Epileptogenic zone detection in MRI negative epilepsy using adaptive thresholding of arterial spin labeling data
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
34035336
PubMed Central
PMC8149682
DOI
10.1038/s41598-021-89774-4
PII: 10.1038/s41598-021-89774-4
Knihovny.cz E-zdroje
- MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- prospektivní studie MeSH
- refrakterní epilepsie diagnostické zobrazování chirurgie MeSH
- rentgenový obraz - interpretace počítačová metody MeSH
- spinové značení MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- spinové značení MeSH
Drug-resistant epilepsy is a diagnostic and therapeutic challenge, mainly in patients with negative MRI findings. State-of-the-art imaging methods complement standard epilepsy protocols with new information and help epileptologists to increase the reliability of their decisions. In this study, we investigate whether arterial spin labeling (ASL) perfusion MRI can help localize the epileptogenic zone (EZ). To that end, we developed an image processing method to detect the EZ as an area with hypoperfusion relative to the contralateral unaffected side, using subject-specific thresholding of the asymmetry index in ASL images. We demonstrated three thresholding criteria (termed minimal product criterion, minimal distance criterion, and elbow criterion) on 29 patients with MRI-negative epilepsy (age 32.98 ± 10.4 years). The minimal product criterion showed optimal results in terms of positive predictive value (mean 0.12 in postoperative group and 0.22 in preoperative group) and true positive rate (mean 0.71 in postoperative group and 1.82 in preoperative group). Additionally, we found high accuracy in determining the EZ side (mean 0.86 in postoperative group and 0.73 in preoperative group out of 1.00). ASL can be easily incorporated into the standard presurgical MR protocol, and it provides an additional benefit in EZ localization.
Zobrazit více v PubMed
Stafstrom CE, Carmant L. Seizures and epilepsy: an overview for neuroscientists. Cold Spring Harb. Perspect. Med. 2015;5:a022426–a022426. doi: 10.1101/cshperspect.a022426. PubMed DOI PMC
Leeman-Markowski B. Review of MRI-negative epilepsy. JAMA Neurol. 2016;73:1377. doi: 10.1001/jamaneurol.2016.3698. DOI
Boscolo Galazzo I, et al. Cerebral metabolism and perfusion in MR-negative individuals with refractory focal epilepsy assessed by simultaneous acquisition of 18 F-FDG PET and arterial spin labeling. NeuroImage Clin. 2016;11:648–657. doi: 10.1016/j.nicl.2016.04.005. PubMed DOI PMC
Alsop DC, et al. Recommended implementation of arterial spin-labeled perfusion MRI for clinical applications: a consensus of the ISMRM perfusion study group and the European consortium for ASL in dementia. Magn. Reson. Med. 2015;73:102–116. doi: 10.1002/mrm.25197. PubMed DOI PMC
Mutsaerts HJMM, et al. ExploreASL: an image processing pipeline for multi-center ASL perfusion MRI studies. Neuroimage. 2020;219:117031. doi: 10.1016/j.neuroimage.2020.117031. PubMed DOI
Manfrini E, et al. From research to clinical practice: a European neuroradiological survey on quantitative advanced MRI implementation. Eur. Radiol. 2021 doi: 10.1007/s00330-020-07582-2. PubMed DOI PMC
Guo X, et al. Asymmetry of cerebral blood flow measured with three-dimensional pseudocontinuous arterial spin-labeling mr imaging in temporal lobe epilepsy with and without mesial temporal sclerosis. J. Magn. Reson. Imaging. 2015;42:1386–1397. doi: 10.1002/jmri.24920. PubMed DOI
Storti SF, et al. Combining ESI, ASL and PET for quantitative assessment of drug-resistant focal epilepsy. Neuroimage. 2014;102:49–59. doi: 10.1016/j.neuroimage.2013.06.028. PubMed DOI
Sierra-Marcos A, et al. Accuracy of arterial spin labeling magnetic resonance imaging (MRI) perfusion in detecting the epileptogenic zone in patients with drug-resistant neocortical epilepsy: comparison with electrophysiological data, structural MRI, SISCOM and FDG-PET. Eur. J. Neurol. 2016;23:160–167. doi: 10.1111/ene.12826. PubMed DOI
Boscolo Galazzo I, et al. Patient-specific detection of cerebral blood flow alterations as assessed by arterial spin labeling in drug-resistant epileptic patients. PLoS ONE. 2015;10:e0123975. doi: 10.1371/journal.pone.0123975. PubMed DOI PMC
Mareček R, et al. Automated fusion of multimodal imaging data for identifying epileptogenic lesions in patients with inconclusive magnetic resonance imaging. Hum. Brain Mapp. 2021 doi: 10.1002/hbm.25413. PubMed DOI PMC
Kojan M, et al. Arterial spin labeling is a useful MRI method for presurgical evaluation in MRI-negative focal epilepsy. Brain Topogr. 2021 doi: 10.1007/s10548-021-00833-5. PubMed DOI
Lim Y-M, et al. Usefulness of pulsed arterial spin labeling MR imaging in mesial temporal lobe epilepsy. Epilepsy Res. 2008;82:183–189. doi: 10.1016/j.eplepsyres.2008.08.001. PubMed DOI PMC
Zhang Y, et al. Brain volume and perfusion asymmetry in temporal lobe epilepsy with and without hippocampal sclerosis. Neurol. Res. 2021;43:299–306. doi: 10.1080/01616412.2020.1853988. PubMed DOI
Wolf RL, et al. Detection of mesial temporal lobe hypoperfusion in patients with temporal lobe epilepsy by use of arterial spin labeled perfusion MR imaging. AJNR. Am. J. Neuroradiol. 2001;22:1334–1341. PubMed PMC
Eryurt B, et al. Presurgical evaluation of mesial temporal lobe epilepsy with multiple advanced MR techniques at 3T. J. Neuroradiol. 2015;42:283–290. doi: 10.1016/j.neurad.2015.04.002. PubMed DOI
Oner AY, et al. pASL versus DSC perfusion MRI in lateralizing temporal lobe epilepsy. Acta radiol. 2015;56:477–481. doi: 10.1177/0284185114531128. PubMed DOI
Gaxiola-Valdez I, et al. Seizure onset zone localization using postictal hypoperfusion detected by arterial spin labelling MRI. Brain. 2017;140:2895–2911. doi: 10.1093/brain/awx241. PubMed DOI PMC
commission on diagnostic strategies recommendations for functional neuroimaging of persons with epilepsy. Epilepsia41, 1350–1356 (2000). PubMed
Tzourio-Mazoyer N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–289. doi: 10.1006/nimg.2001.0978. PubMed DOI
Wieser HG, et al. ILAE Commission Report. Proposal for a new classification of outcome with respect to epileptic seizures following epilepsy surgery. Epilepsia. 2001;42:282–286. doi: 10.1046/j.1528-1157.2001.4220282.x. PubMed DOI
Blümcke I, et al. The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission1. Epilepsia. 2011;52:158–174. doi: 10.1111/j.1528-1167.2010.02777.x. PubMed DOI PMC
Blümcke I, et al. International consensus classification of hippocampal sclerosis in temporal lobe epilepsy: a task force report from the ILAE Commission on Diagnostic Methods. Epilepsia. 2013;54:1315–1329. doi: 10.1111/epi.12220. PubMed DOI
Li X, et al. Theoretical and experimental evaluation of multi-band EPI for high-resolution whole brain pCASL Imaging. Neuroimage. 2015;106:170–181. doi: 10.1016/j.neuroimage.2014.10.029. PubMed DOI PMC
Shirzadi Z, et al. Enhancement of automated blood flow estimates (ENABLE) from arterial spin-labeled MRI. J. Magn. Reson. Imaging. 2018;47:647–655. doi: 10.1002/jmri.25807. PubMed DOI
Asllani I, Borogovac A, Brown TR. Regression algorithm correcting for partial volume effects in arterial spin labeling MRI. Magn. Reson. Med. 2008;60:1362–1371. doi: 10.1002/mrm.21670. PubMed DOI
Kim BS, et al. Capability of arterial spin labeling MR imaging in localizing seizure focus in clinical seizure activity. Eur. J. Radiol. 2016;85:1295–1303. doi: 10.1016/j.ejrad.2016.04.015. PubMed DOI