Precise tracking of vaccine-responding T cell clones reveals convergent and personalized response in identical twins
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30459272
PubMed Central
PMC6294963
DOI
10.1073/pnas.1809642115
PII: 1809642115
Knihovny.cz E-zdroje
- Klíčová slova
- RepSeq, T cell receptor, high-throughput sequencing, twins, vaccination,
- MeSH
- antigeny virové imunologie MeSH
- dárci tkání MeSH
- dvojčata monozygotní MeSH
- imunizace metody MeSH
- lidé MeSH
- receptory antigenů T-buněk imunologie MeSH
- T-lymfocyty imunologie MeSH
- vakcína proti žluté zimnici imunologie MeSH
- vakcinace metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny virové MeSH
- receptory antigenů T-buněk MeSH
- vakcína proti žluté zimnici MeSH
T cell receptor (TCR) repertoire data contain information about infections that could be used in disease diagnostics and vaccine development, but extracting that information remains a major challenge. Here we developed a statistical framework to detect TCR clone proliferation and contraction from longitudinal repertoire data. We applied this framework to data from three pairs of identical twins immunized with the yellow fever vaccine. We identified 600 to 1,700 responding TCRs in each donor and validated them using three independent assays. While the responding TCRs were mostly private, albeit with higher overlap between twins, they could be well-predicted using a classifier based on sequence similarity. Our method can also be applied to samples obtained postinfection, making it suitable for systematic discovery of new infection-specific TCRs in the clinic.
Biological Faculty Moscow State University 119991 Moscow Russia
Center for Data Intensive Biomedicine and Biotechnology Skoltech 121205 Moscow Russia
Central European Institute of Technology Masaryk University 62500 Brno Czech Republic
Department of Virology Sechenov 1st Moscow State Medical University 119146 Moscow Russia
Zobrazit více v PubMed
Benichou J, Ben-Hamo R, Louzoun Y, Efroni S. Rep-seq: Uncovering the immunological repertoire through next-generation sequencing. Immunology. 2012;135:183–191. PubMed PMC
Dash P, et al. Quantifiable predictive features define epitope-specific T cell receptor repertoires. Nature. 2017;547:89–93. PubMed PMC
Glanville J, et al. Identifying specificity groups in the T cell receptor repertoire. Nature. 2017;547:94–98. PubMed PMC
Davis MM, Altman JD, Newell EW. Interrogating the repertoire: Broadening the scope of peptide–MHC multimer analysis. Nat Rev Immunol. 2011;11:551–558. PubMed PMC
Robinson J, et al. The IMGT/HLA database. Nucleic Acids Res. 2013;41:D1222–D1227. PubMed PMC
Monath TP, Vasconcelos PF. Yellow fever. J Clin Virol. 2015;64:160–173. PubMed
Miller JD, et al. Human effector and memory CD8+ T cell responses to smallpox and yellow fever vaccines. Immunity. 2008;28:710–722. PubMed
Akondy RS, et al. The yellow fever virus vaccine induces a broad and polyfunctional human memory CD8+ T cell response. J Immunol (Baltimore, Md.: 1950) 2009;183:7919–7930. PubMed PMC
Akondy RS, et al. Initial viral load determines the magnitude of the human CD8 T cell response to yellow fever vaccination. Proc Natl Acad Sci USA. 2015;112:3050–3055. PubMed PMC
Blom K, et al. Temporal dynamics of the primary human T cell response to yellow fever virus 17D as it matures from an effector- to a memory-type response. J Immunol. 2013;190:2150–2158. PubMed
Kohler S, et al. The early cellular signatures of protective immunity induced by live viral vaccination. Eur J Immunol. 2012;42:2363–2373. PubMed
Kongsgaard M, et al. Adaptive immune responses to booster vaccination against yellow fever virus are much reduced compared to those after primary vaccination. Sci. Rep. 2017;7:1–14. PubMed PMC
Fuertes Marraco SA, et al. Long-lasting stem cell-like memory CD8+ T cells with a naïve-like profile upon yellow fever vaccination. Sci Transl Med. 2015;7:282ra48. PubMed
DeWitt WS, et al. Dynamics of the cytotoxic T cell response to a model of acute viral infection. J Virol. 2015;89:4517–4526. PubMed PMC
Zvyagin IV, et al. Distinctive properties of identical twins’ TCR repertoires revealed by high-throughput sequencing. Proc Natl Acad Sci USA. 2014;111:5980–5985. PubMed PMC
Rubelt F, et al. Individual heritable differences result in unique cell lymphocyte receptor repertoires of naïve and antigen-experienced cells. Nat Commun. 2016;7:11112. PubMed PMC
Qi Q, et al. Diversification of the antigen-specific T cell receptor repertoire after varicella zoster vaccination. Sci Transl Med. 2016;8:332ra46. PubMed PMC
Pogorelyy MV, et al. Persisting fetal clonotypes influence the structure and overlap of adult human T cell receptor repertoires. PLoS Comput Biol. 2017;13:e1005572. PubMed PMC
Robinson MD, McCarthy DJ, Smyth GK. edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2009;26:139–140. PubMed PMC
Shugay M, et al. VDJdb: A curated database of T-cell receptor sequences with known antigen specificity. Nucleic Acids Res. 2017;46:419–427. PubMed PMC
Miles JJ, Douek DC, Da Price. Bias in the PubMed
De Boer RJ, Homann D, Perelson AS. Different dynamics of CD4+ and CD8+ T cell responses during and after acute lymphocytic choriomeningitis virus infection. J Immunol. 2003;171:3928–3935. PubMed
Buchholz VR, et al. Disparate individual fates compose robust CD8+ T cell immunity. Science. 2013;340:630–635. PubMed
Blom K, et al. Specificity and dynamics of effector and memory CD8 T cell responses in human tick-borne encephalitis virus infection. PLoS Pathog. 2015;11:e1004622. PubMed PMC
Lindgren T, et al. Longitudinal analysis of the human T cell response during acute hantavirus infection. J Virol. 2011;85:10252–10260. PubMed PMC
Rivino L. Understanding the human T cell response to dengue virus. In: Hilgenfeld R, Vasudevan SG, editors. Dengue and Zika: Control and Antiviral Treatment Strategies. Springer Singapore; Singapore: 2018. pp. 241–250. PubMed
James EA, et al. Yellow fever vaccination elicits broad functional CD4+ T cell responses that recognize structural and nonstructural proteins. J Virol. 2013;87:12794–12804. PubMed PMC
Murugan A, Mora T, Walczak AM, Callan CG. Statistical inference of the generation probability of T-cell receptors from sequence repertoires. Proc Natl Acad Sci USA. 2012;109:16161–16166. PubMed PMC
Emerson RO, et al. Immunosequencing identifies signatures of cytomegalovirus exposure history and HLA-mediated effects on the T cell repertoire. Nat Genet. 2017;49:659–665. PubMed
Pogorelyy MV, et al. Method for identification of condition-associated public antigen receptor sequences. eLife. 2018;7:e33050. PubMed PMC
Shugay M, et al. Towards error-free profiling of immune repertoires. Nat Methods. 2014;11:653–655. PubMed
Bolotin DA, et al. MiXCR: Software for comprehensive adaptive immunity profiling. Nat Methods. 2015;12:380–381. PubMed
Mora T, Walczak A. Quantifying lymphocyte receptor diversity. In: Das JD, Jayaprakash C, editors. System Immunology. CRC Press; Boca Raton, FL: 2018. pp. 185–199.
Benchmarking of T cell receptor repertoire profiling methods reveals large systematic biases
Detecting T cell receptors involved in immune responses from single repertoire snapshots