Measuring Intratumoral Heterogeneity of Immune Repertoires
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32457825
PubMed Central
PMC7227437
DOI
10.3389/fonc.2020.00512
Knihovny.cz E-zdroje
- Klíčová slova
- TCR repertoire, clonal expansions, immunoglobulin repertoire, tumour clonality, tumour heterogeneity,
- Publikační typ
- časopisecké články MeSH
There is considerable clinical and fundamental value in measuring the clonal heterogeneity of T and B cell expansions in tumors and tumor-associated lymphoid structures-along with the associated heterogeneity of the tumor neoantigen landscape-but such analyses remain challenging to perform. Here, we propose a straightforward approach to analyze the heterogeneity of immune repertoires between different tissue sections in a quantitative and controlled way, based on a beta-binomial noise model trained on control replicates obtained at the level of single-cell suspensions. This approach allows to identify local clonal expansions with high accuracy. We reveal in situ proliferation of clonal T cells in a mouse model of melanoma, and analyze heterogeneity of immunoglobulin repertoires between sections of a metastatically-infiltrated lymph node in human melanoma and primary human colon tumor. On the latter example, we demonstrate the importance of training the noise model on datasets with depth and content that is comparable to the samples being studied. Altogether, we describe here the crucial basic instrumentarium needed to facilitate proper experimental setup planning in the rapidly evolving field of intratumoral immune repertoires, from the wet lab to bioinformatics analysis.
Adaptive Immunity Group Central European Institute of Technology Masaryk University Brno Czechia
Department of Molecular Biology Moscow State University Moscow Russia
MiLaboratory LLC Skolkovo Innovation Centre Moscow Russia
Oncodermatology Department N N Blokhin Russian Cancer Research Center Moscow Russia
Volga District Medical Centre Under Federal Medical and Biological Agency Nizhny Novgorod Russia
Zobrazit více v PubMed
Schrama D, Ritter C, Becker JC. T cell receptor repertoire usage in cancer as a surrogate marker for immune responses. Semin Immunopathol. (2017) 39:255–68. 10.1007/s00281-016-0614-9 PubMed DOI
Bradley P, Thomas PG. Using T cell receptor repertoires to understand the principles of adaptive immune recognition. Annu Rev Immunol. (2019) 37:547–70. 10.1146/annurev-immunol-042718-041757 PubMed DOI
Jiang N, Schonnesen AA, Ma KY. Ushering in integrated T cell repertoire profiling in cancer. Trends Cancer. (2019) 5:85–94. 10.1016/j.trecan.2018.11.005 PubMed DOI PMC
Mose LE, Selitsky SR, Bixby LM, Marron DL, Iglesia MD, Serody JS, et al. . Assembly-based inference of B-cell receptor repertoires from short read RNA sequencing data with V'DJer. Bioinformatics. (2016) 32:3729–34. 10.1093/bioinformatics/btw526 PubMed DOI PMC
Bolotin DA, Poslavsky S, Davydov AN, Frenkel FE, Fanchi L, Zolotareva OI, et al. . Antigen receptor repertoire profiling from RNA-seq data. Nat Biotechnol. (2017) 35:908–11. 10.1038/nbt.3979 PubMed DOI PMC
Reuben A, Gittelman R, Gao J, Zhang J, Yusko EC, Wu CJ, et al. . TCR repertoire intratumor heterogeneity in localized lung adenocarcinomas: an association with predicted neoantigen heterogeneity and postsurgical recurrence. Cancer Discov. (2017) 7:1088–97. 10.1158/2159-8290.CD-17-0256 PubMed DOI PMC
Hu X, Zhang J, Wang J, Fu J, Li T, Zheng X, et al. . Landscape of B cell immunity and related immune evasion in human cancers. Nat Genet. (2019) 51:560–7. 10.1038/s41588-018-0339-x PubMed DOI PMC
Isaeva OI, Sharonov GV, Serebrovskaya EO, Turchaninova MA, Zaretsky AR, Shugay M, et al. . Intratumoral immunoglobulin isotypes predict survival in lung adenocarcinoma subtypes. J Immuno Ther Cancer. (2019) 7:279. 10.1186/s40425-019-0747-1 PubMed DOI PMC
Cha E, Klinger M, Hou Y, Cummings C, Ribas A, Faham M, et al. . Improved survival with T cell clonotype stability after anti-CTLA-4 treatment in cancer patients. Sci Transl Med. (2014) 6:238ra270. 10.1126/scitranslmed.3008211 PubMed DOI PMC
Tumeh PC, Harview CL, Yearley JH, Shintaku IP, Taylor EJ, Robert L, et al. . PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. (2014) 515:568–71. 10.1038/nature13954 PubMed DOI PMC
Defalco J, Harbell M, Manning-Bog A, Baia G, Scholz A, Millare B, et al. . Non-progressing cancer patients have persistent B cell responses expressing shared antibody paratopes that target public tumor antigens. Clin Immunol. (2018) 187:37–45. 10.1016/j.clim.2017.10.002 PubMed DOI
Hopkins AC, Yarchoan M, Durham JN, Yusko EC, Rytlewski JA, Robins HS, et al. . T cell receptor repertoire features associated with survival in immunotherapy-treated pancreatic ductal adenocarcinoma. JCI Insight. (2018) 3:122092. 10.1172/jci.insight.122092 PubMed DOI PMC
Selitsky SR, Mose LE, Smith CC, Chai S, Hoadley KA, Dittmer DP, et al. . Prognostic value of B cells in cutaneous melanoma. Genome Med. (2019) 11:36. 10.1186/s13073-019-0647-5 PubMed DOI PMC
Plitas G, Konopacki C, Wu K, Bos PD, Morrow M, Putintseva EV, et al. . Regulatory T cells exhibit distinct features in human breast cancer. Immunity. (2016) 45:1122–34. 10.1016/j.immuni.2016.10.032 PubMed DOI PMC
Zhang L, Yu X, Zheng L, Zhang Y, Li Y, Fang Q, et al. . Lineage tracking reveals dynamic relationships of T cells in colorectal cancer. Nature. (2018) 564:268–72. 10.1038/s41586-018-0694-x PubMed DOI
Ahmadzadeh M, Pasetto A, Jia L, Deniger DC, Stevanovic S, Robbins PF, et al. . Tumor-infiltrating human CD4(+) regulatory T cells display a distinct TCR repertoire and exhibit tumor and neoantigen reactivity. Sci Immunol. 4:eaao4310. 10.1126/sciimmunol.aao4310 PubMed DOI PMC
Yost KE, Satpathy AT, Wells DK, Qi Y, Wang C, Kageyama R, et al. . Clonal replacement of tumor-specific T cells following PD-1 blockade. Nat Med. (2019) 25:1251–9. 10.1038/s41591-019-0522-3 PubMed DOI PMC
Zhao J, Chen AX, Gartrell RD, Silverman AM, Aparicio L, Chu T, et al. . Immune and genomic correlates of response to anti-PD-1 immunotherapy in glioblastoma. Nat Med. (2019) 25:462–9. 10.1038/s41591-019-0349-y PubMed DOI PMC
Schalper KA, Rodriguez-Ruiz ME, Diez-Valle R, Lopez-Janeiro A, Porciuncula A, Idoate MA, et al. . Neoadjuvant nivolumab modifies the tumor immune microenvironment in resectable glioblastoma. Nat Med. (2019) 25:470–6. 10.1038/s41591-018-0339-5 PubMed DOI
Emerson RO, Sherwood AM, Rieder MJ, Guenthoer J, Williamson DW, Carlson CS, et al. . High-throughput sequencing of T-cell receptors reveals a homogeneous repertoire of tumour-infiltrating lymphocytes in ovarian cancer. J Pathol. (2013) 231:433–40. 10.1002/path.4260 PubMed DOI PMC
Andersen RS, Thrue CA, Junker N, Lyngaa R, Donia M, Ellebaek E, et al. . Dissection of T-cell antigen specificity in human melanoma. Cancer Res. (2012) 72:1642–50. 10.1158/0008-5472.CAN-11-2614 PubMed DOI
Kvistborg P, Shu CJ, Heemskerk B, Fankhauser M, Thrue CA, Toebes M, et al. . TIL therapy broadens the tumor-reactive CD8(+) T cell compartment in melanoma patients. Oncoimmunology. (2012) 1:409–18. 10.4161/onci.18851 PubMed DOI PMC
Joshi K, Robert De Massy M, Ismail M, Reading JL, Uddin I, Woolston A, et al. . Spatial heterogeneity of the T cell receptor repertoire reflects the mutational landscape in lung cancer. Nat Med. (2019) 25:1549–59. 10.1038/s41591-019-0592-2 PubMed DOI PMC
Rosenthal R, Cadieux EL, Salgado R, Bakir MA, Moore DA, Hiley CT, et al. . Neoantigen-directed immune escape in lung cancer evolution. Nature. (2019) 567:479–85. 10.1038/s41586-019-1032-7 PubMed DOI PMC
Chen Z, Zhang C, Pan Y, Xu R, Xu C, Chen Z, et al. . T cell receptor beta-chain repertoire analysis reveals intratumour heterogeneity of tumour-infiltrating lymphocytes in oesophageal squamous cell carcinoma. J Pathol. (2016) 239:450–8. 10.1002/path.4742 PubMed DOI
Zhang C, Huang H, Miao Y, Xiong H, Lu Z. Clonal distribution and intratumour heterogeneity of the B-cell repertoire in oesophageal squamous cell carcinoma. J Pathol. (2018) 246:323–30. 10.1002/path.5142 PubMed DOI
Angelova M, Mlecnik B, Vasaturo A, Bindea G, Fredriksen T, Lafontaine L, et al. . Evolution of metastases in space and time under immune selection. Cell. (2018) 175:751–65 e716. 10.1016/j.cell.2018.09.018 PubMed DOI
Zhang AW, Mcpherson A, Milne K, Kroeger DR, Hamilton PT, Miranda A, et al. . Interfaces of malignant and immunologic clonal dynamics in ovarian cancer. Cell. (2018) 173:1755–69 e1722. 10.1016/j.cell.2018.03.073 PubMed DOI
Kato T, Park JH, Kiyotani K, Ikeda Y, Miyoshi Y, Nakamura Y. Integrated analysis of somatic mutations and immune microenvironment of multiple regions in breast cancers. Oncotarget. (2017) 8:62029–38. 10.18632/oncotarget.18790 PubMed DOI PMC
Cui C, Tian X, Wu J, Zhang C, Tan Q, Guan X, et al. . T cell receptor beta-chain repertoire analysis of tumor-infiltrating lymphocytes in pancreatic cancer. Cancer Sci. (2019) 110:61–71. 10.1111/cas.13877 PubMed DOI PMC
Mcdaniel JR, Pero SC, Voss WN, Shukla GS, Sun Y, Schaetzle S, et al. . Identification of tumor-reactive B cells and systemic IgG in breast cancer based on clonal frequency in the sentinel lymph node. Cancer Immunol Immunother. (2018) 67:729–38. 10.1007/s00262-018-2123-2 PubMed DOI PMC
Rytlewski J, Deng S, Xie T, Davis C, Robins H, Yusko E, et al. . Model to improve specificity for identification of clinically-relevant expanded T cells in peripheral blood. PLoS ONE. (2019) 14:e0213684. 10.1371/journal.pone.0213684 PubMed DOI PMC
Lechner MG, Karimi SS, Barry-Holson K, Angell TE, Murphy KA, Church CH, et al. . Immunogenicity of murine solid tumor models as a defining feature of in vivo behavior and response to immunotherapy. J Immunother. (2013) 36:477–89. 10.1097/01.cji.0000436722.46675.4a PubMed DOI PMC
De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. (2017) 17:457–74. 10.1038/nrc.2017.51 PubMed DOI
Friedl P, Weigelin B. Interstitial leukocyte migration and immune function. Nat Immunol. (2008) 9:960–9. 10.1038/ni.f.212 PubMed DOI
Martinet L, Garrido I, Filleron T, Le Guellec S, Bellard E, Fournie JJ, et al. . Human solid tumors contain high endothelial venules: association with T- and B-lymphocyte infiltration and favorable prognosis in breast cancer. Cancer Res. (2011) 71:5678–87. 10.1158/0008-5472.CAN-11-0431 PubMed DOI
Low S, Sakai Y, Hoshino H, Hirokawa M, Kawashima H, Higuchi K, et al. . High endothelial venule-like vessels and lymphocyte recruitment in diffuse sclerosing variant of papillary thyroid carcinoma. Pathology. (2016) 48:666–74. 10.1016/j.pathol.2016.08.002 PubMed DOI
Sautes-Fridman C, Petitprez F, Calderaro J, Fridman WH. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat Rev Cancer. (2019) 19:307–25. 10.1038/s41568-019-0144-6 PubMed DOI
Izraelson M, Nakonechnaya TO, Moltedo B, Egorov ES, Kasatskaya SA, Putintseva EV, et al. . Comparative analysis of murine T-cell receptor repertoires. Immunology. (2018) 153:133–44. 10.1111/imm.12857 PubMed DOI PMC
Turchaninova MA, Davydov A, Britanova OV, Shugay M, Bikos V, Egorov ES, et al. . High-quality full-length immunoglobulin profiling with unique molecular barcoding. Nat Protoc. (2016) 11:1599–616. 10.1038/nprot.2016.093 PubMed DOI
Shugay M, Bolotin DA, Putintseva EV, Pogorelyy MV, Mamedov IZ, Chudakov DM. Huge Overlap of Individual TCR Beta Repertoires. Front Immunol. (2013) 4:466. 10.3389/fimmu.2013.00466 PubMed DOI PMC
Hinohara K, Polyak K. Intratumoral Heterogeneity: more Than Just Mutations. Trends Cell Biol. (2019) 29:569–79. 10.1016/j.tcb.2019.03.003 PubMed DOI PMC
Pogorelyy MV, Minervina AA, Shugay M, Chudakov DM, Lebedev YB, Mora T, et al. . Detecting T cell receptors involved in immune responses from single repertoire snapshots. PLoS Biol. (2019) 17:e3000314. 10.1371/journal.pbio.3000314 PubMed DOI PMC
Verdegaal EM, De Miranda NF, Visser M, Harryvan T, Van Buuren MM, Andersen RS, et al. . Neoantigen landscape dynamics during human melanoma-T cell interactions. Nature. (2016) 536:91–5. 10.1038/nature18945 PubMed DOI
Rye IH, Trinh A, Saetersdal AB, Nebdal D, Lingjaerde OC, Almendro V, et al. . Intratumor heterogeneity defines treatment-resistant HER2+ breast tumors. Mol Oncol. (2018) 12:1838–55. 10.1002/1878-0261.12375 PubMed DOI PMC
Wolf Y, Bartok O, Patkar S, Eli GB, Cohen S, Litchfield K, et al. . UVB-induced tumor heterogeneity diminishes immune response in melanoma. Cell. (2019) 179:219–35 e221. 10.1016/j.cell.2019.08.032 PubMed DOI PMC
Helmink BA, Reddy SM, Gao J, Zhang S, Basar R, Thakur R, et al. . B cells and tertiary lymphoid structures promote immunotherapy response. Nature. (2020) 577:549–55. PubMed PMC
Sharonov GV, Serebrovskaya EO, Yuzhakova DV, Britanova OV, Chudakov DM. B cells, plasma cells and antibody repertoires in the tumour microenvironment. Nat Rev Immunol. (2020). 10.1038/s41577-019-0257-x PubMed DOI
Feng Z, Jensen SM, Messenheimer DJ, Farhad M, Neuberger M, Bifulco CB, et al. . Multispectral Imaging of T and B cells in murine spleen and tumor. J Immunol. (2016) 196:3943–50. 10.4049/jimmunol.1502635 PubMed DOI PMC
Chalfoun J, Majurski M, Blattner T, Bhadriraju K, Keyrouz W, Bajcsy P, et al. . MIST: accurate and scalable microscopy image stitching tool with stage modeling and error minimization. Sci Rep. (2017) 7:4988. 10.1038/s41598-017-04567-y PubMed DOI PMC
Egorov ES, Merzlyak EM, Shelenkov AA, Britanova OV, Sharonov GV, Staroverov DB, et al. . Quantitative profiling of immune repertoires for minor lymphocyte counts using unique molecular identifiers. J Immunol. (2015) 194:6155–63. 10.4049/jimmunol.1500215 PubMed DOI
Bolotin DA, Poslavsky S, Mitrophanov I, Shugay M, Mamedov IZ, Putintseva EV, et al. . MiXCR: software for comprehensive adaptive immunity profiling. Nat Methods. (2015) 12:380–1. 10.1038/nmeth.3364 PubMed DOI
Bolotin DA, Poslavsky S, Davydov AN, Chudakov DM. Reply to “Evaluation of immune repertoire inference methods from RNA-seq data”. Nat Biotechnol. (2018) 36:1035–6. 10.1038/nbt.4296 PubMed DOI