Arterial Spin Labeling is a Useful MRI Method for Presurgical Evaluation in MRI-Negative Focal Epilepsy
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
17-32292AZV
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
33783670
DOI
10.1007/s10548-021-00833-5
PII: 10.1007/s10548-021-00833-5
Knihovny.cz E-zdroje
- Klíčová slova
- ASL, CBF, Epilepsy surgery, MRI, PET,
- MeSH
- dospělí MeSH
- epilepsie parciální * diagnostické zobrazování chirurgie MeSH
- fluorodeoxyglukosa F18 * MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mozkový krevní oběh MeSH
- pozitronová emisní tomografie MeSH
- spinové značení MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fluorodeoxyglukosa F18 * MeSH
- spinové značení MeSH
Arterial spin labeling (ASL) is an MRI technique measuring brain perfusion using magnetically labeled blood as a tracer. The clinical utility of ASL for presurgical evaluation in non-lesional epilepsy as compared with the quantitative analysis of interictal [18F] fluorodeoxyglucose PET (FDG-PET) was studied. In 10 patients (4 female; median age 29 years) who underwent a complete presurgical evaluation followed by surgical resection, the presurgical FDG-PET and ASL scans were compared with the resection masks using asymmetry index (AI) maps. The positive predictive value (PPV) and sensitivity (SEN), were calculated from the number of voxels inside the mask (true positive), and outside the mask (false positive). The comparison of the PPVs showed better PPV in 6 patients using ASL and in 2 patients with PET. SEN was better in 4 patients using ASL and in 5 patients with PET. According to the Wilcoxon signed rank test for PPV (p = 0.74) and for SEN (p = 0.43), these methods have similar predictive power. ASL is a useful method for presurgical evaluation in non-lesional epilepsy. The main benefits of ASL over PET are that it avoids radiation exposure for patients, and it offers lower costs, higher availability, and better time efficiency.
Zobrazit více v PubMed
Alsop DC, Detre JA, Golay X et al (2015) Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: A consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn Reson Med 73:102–116. https://doi.org/10.1002/mrm.25197 PubMed DOI
Blauwblomme T, Boddaert N, Chémaly N et al (2014) Arterial Spin Labeling MRI: a step forward in non-invasive delineation of focal cortical dysplasia in children. Epilepsy Res 108:1932–1939. https://doi.org/10.1016/j.eplepsyres.2014.09.029 PubMed DOI
Eryurt B, Oner AY, Ucar M et al (2015) Presurgical evaluation of mesial temporal lobe epilepsy with multiple advanced MR techniques at 3T. J Neuroradiol 42:283–290. https://doi.org/10.1016/j.neurad.2015.04.002 PubMed DOI
Fink GR, Pawlik G, Stefan H et al (1996) Temporal lobe epilepsy: Evidence for interictal uncoupling of blood flow and glucose metabolism in temporomesial structures. J Neurol Sci 137:28–34. https://doi.org/10.1016/0022-510X(95)00323-T PubMed DOI
Galazzo IB, Storti SF, Felice AD et al (2015) Patient-specific detection of cerebral blood flow alterations as assessed by arterial spin labeling in drug-resistant epileptic patients. PLoS ONE 10:e0123975. https://doi.org/10.1371/journal.pone.0123975 DOI
Galazzo IB, Mattoli MV, Pizzini FB et al (2016) Cerebral metabolism and perfusion in MR-negative individuals with refractory focal epilepsy assessed by simultaneous acquisition of 18F-FDG PET and arterial spin labeling. NeuroImage Clin 11:648–657. https://doi.org/10.1016/j.nicl.2016.04.005 DOI
Kashyap R, Dondi M, Paez D, Mariani G (2013) Hybrid imaging worldwide—challenges and opportunities for the developing world: a report of a technical meeting organized by IAEA. Semin Nucl Med 43:208–223. https://doi.org/10.1053/j.semnuclmed.2013.02.001 PubMed DOI
Kim BS, Lee S-T, Yun TJ et al (2016) Capability of arterial spin labeling MR imaging in localizing seizure focus in clinical seizure activity. Eur J Radiol 85:1295–1303. https://doi.org/10.1016/j.ejrad.2016.04.015 PubMed DOI
Kojan M, Doležalová I, Koriťáková E et al (2018) Predictive value of preoperative statistical parametric mapping of regional glucose metabolism in mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsy Behav 79:46–52. https://doi.org/10.1016/j.yebeh.2017.11.014 PubMed DOI
Lee SM, Kwon S, Lee YJ (2019) Diagnostic usefulness of arterial spin labeling in MR negative children with new onset seizures. Seizure 65:151–158. https://doi.org/10.1016/j.seizure.2019.01.024 PubMed DOI
Li X, Wang D, Auerbach EJ et al (2015) Theoretical and experimental evaluation of multi-band EPI for high-resolution whole brain pCASL Imaging. Neuroimage 106:170–181. https://doi.org/10.1016/j.neuroimage.2014.10.029 PubMed DOI
Lim Y-M, Cho Y-W, Shamim S et al (2008) Usefulness of pulsed arterial spin labeling MR imaging in mesial temporal lobe epilepsy. Epilepsy Res 82:183–189. https://doi.org/10.1016/j.eplepsyres.2008.08.001 PubMed DOI PMC
Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19:1233–1239. https://doi.org/10.1016/S1053-8119(03)00169-1 PubMed DOI PMC
Mutsaerts HJMM, Petr J, Groot P et al (2020) ExploreASL: an image processing pipeline for multi-center ASL perfusion MRI studies. Neuroimage. https://doi.org/10.1016/j.neuroimage.2020.117031 PubMed DOI
Rathore C, Dickson JC, Teotónio R et al (2014) The utility of 18F-fluorodeoxyglucose PET (FDG PET) in epilepsy surgery. Epilepsy Res 108:1306–1314. https://doi.org/10.1016/j.eplepsyres.2014.06.012 PubMed DOI
Signorini M, Paulesu E, Friston K et al (1999) Rapid Assessment of regional cerebral metabolic abnormalities in single subjects with quantitative and nonquantitative [18F]FDG PET: a clinical validation of statistical parametric mapping. Neuroimage 9:63–80. https://doi.org/10.1006/nimg.1998.0381 PubMed DOI
Soma T, Momose T, Takahashi M et al (2012) Usefulness of extent analysis for statistical parametric mapping with asymmetry index using inter-ictal FGD-PET in mesial temporal lobe epilepsy. Ann Nucl Med 26:319–326. https://doi.org/10.1007/s12149-012-0573-8 PubMed DOI
Sone D, Maikusa N, Sato N et al (2019) Similar and differing distributions between 18F-FDG-PET and arterial spin labeling imaging in temporal lobe epilepsy. Front Neurol. https://doi.org/10.3389/fneur.2019.00318 PubMed DOI PMC
Wang Y-H, An Y, Fan X-T et al (2018) Comparison between simultaneously acquired arterial spin labeling and 18F-FDG PET in mesial temporal lobe epilepsy assisted by a PET/MR system and SEEG. NeuroImage Clin 19:824–830. https://doi.org/10.1016/j.nicl.2018.06.008 PubMed DOI PMC
Wolf RL, Alsop DC, Levy-Reis I et al (2001) Detection of mesial temporal lobe hypoperfusion in patients with temporal lobe epilepsy by use of arterial spin labeled perfusion MR imaging. AJNR Am J Neuroradiol 22:1334–1341 PubMed PMC
Wolf RL, Detre JA (2007) Clinical Neuroimaging Using Arterial Spin-Labeled Perfusion MRI. Neurother J Am Soc Exp Neurother 4:346–359. https://doi.org/10.1016/j.nurt.2007.04.005 DOI