Detecting T cell receptors involved in immune responses from single repertoire snapshots
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31194732
PubMed Central
PMC6592544
DOI
10.1371/journal.pbio.3000314
PII: PBIOLOGY-D-19-00627
Knihovny.cz E-zdroje
- MeSH
- adaptivní imunita genetika MeSH
- antigeny virové MeSH
- antigeny MeSH
- hypervariabilní oblasti genetika fyziologie MeSH
- imunoterapie MeSH
- lidé MeSH
- receptory antigenů T-buněk imunologie metabolismus fyziologie MeSH
- sekvenční analýza DNA metody MeSH
- shluková analýza MeSH
- vysoce účinné nukleotidové sekvenování metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny virové MeSH
- antigeny MeSH
- hypervariabilní oblasti MeSH
- receptory antigenů T-buněk MeSH
Hypervariable T cell receptors (TCRs) play a key role in adaptive immunity, recognizing a vast diversity of pathogen-derived antigens. Our ability to extract clinically relevant information from large high-throughput sequencing of TCR repertoires (RepSeq) data is limited, because little is known about TCR-disease associations. We present Antigen-specific Lymphocyte Identification by Clustering of Expanded sequences (ALICE), a statistical approach that identifies TCR sequences actively involved in current immune responses from a single RepSeq sample and apply it to repertoires of patients with a variety of disorders - patients with autoimmune disease (ankylosing spondylitis [AS]), under cancer immunotherapy, or subject to an acute infection (live yellow fever [YF] vaccine). We validate the method with independent assays. ALICE requires no longitudinal data collection nor large cohorts, and it is directly applicable to most RepSeq datasets. Its results facilitate the identification of TCR variants associated with diseases and conditions, which can be used for diagnostics and rational vaccine design.
Center of Life Sciences Skoltech Moscow Russia
Masaryk University Central European Institute of Technology Brno Czech Republic
Moscow State University Moscow Russia
Pirogov Russian National Research Medical University Moscow Russia
Privolzhsky Research Medical University Nizhny Novgorod Russia
Shemyakin Ovchinnikov Institute of Bioorganic Chemistry Moscow Russia
Zobrazit více v PubMed
Davis MM, Altman JD, Newell EW. Interrogating the repertoire: broadening the scope of peptide–MHC multimer analysis. Nature Reviews Immunology. 2011;11(8):551–558. 10.1038/nri3020 PubMed DOI PMC
Glanville J, Huang H, Nau A, Hatton O, Wagar LE, Rubelt F, et al. Identifying specificity groups in the T cell receptor repertoire. Nature. 2017;547(7661):94–98. 10.1038/nature22976 PubMed DOI PMC
Dash P, Fiore-Gartland AJ, Hertz T, Wang GC, Sharma S, Souquette A, et al. Quantifiable predictive features define epitope-specific T cell receptor repertoires. Nature. 2017;547(7661):89–93. 10.1038/nature22383 PubMed DOI PMC
Shugay M, Bagaev DV, Zvyagin IV, Vroomans RM, Crawford JC, Dolton G, et al. VDJdb: a curated database of T-cell receptor sequences with known antigen specificity. Nucleic Acids Research. 2017;46(September 2017):419–427. 10.1093/nar/gkx760 PubMed DOI PMC
Emerson RO, DeWitt WS, Vignali M, Gravley J, Hu JK, Osborne EJ, et al. Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire. Nature Genetics. 2017;49(5):659–665. 10.1038/ng.3822 PubMed DOI
Pogorelyy MV, Minervina AA, Chudakov DM, Mamedov IZ, Lebedev YB, Mora T, et al. Method for identification of condition-associated public antigen receptor sequences. eLife. 2018;7:1–12. 10.7554/eLife.33050 PubMed DOI PMC
Faham M, Carlton V, Moorhead M, Zheng J, Klinger M, Pepin F, et al. Discovery of T cell receptor β motifs specific to HLA-B27-positive ankylosing spondylitis by deep repertoire sequence analysis. Arthritis & Rheumatology. 2017;69(4):774–784. 10.1002/art.40028 PubMed DOI
Komech EA, Pogorelyy MV, Egorov ES, Britanova OV, Rebrikov DV, Bochkova AG, et al. CD8+ T cells with characteristic T cell receptor beta motif are detected in blood and expanded in synovial fluid of ankylosing spondylitis patients. Rheumatology. 2018;36(8):878–883. 10.1093/rheumatology/kex517 PubMed DOI
DeWitt WS, Smith A, Schoch G, Hansen JA, Matsen FA, Bradley PH. Human T cell receptor occurrence patterns encode immune history, genetic background, and receptor specificity. bioRxiv/313106. 2018; 10.1101/313106 PubMed DOI PMC
Pogorelyy MV, Minervina AA, Touzel MP, Sycheva AL, Komech EA, Kovalenko EI, et al. Precise tracking of vaccine-responding T cell clones reveals convergent and personalized response in identical twins. Proceedings of the National Academy of Sciences. 2018; 10.1073/pnas.1809642115 PubMed DOI PMC
Venturi V, Kedzierska K, Price DA, Doherty PC, Douek DC, Turner SJ, et al. Sharing of T cell receptors in antigen-specific responses is driven by convergent recombination. Proc Natl Acad Sci. 2006;103(49):18691–6. 10.1073/pnas.0608907103 PubMed DOI PMC
Qi Q, Cavanagh MM, Le Saux S, NamKoong H, Kim C, Turgano E, et al. Diversification of the antigen-specific T cell receptor repertoire after varicella zoster vaccination. Science Translational Medicine. 2016;8(332):332ra46–332ra46. 10.1126/scitranslmed.aaf1725 PubMed DOI PMC
Venturi V, Quigley MF, Greenaway HY, Ng PC, Ende ZS, McIntosh T, et al. A mechanism for TCR sharing between T cell subsets and individuals revealed by pyrosequencing. J Immunol. 2011;186(7):4285–4294. 10.4049/jimmunol.1003898 PubMed DOI
Elhanati Y, Sethna Z, Callan CG, Mora T, Walczak AM. Predicting the spectrum of TCR repertoire sharing with a data-driven model of recombination. Immunological reviews. 2018;284(1):167–179. 10.1111/imr.12665 PubMed DOI PMC
Madi A, Poran A, Shifrut E, Reich-Zeliger S, Greenstein E, Zaretsky I, et al. T cell receptor repertoires of mice and humans are clustered in similarity networks around conserved public CDR3 sequences. eLife. 2017;6 10.7554/eLife.22057 PubMed DOI PMC
Thome JJC, Grinshpun B, Kumar BV, Kubota M, Lerner H, Sempowski GD, et al. Longterm maintenance of human naive T cells through in situ homeostasis in lymphoid tissue sites. Sci Immunol. 2016;1(6):1–23. PubMed PMC
Emerson RO, Mathew JM, Konieczna IM, Robins HS, Leventhal JR. Defining the alloreactive T cell repertoire using high-throughput sequencing of mixed lymphocyte reaction culture. PLoS ONE. 2014;9(11):1–7. 10.1371/journal.pone.0111943 PubMed DOI PMC
Murugan A, Mora T, Walczak AM, Callan CG. Statistical inference of the generation probability of T-cell receptors from sequence repertoires. Proceedings of the National Academy of Sciences of the United States of America. 2012;109(40):16161–6. 10.1073/pnas.1212755109 PubMed DOI PMC
Marcou Q, Mora T, Walczak AM. High-throughput immune repertoire analysis with IGoR. Nat Commun. 2018;9(1):561 10.1038/s41467-018-02832-w PubMed DOI PMC
Robert L, Tsoi J, Wang X, Emerson R, Homet B, Chodon T, et al. CTLA4 blockade broadens the peripheral T-cell receptor repertoire. Clinical Cancer Research. 2014;20(9):2424–2432. 10.1158/1078-0432.CCR-13-2648 PubMed DOI PMC
Subudhi SK, Aparicio A, Gao J, Zurita AJ, Araujo JC, Logothetis CJ, et al. Clonal expansion of CD8 T cells in the systemic circulation precedes development of ipilimumab-induced toxicities. Proceedings of the National Academy of Sciences. 2016;113(42):11919–11924. 10.1073/pnas.1611421113 PubMed DOI PMC
Dulphy N, Peyrat MA, Tieng V, Douay C, Rabian C, Tamouza R, et al. Common intra-articular T cell expansions in patients with reactive arthritis: identical beta-chain junctional sequences and cytotoxicity toward HLA-B27. Journal of immunology (Baltimore, MD: 1950). 1999;162(7):3830–9. PubMed
May E, Dulphy N, Frauendorf E, Duchmann R, Bowness P, Lopez de Castro JA, et al. Conserved TCR beta chain usage in reactive arthritis; evidence for selection by a putative HLA-B27-associated autoantigen. Tissue antigens. 2002;60(4):299–308. 10.1034/j.1399-0039.2002.600404.x PubMed DOI
Elhanati Y, Murugan A, Callan CG, Mora T, Walczak AM, Callan CG Jr, et al. Quantifying selection in immune receptor repertoires. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(27):9875–80. 10.1073/pnas.1409572111 PubMed DOI PMC
Sethna Z, Elhanati Y, Callan CG, Mora T, Walczak AM. OLGA: fast computation of generation probabilities of B- and T-cell receptor amino acid sequences and motifs. Bioinformatics, 2019, btz035, 10.1093/bioinformatics/btz035 PubMed DOI PMC
Grigaityte K, Carter JA, Goldfless SJ, Jeffery EW, Hause RJ, Jiang Y, et al. Single-Cell Sequencing Reveals Aβ Chain Pairing Shapes the T Cell Repertoire. bioRxiv. 2017; p. 213462. 10.1101/213462 DOI
Dupic T, Marcou Q, Walczak AM, Mora T. Genesis of the αβ T-cell receptor. PLoS Comput Biol. 2019;15(3):e1006874 10.1371/journal.pcbi.1006874 PubMed DOI PMC
Britanova OV, Shugay M, Merzlyak EM, Staroverov DB, Putintseva EV, Turchaninova MA, et al. Dynamics of Individual T Cell Repertoires: From Cord Blood to Centenarians. The Journal of Immunology. 2016;196(12):5005–13. 10.4049/jimmunol.1600005 PubMed DOI
Shugay M, Bagaev DV, Turchaninova MA, Bolotin DA, Britanova OV, Putintseva EV, et al. VDJtools: Unifying Post-analysis of T Cell Receptor Repertoires. PLoS Comput Biol. 2015;11(11):e1004503 10.1371/journal.pcbi.1004503 PubMed DOI PMC
Aberrant adaptive immune response underlies genetic susceptibility to tuberculosis
Targeted depletion of TRBV9+ T cells as immunotherapy in a patient with ankylosing spondylitis