately to severely active ulcerative colitis: results of a randomised controlled trial. Gut . 2011;60(6):780–787. doi: 10.1136/gut.2010.221127. PubMed DOI

Arijs I., Li K., Toedter G., et al. Mucosal gene signatures to predict response to infliximab in patients with ulcerative colitis. Gut . 2009;58(12):1612–1619. doi: 10.1136/gut.2009.178665. PubMed DOI

Bank S., Andersen P. S., Burisch J., et al. Associations between functional polymorphisms in the NF-κB signaling pathway and response to anti-TNF treatment in Danish patients with inflammatory bowel disease. The Pharmacogenomics Journal . 2014;14:526–534. doi: 10.1038/tpj.2014.19. PubMed DOI

Bank S., Andersen P. S., Burisch J., et al. Genetically determined high activity of IL-12 and IL-18 in ulcerative colitis and TLR5 in Crohn’s disease were associated with non-response to anti-TNF therapy. The Pharmacogenomics Journal . 2018;18:87–97. doi: 10.1038/tpj.2016.84. PubMed DOI

Bank S., Andersen P. S., Burisch J., et al. Polymorphisms in the inflammatory pathway genes TLR2, TLR4, TLR9, LY96, NFKBIA, NFKB1, TNFA, TNFRSF1A, IL6R, IL10, IL23R, PTPN22, and PPARG are associated with susceptibility of inflammatory bowel disease in a Danish cohort. PLOS ONE . 2014;9(6) doi: 10.1371/journal.pone.0098815.e98815 PubMed DOI PMC

Carbone F., Bodini G., Brunacci M., et al. Reduction in TIMP-2 serum levels predicts remission of inflammatory bowel diseases. European Journal of Clinical Investigation . 2018;48(10) doi: 10.1111/eci.13002.e13002 PubMed DOI

Coufal S., Galanova N., Bajer L., et al. Inflammatory bowel disease types differ in markers of inflammation, gut barrier and in specific anti-bacterial response. Cells . 2019;8(7) doi: 10.3390/cells8070719.719 PubMed DOI PMC

Coufal S., Kokesova A., Tlaskalova-Hogenova H., et al. Urinary I-FABP, L-FABP, TFF-3, and SAA can diagnose and predict the disease course in necrotizing enterocolitis at the early stage of disease. Journal of Immunology Research . 2020;2020:10. doi: 10.1155/2020/3074313.3074313 PubMed DOI PMC

Matarazzo L., Hernandez Santana Y. E., Walsh P. T., Fallon P. G. The IL-1 cytokine family as custodians of barrier immunity. Cytokine . 2022;154 doi: 10.1016/j.cyto.2022.155890.155890 PubMed DOI

Harvey R. F., Bradshaw J. M. A simple index of Crohn’s-disease activity. The Lancet . 1980;315(8167) doi: 10.1016/S0140-6736(80)92767-1.514 PubMed DOI

Schroeder K. W., Tremaine W. J., Ilstrup D. M. Coated oral 5-aminosalicylic acid therapy for mildly to moderately active ulcerative colitis. The New England Journal of Medicine . 1987;317(26):1625–1629. doi: 10.1056/NEJM198712243172603. PubMed DOI

Peyrin-Biroulet L. Anti-TNF therapy in inflammatory bowel diseases: a huge review. Minerva Gastroenterologica e Dietologica . 2010;56(2):233–243. PubMed

Peyrin-Biroulet L., Panés J., Sandborn W. J., et al. Defining disease severity in inflammatory bowel diseases: current and future directions. Clinical Gastroenterology and Hepatology . 2016;14(3):348–354.e17. doi: 10.1016/j.cgh.2015.06.001. PubMed DOI

R Core Team. Vienna, Austria: R Foundation for Statistical Computing; 2020. R: a language and environment for statistical computing.

Tibshirani R., Hastie T., Narasimhan B., Chu G. Diagnosis of multiple cancer types by shrunken centroids of gene expression. PNAS . 2002;99(10):6567–6572. doi: 10.1073/pnas.082099299. PubMed DOI PMC

Venables W. N., Ripley B. D. Modern Applied Statistics with S . 4th. New York, NY: Springer; 2002.

Sing T., Sander O., Beerenwinkel N., Lengauer T. ROCR: visualizing classifier performance in R. Bioinformatics . 2005;21(20):3940–3941. doi: 10.1093/bioinformatics/bti623. PubMed DOI

Gu Z., Eils R., Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics . 2016;32(18):2847–2849. doi: 10.1093/bioinformatics/btw313. PubMed DOI

Lê S., Josse J., Husson F. FactoMineR: an R package for multivariate analysis. Journal of Statistical Software . 2008;25(1):1–18. doi: 10.18637/jss.v025.i01. DOI

Szklarczyk D., Kirsch R., Koutrouli M., et al. The STRING database in 2023: protein–protein association networks and functional enrichment analyses for any sequenced genome of interest. Nucleic Acids Research . 2023;51(D1):D638–D646. doi: 10.1093/nar/gkac1000. PubMed DOI PMC

Atreya R., Neurath M. F., Siegmund B. Personalizing treatment in IBD: hype or reality in 2020? can we predict response to anti-TNF? Frontiers in Medicine . 2020;7 doi: 10.3389/fmed.2020.00517.517 PubMed DOI PMC

Hazel K., O’Connor A. Emerging treatments for inflammatory bowel disease. Therapeutic Advances in Chronic Disease . 2020;11:1–12. doi: 10.1177/2040622319899297. PubMed DOI PMC

Gubernatorova E. O., Namakanova O. A., Gorshkova E. A., Medvedovskaya A. D., Nedospasov S. A., Drutskaya M. S. Novel anti-cytokine strategies for prevention and treatment of respiratory allergic diseases. Frontiers in Immunology . 2021;12 doi: 10.3389/fimmu.2021.601842.601842 PubMed DOI PMC

Steenholdt C., Coskun M., Buhl S., et al. Circulating cytokines and cytokine receptors in infliximab treatment failure due to TNF-α independent Crohn disease. Medicine . 2016;95(16) doi: 10.1097/MD.0000000000003417.e3417 PubMed DOI PMC

Coufal S., Kokesova A., Tlaskalova-Hogenova H., Snajdauf J., Rygl M., Kverka M. Urinary intestinal fatty acid-binding protein can distinguish necrotizing enterocolitis from sepsis in early stage of the disease. Journal of Immunology Research . 2016;2016:8. doi: 10.1155/2016/5727312.5727312 PubMed DOI PMC

Kokesova A., Coufal S., Frybova B., Kverka M., Rygl M. The intestinal fatty acid-binding protein as a marker for intestinal damage in gastroschisis. PLOS ONE . 2019;14(1) doi: 10.1371/journal.pone.0210797.e0210797 PubMed DOI PMC

Pelsers M. M. A. L., Namiot Z., Kisielewski W., et al. Intestinal-type and liver-type fatty acid-binding protein in the intestine. Tissue distribution and clinical utility. Clinical Biochemistry . 2003;36(7):529–535. doi: 10.1016/s0009-9120(03)00096-1. PubMed DOI

Kinoshita K., Taupin D. R., Itoh H., Podolsky D. K. Distinct pathways of cell migration and antiapoptotic response to epithelial injury: structure-function analysis of human intestinal trefoil factor. Molecular and Cellular Biology . 2000;20(13):4680–4690. doi: 10.1128/MCB.20.13.4680-4690.2000. PubMed DOI PMC

Nakov R., Velikova T., Nakov V., Gerova V., Tankova L. Trefoil factor 3 is highly predictive of complete mucosal healing independently and in combination with C-reactive protein in patients with ulcerative colitis. Journal of Gastrointestinal and Liver Diseases . 2019;28(2):169–174. doi: 10.15403/jgld-177. PubMed DOI

Williams M. A., O’Callaghan A., Corr S. C. IL-33 and IL-18 in inflammatory bowel disease etiology and microbial interactions. Frontiers in Immunology . 2019;10 doi: 10.3389/fimmu.2019.01091.1091 PubMed DOI PMC

Xiao Y., Huang X., Zhao Y., et al. Interleukin-33 promotes REG3γ expression in intestinal epithelial cells and regulates gut microbiota. Cellular and Molecular Gastroenterology and Hepatology . 2019;8(1):21–36. doi: 10.1016/j.jcmgh.2019.02.006. PubMed DOI PMC

Perez F., Ruera C. N., Miculan E., et al. IL-33 alarmin and its active proinflammatory fragments are released in small intestine in celiac disease. Frontiers in Immunology . 2020;11 doi: 10.3389/fimmu.2020.581445.581445 PubMed DOI PMC

Kobori A., Yagi Y., Imaeda H., et al. Interleukin-33 expression is specifically enhanced in inflamed mucosa of ulcerative colitis. Journal of Gastroenterology . 2010;45:999–1007. doi: 10.1007/s00535-010-0245-1. PubMed DOI

Sedhom M. A. K., Pichery M., Murdoch J. R., et al. Neutralisation of the interleukin-33/ST2 pathway ameliorates experimental colitis through enhancement of mucosal healing in mice. Gut . 2013;62(12):1714–1723. doi: 10.1136/gutjnl-2011-301785. PubMed DOI PMC

Malik A., Sharma D., Zhu Q., et al. IL-33 regulates the IgA-microbiota axis to restrain IL-1α–dependent colitis and tumorigenesis. The Journal of Clinical Investigation . 2016;126(12):4469–4481. doi: 10.1172/JCI88625. PubMed DOI PMC

Pastorelli L., Garg R. R., Hoang S. B., et al. Epithelial-derived IL-33 and its receptor ST2 are dysregulated in ulcerative colitis and in experimental Th1/Th2 driven enteritis. PNAS . 2010;107(17):8017–8022. doi: 10.1073/pnas.0912678107. PubMed DOI PMC

Ghosh S. S., Wang J., Yannie P. J., Ghosh S. Intestinal barrier dysfunction, LPS translocation, and disease development. Journal of the Endocrine Society . 2020;4(2):1–15. doi: 10.1210/jendso/bvz039. PubMed DOI PMC

Gutsmann T., Müller M., Carroll S. F., MacKenzie R. C., Wiese A., Seydel U. Dual role of lipopolysaccharide (LPS)-binding protein in neutralization of LPS and enhancement of LPS-induced activation of mononuclear cells. Infection and Immunity . 2001;69(11):6942–6950. doi: 10.1128/IAI.69.11.6942-6950.2001. PubMed DOI PMC

Richter J. M., Schanbacher B. L., Huang H., Xue J., Bauer J. A., Giannone P. J. LPS-binding protein enables intestinal epithelial restitution despite LPS exposure. Journal of Pediatric Gastroenterology & Nutrition . 2012;54(5):639–644. doi: 10.1097/MPG.0b013e31823a895a. PubMed DOI PMC

Bas S., Gauthier B. R., Spenato U., Stingelin S., Gabay C. CD14 is an acute-phase protein. Journal of Immunology . 2004;172(7):4470–4479. doi: 10.4049/jimmunol.172.7.4470. PubMed DOI

Funda D. P., Tučková L., Farré M. A., Iwase T., Moro I., Tlaskalová-Hogenová H. CD14 is expressed and released as soluble CD14 by human intestinal epithelial cells in vitro: lipopolysaccharide activation of epithelial cells revisited. Infection and Immunity . 2001;69(6):3772–3781. doi: 10.1128/IAI.69.6.3772-3781.2001. PubMed DOI PMC

Turner M. W. Mannose-binding lectin: the pluripotent molecule of the innate immune system. Immunology Today . 1996;17(11):532–540. doi: 10.1016/S0167-5699(96)80908-X. PubMed DOI

Thiel S., Vorup-Jensen T., Stover C. M., et al. A second serine protease associated with mannan-binding lectin that activates complement. Nature . 1997;386:506–510. doi: 10.1038/386506a0. PubMed DOI

Kuhlman M., Joiner K., Ezekowitz R. A. The human mannose-binding protein functions as an opsonin. Journal of Experimental Medicine . 1989;169(5):1733–1745. doi: 10.1084/jem.169.5.1733. PubMed DOI PMC

Rector A., Lemey P., Laffut W., et al. Mannan-binding lectin (MBL) gene polymorphisms in ulcerative colitis and Crohn’s disease. Genes & Immunity . 2001;2:323–328. doi: 10.1038/sj.gene.6363784. PubMed DOI

Gupta A. Animal Lectins: Form, Function and Clinical Applications . Vienna: Springer; 2012. MBL deficiency as risk of infection and autoimmunity; pp. 933–953. DOI

Müller S., Schaffer T., Flogerzi B., et al. Mannan-binding lectin deficiency results in unusual antibody production and excessive experimental colitis in response to mannose-expressing mild gut pathogens. Gut . 2010;59(11):1493–1500. doi: 10.1136/gut.2010.208348. PubMed DOI

Kovacs M., Papp M., Lakatos P. L., et al. Low mannose-binding lectin (MBL) is associated with paediatric inflammatory bowel diseases and ileal involvement in patients with Crohn disease. Journal of Crohn’s and Colitis . 2013;7(2):134–141. doi: 10.1016/j.crohns.2012.03.008. PubMed DOI

Bak-Romaniszyn L., Szala A., Sokolowska A., et al. Mannan-binding lectin deficiency in pediatric patients with inflammatory bowel disease. Scandinavian Journal of Gastroenterology . 2011;46(10):1275–1278. doi: 10.3109/00365521.2011.594087. PubMed DOI

Chaix J., Tessmer M. S., Hoebe K., et al. Cutting edge: priming of NK cells by IL-18. Journal of Immunology . 2008;181(3):1627–1631. doi: 10.4049/jimmunol.181.3.1627. PubMed DOI PMC

Matsumoto S., Tsuji-Takayama K., Aizawa Y., et al. Interleukin-18 activates NF-κB in murine t helper type 1 cells. Biochemical and Biophysical Research Communications . 1997;234(2):454–457. doi: 10.1006/bbrc.1997.6665. PubMed DOI

Nowarski R., Jackson R., Gagliani N., et al. Epithelial IL-18 equilibrium controls barrier function in colitis. Cell . 2015;163(6):1444–1456. doi: 10.1016/j.cell.2015.10.072. PubMed DOI PMC

Pu Z., Che Y., Zhang W., et al. Dual roles of IL-18 in colitis through regulation of the function and quantity of goblet cells. International Journal of Molecular Medicine . 2019;43(6):2291–2302. doi: 10.3892/ijmm.2019.4156. PubMed DOI PMC

Dorsch M., Qiu Y., Soler D., et al. PK1/EG-VEGF induces monocyte differentiation and activation. Journal of Leukocyte Biology . 2005;78(2):426–434. doi: 10.1189/jlb.0205061. PubMed DOI

Ruder B., Atreya R., Becker C. Tumour necrosis factor alpha in intestinal homeostasis and gut related diseases. International Journal of Molecular Sciences . 2019;20(8) doi: 10.3390/ijms20081887.1887 PubMed DOI PMC

Al-Sadi R., Guo S., Ye D., Rawat M., Ma T. Y. TNF-α Modulation of intestinal tight junction permeability is mediated by NIK/IKK-α axis activation of the canonical NF-κB pathway. The American Journal of Pathology . 2016;186(5):1151–1165. doi: 10.1016/j.ajpath.2015.12.016. PubMed DOI PMC

Franchimont N., Reenaers C., Lambert C., et al. Increased expression of receptor activator of NF-κB ligand (RANKL), its receptor RANK and its decoy receptor osteoprotegerin in the colon of Crohn’s disease patients. Clinical and Experimental Immunology . 2004;138(3):491–498. doi: 10.1111/j.1365-2249.2004.02643.x. PubMed DOI PMC

Eivindson M., Nielsen J. N., Grønbæk H., Flyvbjerg A., Hey H. The insulin-like growth factor system and markers of inflammation in adult patients with inflammatory bowel disease. Hormone Research . 2005;64(1):9–15. doi: 10.1159/000087190. PubMed DOI

Ihara S., Hirata Y., Koike K. TGF-β in inflammatory bowel disease: a key regulator of immune cells, epithelium, and the intestinal microbiota. Journal of Gastroenterology . 2017;52:777–787. doi: 10.1007/s00535-017-1350-1. PubMed DOI

Sambuelli A., Diez R. A., Sugai E., et al. Serum transforming growth factor-β1 levels increase in response to successful anti-inflammatory therapy in ulcerative colitis. Alimentary Pharmacology & Therapeutics . 2000;14(11):1443–1449. doi: 10.1046/j.1365-2036.2000.00861.x. PubMed DOI

Del Zotto B., Mumolo G., Pronio A. M., Montesani C., Tersigni R., Boirivant M. TGF-β1 production in inflammatory bowel disease: differing production patterns in Crohn’s disease and ulcerative colitis. Clinical and Experimental Immunology . 2003;134(1):120–126. doi: 10.1046/j.1365-2249.2003.02250.x. PubMed DOI PMC

Stallmach A., Schuppan D., Riese H. H., Matthes H., Riecken E. O. Increased collagen type III synthesis by fibroblasts isolated from strictures of patients with Crohn’s disease. Gastroenterology . 1992;102(6):1920–1929. doi: 10.1016/0016-5085(92)90314-O. PubMed DOI

Li C., Flynn R. S., Grider J. R., et al. Increased activation of latent TGF-β1 by αVβ3 in human Crohn’s disease and fibrosis in TNBS colitis can be prevented by cilengitide. Inflammatory Bowel Diseases . 2013;19(13):2829–2839. doi: 10.1097/MIB.0b013e3182a8452e. PubMed DOI PMC

Lakatos G., Hritz I., Varga M. Z., et al. The impact of matrix metalloproteinases and their tissue inhibitors in inflammatory bowel diseases. Digestive Diseases . 2012;30(3):289–295. doi: 10.1159/000336995. PubMed DOI

Lakatos G., Sipos F., Miheller P., et al. The behavior of matrix metalloproteinase-9 in lymphocytic colitis, collagenous colitis and ulcerative colitis. Pathology & Oncology Research . 2012;18:85–91. doi: 10.1007/s12253-011-9420-9. PubMed DOI

Manfredi M. A., Zurakowski D., Rufo P. A., Walker T. R., Fox V. L., Moses M. A. Increased incidence of urinary matrix metalloproteinases as predictors of disease in pediatric patients with inflammatory bowel disease. Inflammatory Bowel Diseases . 2008;14(8):1091–1096. doi: 10.1002/ibd.20419. PubMed DOI

Al-Sadi R., Engers J., Haque M., King S., Al-Omari D., Ma T. Y. Matrix metalloproteinase-9 (MMP-9) induced disruption of intestinal epithelial tight junction barrier is mediated by NF-κB activation. PLOS ONE . 2021;16(4) doi: 10.1371/journal.pone.0249544.e0249544 PubMed DOI PMC

Aguirre A., Blázquez-Prieto J., Amado-Rodriguez L., et al. Matrix metalloproteinase-14 triggers an anti-inflammatory proteolytic cascade in endotoxemia. Journal of Molecular Medicine . 2017;95:487–497. doi: 10.1007/s00109-017-1510-z. PubMed DOI

Fingleton B. Matrix metalloproteinases as regulators of inflammatory processes. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research . 2017;1864, Part A(11):2036–2042. doi: 10.1016/j.bbamcr.2017.05.010. PubMed DOI

Lee J. W. J., Plichta D., Hogstrom L., et al. Multi-omics reveal microbial determinants impacting responses to biologic therapies in inflammatory bowel disease. Cell Host & Microbe . 2021;29(8):1294–1304.e4. doi: 10.1016/j.chom.2021.06.019. PubMed DOI PMC

Arnott I. D. R., McNeill G., Satsangi J. An analysis of factors influencing short-term and sustained response to infliximab treatment for Crohn’s disease. Alimentary Pharmacology & Therapeutics . 2003;17(12):1451–1457. doi: 10.1046/j.1365-2036.2003.01574.x. PubMed DOI

Lee S., Ellen Kuenzig M., Ricciuto A., et al. Smoking may reduce the effectiveness of anti-TNF therapies to induce clinical response and remission in Crohn’s disease: a systematic review and meta-analysis. Journal of Crohn’s and Colitis . 2021;15(1):74–87. doi: 10.1093/ecco-jcc/jjaa139. PubMed DOI

Laharie D., Salzmann M., Boubekeur H., et al. Predictors of response to infliximab in luminal Crohn’s disease. Gastroentérologie Clinique et Biologique . 2005;29(2):145–149. doi: 10.1016/S0399-8320(05)80718-3. PubMed DOI

Thorlund K., Druyts E., Mills E. J., Fedorak R. N., Marshall J. K. Adalimumab versus infliximab for the treatment of moderate to severe ulcerative colitis in adult patients naïve to anti-TNF therapy: an indirect treatment comparison meta-analysis. Journal of Crohn’s and Colitis . 2014;8(7):571–581. doi: 10.1016/j.crohns.2014.01.010. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...