Molecular Epidemiology of Methicillin-Susceptible and Methicillin-Resistant Staphylococcus aureus in Wild, Captive and Laboratory Rats: Effect of Habitat on the Nasal S. aureus Population
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
ESF/14-BMA55-0037/16
European Social Fund - International
FKZ 03ZZ0806B
Bundesministerium für Bildung und Forschung - International
01KI1727A
Bundesministerium für Bildung und Forschung - International
TTU "emerging infections"
Deutsches Zentrum für Infektionsforschung - International
PubMed
31991690
PubMed Central
PMC7076793
DOI
10.3390/toxins12020080
PII: toxins12020080
Knihovny.cz E-zdroje
- Klíčová slova
- Staphylococcus aureus, clonal complex, coagulation, epidemiology, habitat, host adaptation, immune evasion cluster, laboratory, livestock, rat,
- MeSH
- antibakteriální látky farmakologie MeSH
- divoká zvířata mikrobiologie MeSH
- ekosystém MeSH
- faktory virulence genetika MeSH
- hemokoagulace MeSH
- methicilin farmakologie MeSH
- molekulární epidemiologie MeSH
- nos mikrobiologie MeSH
- potkani Sprague-Dawley MeSH
- stafylokokové infekce epidemiologie veterinární MeSH
- Staphylococcus aureus účinky léků genetika izolace a purifikace MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Německo MeSH
- Názvy látek
- antibakteriální látky MeSH
- faktory virulence MeSH
- methicilin MeSH
Rats are a reservoir of human- and livestock-associated methicillin-resistant Staphylococcus aureus (MRSA). However, the composition of the natural S. aureus population in wild and laboratory rats is largely unknown. Here, 144 nasal S. aureus isolates from free-living wild rats, captive wild rats and laboratory rats were genotyped and profiled for antibiotic resistances and human-specific virulence genes. The nasal S. aureus carriage rate was higher among wild rats (23.4%) than laboratory rats (12.3%). Free-living wild rats were primarily colonized with isolates of clonal complex (CC) 49 and CC130 and maintained these strains even in husbandry. Moreover, upon livestock contact, CC398 isolates were acquired. In contrast, laboratory rats were colonized with many different S.aureus lineages-many of which are commonly found in humans. Five captive wild rats were colonized with CC398-MRSA. Moreover, a single CC30-MRSA and two CC130-MRSA were detected in free-living or captive wild rats. Rat-derived S. aureus isolates rarely harbored the phage-carried immune evasion gene cluster or superantigen genes, suggesting long-term adaptation to their host. Taken together, our study revealed a natural S. aureus population in wild rats, as well as a colonization pressure on wild and laboratory rats by exposure to livestock- and human-associated S.aureus, respectively.
Department of Immunology University Medicine Greifswald 17475 Greifswald Germany
German Cancer Research Center Microbiological Diagnostics 69120 Heidelberg Germany
Institute for Medical Microbiology and Hygiene Technical University of Dresden 01307 Dresden Germany
Institute of Medical Microbiology University Hospital Münster 48149 Münster Germany
Leibniz Institute of Photonic Technology 07745 Jena Germany
Outpatient Clinic University of Potsdam 14469 Potsdam Germany
Research and Professional Services Charles River Laboratories Wilmington MA 01887 USA
von Opel Hessische Zoostiftung 61476 Kronberg im Taunus Germany
Zobrazit více v PubMed
Wertheim H.F.L., Melles D.C., Vos M.C., van Leeuwen W., van Belkum A., Verbrugh H.A., Nouwen J.L. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 2005;5:751–762. doi: 10.1016/S1473-3099(05)70295-4. PubMed DOI
Kaspar U., Kriegeskorte A., Schubert T., Peters G., Rudack C., Pieper D.H., Wos-Oxley M., Becker K. The culturome of the human nose habitats reveals individual bacterial fingerprint patterns. Environ. Microbiol. 2016;18:2130–2142. doi: 10.1111/1462-2920.12891. PubMed DOI
Becker K., Schaumburg F., Fegeler C., Friedrich A.W., Köck R. Staphylococcus aureus from the German general population is highly diverse. Int. J. Med. Microbiol. 2017;307:21–27. doi: 10.1016/j.ijmm.2016.11.007. PubMed DOI
Tong S.Y.C., Davis J.S., Eichenberger E., Holland T.L., Fowler V.G. Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin. Microbiol. Rev. 2015;28:603–661. doi: 10.1128/CMR.00134-14. PubMed DOI PMC
Aslam B., Wang W., Arshad M.I., Khurshid M., Muzammil S., Rasool M.H., Nisar M.A., Alvi R.F., Aslam M.A., Qamar M.U., et al. Antibiotic resistance: A rundown of a global crisis. Infect. Drug Resist. 2018;11:1645–1658. doi: 10.2147/IDR.S173867. PubMed DOI PMC
Martens E., Demain A.L. The antibiotic resistance crisis, with a focus on the United States. J. Antibiot. 2017;70:520–526. doi: 10.1038/ja.2017.30. PubMed DOI
McGuinness W.A., Malachowa N., DeLeo F.R. Vancomycin Resistance in Staphylococcus aureus. Yale J. Biol. Med. 2017;90:269–281. PubMed PMC
Redi D., Raffaelli C.S., Rossetti B., de Luca A., Montagnani F. Staphylococcus aureus vaccine preclinical and clinical development: Current state of the art. New Microbiol. 2018;41:208–213. PubMed
Harrison E.M., Weinert L.A., Holden M.T.G., Welch J.J., Wilson K., Morgan F.J.E., Harris S.R., Loeffler A., Boag A.K., Peacock S.J., et al. A shared population of epidemic methicillin-resistant Staphylococcus aureus 15 circulates in humans and companion animals. mBio. 2014;5:e00985-13. doi: 10.1128/mBio.00985-13. PubMed DOI PMC
Monecke S., Gavier-Widén D., Hotzel H., Peters M., Guenther S., Lazaris A., Loncaric I., Müller E., Reissig A., Ruppelt-Lorz A., et al. Diversity of Staphylococcus aureus Isolates in European Wildlife. PLoS ONE. 2016;11:e0168433. doi: 10.1371/journal.pone.0168433. PubMed DOI PMC
Mrochen D.M., Schulz D., Fischer S., Jeske K., El Gohary H., Reil D., Imholt C., Trübe P., Suchomel J., Tricaud E., et al. Wild rodents and shrews are natural hosts of Staphylococcus aureus. Int. J. Med. Microbiol. 2018;308:590–597. doi: 10.1016/j.ijmm.2017.09.014. PubMed DOI
Van Alen S., Ballhausen B., Peters G., Friedrich A.W., Mellmann A., Köck R., Becker K. In the centre of an epidemic: Fifteen years of LA-MRSA CC398 at the University Hospital Münster. Vet. Microbiol. 2017;200:19–24. doi: 10.1016/j.vetmic.2016.01.021. PubMed DOI
Köck R., Schaumburg F., Mellmann A., Köksal M., Jurke A., Becker K., Friedrich A.W. Livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) as causes of human infection and colonization in Germany. PLoS ONE. 2013;8:e55040. doi: 10.1371/journal.pone.0055040. PubMed DOI PMC
Pantosti A. Methicillin-Resistant Staphylococcus aureus Associated with Animals and Its Relevance to Human Health. Front. Microbiol. 2012;3:127. doi: 10.3389/fmicb.2012.00127. PubMed DOI PMC
Graveland H., Duim B., van Duijkeren E., Heederik D., Wagenaar J.A. Livestock-associated methicillin-resistant Staphylococcus aureus in animals and humans. Int. J. Med. Microbiol. 2011;301:630–634. doi: 10.1016/j.ijmm.2011.09.004. PubMed DOI
Rothenburger J.L., Himsworth C.G., La Perle K.M.D., Leighton F.A., Nemeth N.M., Treuting P.M., Jardine C.M. Pathology of wild Norway rats in Vancouver, Canada. J. Vet. Diagn. Investig. 2019;31:184–199. doi: 10.1177/1040638719833436. PubMed DOI PMC
Rothenburger J.L., Himsworth C.G., Nemeth N.M., Pearl D.L., Jardine C.M. Environmental Factors Associated with the Carriage of Bacterial Pathogens in Norway Rats. Ecohealth. 2018;15:82–95. doi: 10.1007/s10393-018-1313-x. PubMed DOI
Rothenburger J.L., Rousseau J.D., Weese J.S., Jardine C.M. Livestock-associated methicillin-resistant Staphylococcus aureus and Clostridium difficile in wild Norway rats (Rattus norvegicus) from Ontario swine farms. Can. J. Vet. Res. 2018;82:66–69. PubMed PMC
Himsworth C.G., Miller R.R., Montoya V., Hoang L., Romney M.G., Al-Rawahi G.N., Kerr T., Jardine C.M., Patrick D.M., Tang P., et al. Carriage of methicillin-resistant Staphylococcus aureus by wild urban Norway rats (Rattus norvegicus) PLoS ONE. 2014;9:e87983. doi: 10.1371/journal.pone.0087983. PubMed DOI PMC
Lee M.J., Byers K.A., Donovan C.M., Zabek E., Stephen C., Patrick D.M., Himsworth C.G. Methicillin-resistant Staphylococcus aureus in urban Norway rat (Rattus norvegicus) populations: Epidemiology and the impacts of kill-trapping. Zoonoses Public Health. 2019;66:343–348. doi: 10.1111/zph.12546. PubMed DOI
Van de Giessen A.W., van Santen-Verheuvel M.G., Hengeveld P.D., Bosch T., Broens E.M., Reusken C.B.E.M. Occurrence of methicillin-resistant Staphylococcus aureus in rats living on pig farms. Prev. Vet. Med. 2009;91:270–273. doi: 10.1016/j.prevetmed.2009.05.016. PubMed DOI
Bramble M., Morris D., Tolomeo P., Lautenbach E. Potential role of pet animals in household transmission of methicillin-resistant Staphylococcus aureus: A narrative review. Vector Borne Zoonotic Dis. 2011;11:617–620. doi: 10.1089/vbz.2010.0025. PubMed DOI PMC
De Aires Sousa M. Methicillin-resistant Staphylococcus aureus among animals: Current overview. Clin. Microbiol. Infect. 2017;23:373–380. doi: 10.1016/j.cmi.2016.11.002. PubMed DOI
Sakwinska O., Giddey M., Moreillon M., Morisset D., Waldvogel A., Moreillon P. Staphylococcus aureus host range and human-bovine host shift. Appl. Environ. Microbiol. 2011;77:5908–5915. doi: 10.1128/AEM.00238-11. PubMed DOI PMC
Peton V., Le Loir Y. Staphylococcus aureus in veterinary medicine. Infect. Genet. Evol. 2014;21:602–615. doi: 10.1016/j.meegid.2013.08.011. PubMed DOI
Destoumieux-Garzón D., Mavingui P., Boetsch G., Boissier J., Darriet F., Duboz P., Fritsch C., Giraudoux P., Le Roux F., Morand S., et al. The One Health Concept: 10 Years Old and a Long Road Ahead. Front. Vet. Sci. 2018;5:14. doi: 10.3389/fvets.2018.00014. PubMed DOI PMC
Lindsay J.A., Holden M.T.G. Staphylococcus aureus: Superbug, super genome? Trends Microbiol. 2004;12:378–385. doi: 10.1016/j.tim.2004.06.004. PubMed DOI
Lindsay J.A., Moore C.E., Day N.P., Peacock S.J., Witney A.A., Stabler R.A., Husain S.E., Butcher P.D., Hinds J. Microarrays Reveal that Each of the Ten Dominant Lineages of Staphylococcus aureus Has a Unique Combination of Surface-Associated and Regulatory Genes. J. Bacteriol. 2006;188:669–676. doi: 10.1128/JB.188.2.669-676.2006. PubMed DOI PMC
Xia G., Wolz C. Phages of Staphylococcus aureus and their impact on host evolution. Infect. Genet. Evol. 2014;21:593–601. doi: 10.1016/j.meegid.2013.04.022. PubMed DOI
Richardson E.J., Bacigalupe R., Harrison E.M., Weinert L.A., Lycett S., Vrieling M., Robb K., Hoskisson P.A., Holden M.T.G., Feil E.J., et al. Gene exchange drives the ecological success of a multi-host bacterial pathogen. Nat. Ecol. Evol. 2018;2:1468–1478. doi: 10.1038/s41559-018-0617-0. PubMed DOI PMC
Viana D., Blanco J., Tormo-Más M.Á., Selva L., Guinane C.M., Baselga R., Corpa J.M., Lasa Í., Novick R.P., Fitzgerald J.R., et al. Adaptation of Staphylococcus aureus to ruminant and equine hosts involves SaPI-carried variants of von Willebrand factor-binding protein. Mol. Microbiol. 2010;77:1583–1594. doi: 10.1111/j.1365-2958.2010.07312.x. PubMed DOI
Cuny C., Abdelbary M., Layer F., Werner G., Witte W. Prevalence of the immune evasion gene cluster in Staphylococcus aureus CC398. Vet. Microbiol. 2015;177:219–223. doi: 10.1016/j.vetmic.2015.02.031. PubMed DOI
Viana D., Comos M., McAdam P.R., Ward M.J., Selva L., Guinane C.M., González-Muñoz B.M., Tristan A., Foster S.J., Fitzgerald J.R., et al. A single natural nucleotide mutation alters bacterial pathogen host tropism. Nat. Genet. 2015;47:361–366. doi: 10.1038/ng.3219. PubMed DOI PMC
Mrochen D.M., Grumann D., Schulz D., Gumz J., Trübe P., Pritchett-Corning K., Johnson S., Nicklas W., Kirsch P., Martelet K., et al. Global spread of mouse-adapted Staphylococcus aureus lineages CC1, CC15, and CC88 among mouse breeding facilities. Int. J. Med. Microbiol. 2018;308:598–606. doi: 10.1016/j.ijmm.2017.11.006. PubMed DOI
Lowder B.V., Guinane C.M., Ben Zakour N.L., Weinert L.A., Conway-Morris A., Cartwright R.A., Simpson A.J., Rambaut A., Nübel U., Fitzgerald J.R. Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus. Proc. Natl. Acad. Sci. USA. 2009;106:19545–19550. doi: 10.1073/pnas.0909285106. PubMed DOI PMC
Moodley A., Espinosa-Gongora C., Nielsen S.S., McCarthy A.J., Lindsay J.A., Guardabassi L. Comparative host specificity of human- and pig- associated Staphylococcus aureus clonal lineages. PLoS ONE. 2012;7:e49344. doi: 10.1371/journal.pone.0049344. PubMed DOI PMC
Walther B., Monecke S., Ruscher C., Friedrich A.W., Ehricht R., Slickers P., Soba A., Wleklinski C.-G., Wieler L.H., Lübke-Becker A. Comparative molecular analysis substantiates zoonotic potential of equine methicillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 2009;47:704–710. doi: 10.1128/JCM.01626-08. PubMed DOI PMC
Vincze S., Stamm I., Monecke S., Kopp P.A., Semmler T., Wieler L.H., Lübke-Becker A., Walther B. Molecular analysis of human and canine Staphylococcus aureus strains reveals distinct extended-host-spectrum genotypes independent of their methicillin resistance. Appl. Environ. Microbiol. 2013;79:655–662. doi: 10.1128/AEM.02704-12. PubMed DOI PMC
Astrup L.B., Skovgaard K., Rasmussen R.S., Iburg T.M., Agerholm J.S., Aalbæk B., Jensen H.E., Nielsen O.L., Johansen F.F., Heegaard P.M.H., et al. Staphylococcus aureus infected embolic stroke upregulates Orm1 and Cxcl2 in a rat model of septic stroke pathology. Neurol. Res. 2019;41:399–412. doi: 10.1080/01616412.2019.1573455. PubMed DOI
Hanses F., Roux C., Dunman P.M., Salzberger B., Lee J.C. Staphylococcus aureus gene expression in a rat model of infective endocarditis. Genome Med. 2014;6:93. doi: 10.1186/PREACCEPT-4819325051343079. PubMed DOI PMC
Power M.E., Olson M.E., Domingue P.A.G., Costerton J.W. A rat model of Staphylococcus aureus chronic osteomyelitis that provides a suitable system for studying the human infection. J. Med. Microbiol. 1990;33:189–198. doi: 10.1099/00222615-33-3-189. PubMed DOI
Trübe P., Hertlein T., Mrochen D.M., Schulz D., Jorde I., Krause B., Zeun J., Fischer S., Wolf S.A., Walther B., et al. Bringing together what belongs together: Optimizing murine infection models by using mouse-adapted Staphylococcus aureus strains. Int. J. Med. Microbiol. 2019;309:26–38. doi: 10.1016/j.ijmm.2018.10.007. PubMed DOI
Sun Y., Emolo C., Holtfreter S., Wiles S., Kreiswirth B., Missiakas D., Schneewind O. Staphylococcal Protein A Contributes to Persistent Colonization of Mice with Staphylococcus aureus. J. Bacteriol. 2018;200 doi: 10.1128/JB.00735-17. PubMed DOI PMC
Holtfreter S., Grumann D., Balau V., Barwich A., Kolata J., Goehler A., Weiss S., Holtfreter B., Bauerfeind S.S., Döring P., et al. Molecular Epidemiology of Staphylococcus aureus in the General Population in Northeast Germany: Results of the Study of Health in Pomerania (SHIP-TREND-0) J. Clin. Microbiol. 2016;54:2774–2785. doi: 10.1128/JCM.00312-16. PubMed DOI PMC
Schulz D., Grumann D., Trübe P., Pritchett-Corning K., Johnson S., Reppschläger K., Gumz J., Sundaramoorthy N., Michalik S., Berg S., et al. Laboratory Mice Are Frequently Colonized with Staphylococcus aureus and Mount a Systemic Immune Response-Note of Caution for In vivo Infection Experiments. Front. Cell. Infect. Microbiol. 2017;7:152. doi: 10.3389/fcimb.2017.00152. PubMed DOI PMC
Sung J.M.-L., Lloyd D.H., Lindsay J.A. Staphylococcus aureus host specificity: Comparative genomics of human versus animal isolates by multi-strain microarray. Microbiology. 2008;154:1949–1959. doi: 10.1099/mic.0.2007/015289-0. PubMed DOI
Van Wamel W.J.B., Rooijakkers S.H.M., Ruyken M., van Kessel K.P.M., van Strijp J.A.G. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J. Bacteriol. 2006;188:1310–1315. doi: 10.1128/JB.188.4.1310-1315.2006. PubMed DOI PMC
Ruiz-Ripa L., Alcalá L., Simón C., Gómez P., Mama O.M., Rezusta A., Zarazaga M., Torres C. Diversity of Staphylococcus aureus clones in wild mammals in Aragon, Spain, with detection of MRSA ST130-mecC in wild rabbits. J. Appl. Microbiol. 2019;127:284–291. doi: 10.1111/jam.14301. PubMed DOI
Ruiz-Ripa L., Gómez P., Alonso C.A., Camacho M.C., de La Puente J., Fernández-Fernández R., Ramiro Y., Quevedo M.A., Blanco J.M., Zarazaga M., et al. Detection of MRSA of Lineages CC130-mecC and CC398-mecA and Staphylococcus delphini-lnu (A) in Magpies and Cinereous Vultures in Spain. Microb. Ecol. 2019;78:409–415. doi: 10.1007/s00248-019-01328-4. PubMed DOI
Ben Said M., Abbassi M.S., Gómez P., Ruiz-Ripa L., Sghaier S., El Fekih O., Hassen A., Torres C. Genetic characterization of Staphylococcus aureus isolated from nasal samples of healthy ewes in Tunisia. High prevalence of CC130 and CC522 lineages. Comp. Immunol. Microbiol. Infect. Dis. 2017;51:37–40. doi: 10.1016/j.cimid.2017.03.002. PubMed DOI
Simpson V.R., Davison N.J., Kearns A.M., Pichon B., Hudson L.O., Koylass M., Blackett T., Butler H., Rasigade J.P., Whatmore A.M. Association of a lukM-positive clone of Staphylococcus aureus with fatal exudative dermatitis in red squirrels (Sciurus vulgaris) Vet. Microbiol. 2013;162:987–991. doi: 10.1016/j.vetmic.2012.10.025. PubMed DOI
Simpson V., Davison N., Hudson L., Whatmore A.M. Staphylococcus aureus ST49 infection in red squirrels. Vet. Rec. 2010;167:69. doi: 10.1136/vr.c3625. PubMed DOI
Mama O.M., Ruiz-Ripa L., Fernández-Fernández R., González-Barrio D., Ruiz-Fons J.F., Torres C. High frequency of coagulase-positive staphylococci carriage in healthy wild boar with detection of MRSA of lineage ST398-t011. FEMS Microbiol. Lett. 2019;366 doi: 10.1093/femsle/fny292. PubMed DOI
Overesch G., Büttner S., Rossano A., Perreten V. The increase of methicillin-resistant Staphylococcus aureus (MRSA) and the presence of an unusual sequence type ST49 in slaughter pigs in Switzerland. BMC Vet. Res. 2011;7:30. doi: 10.1186/1746-6148-7-30. PubMed DOI PMC
Haenni M., Châtre P., Dupieux-Chabert C., Métayer V., Bes M., Madec J.-Y., Laurent F. Molecular Epidemiology of Methicillin-Resistant Staphylococcus aureus in Horses, Cats, and Dogs Over a 5-Year Period in France. Front. Microbiol. 2017;8:2493. doi: 10.3389/fmicb.2017.02493. PubMed DOI PMC
Deplano A., Vandendriessche S., Nonhoff C., Denis O. Genetic diversity among methicillin-resistant Staphylococcus aureus isolates carrying the mecC gene in Belgium. J. Antimicrob. Chemother. 2014;69:1457–1460. doi: 10.1093/jac/dku020. PubMed DOI
Witte W. Selective pressure by antibiotic use in livestock. Int. J. Antimicrob. Agents. 2000;16:19–24. doi: 10.1016/S0924-8579(00)00301-0. PubMed DOI
Lekshmi M., Ammini P., Kumar S., Varela M.F. The Food Production Environment and the Development of Antimicrobial Resistance in Human Pathogens of Animal Origin. Microorganisms. 2017;5:11. doi: 10.3390/microorganisms5010011. PubMed DOI PMC
Kadlec K., Entorf M., Peters T. Occurrence and Characteristics of Livestock-Associated Methicillin-Resistant Staphylococcus aureus in Quarter Milk Samples from Dairy Cows in Germany. Front. Microbiol. 2019;10:1295. doi: 10.3389/fmicb.2019.01295. PubMed DOI PMC
Köck R., Ballhausen B., Bischoff M., Cuny C., Eckmanns T., Fetsch A., Harmsen D., Goerge T., Oberheitmann B., Schwarz S., et al. The impact of zoonotic MRSA colonization and infection in Germany. Berl. Munch. Tierarztl. Wochenschr. 2014;127:384–398. PubMed
Guinane C.M., Ben Zakour N.L., Tormo-Mas M.A., Weinert L.A., Lowder B.V., Cartwright R.A., Smyth D.S., Smyth C.J., Lindsay J.A., Gould K.A., et al. Evolutionary genomics of Staphylococcus aureus reveals insights into the origin and molecular basis of ruminant host adaptation. Genome Biol. Evol. 2010;2:454–466. doi: 10.1093/gbe/evq031. PubMed DOI PMC
Messenger A.M., Barnes A.N., Gray G.C. Reverse zoonotic disease transmission (zooanthroponosis): A systematic review of seldom-documented human biological threats to animals. PLoS ONE. 2014;9:e89055. doi: 10.1371/journal.pone.0089055. PubMed DOI PMC
Tomas J., Langella P., Cherbuy C. The intestinal microbiota in the rat model: Major breakthroughs from new technologies. Anim. Health Res. Rev. 2012;13:54–63. doi: 10.1017/S1466252312000072. PubMed DOI
Mulcahy M.E., McLoughlin R.M. Host-Bacterial Crosstalk Determines Staphylococcus aureus Nasal Colonization. Trends Microbiol. 2016;24:872–886. doi: 10.1016/j.tim.2016.06.012. PubMed DOI
Zipperer A., Konnerth M.C., Laux C., Berscheid A., Janek D., Weidenmaier C., Burian M., Schilling N.A., Slavetinsky C., Marschal M., et al. Human commensals producing a novel antibiotic impair pathogen colonization. Nature. 2016;535:511–516. doi: 10.1038/nature18634. PubMed DOI
Piewngam P., Zheng Y., Nguyen T.H., Dickey S.W., Joo H.-S., Villaruz A.E., Glose K.A., Fisher E.L., Hunt R.L., Li B., et al. Pathogen elimination by probiotic Bacillus via signalling interference. Nature. 2018;562:532–537. doi: 10.1038/s41586-018-0616-y. PubMed DOI PMC
De Haas C.J.C., Veldkamp K.E., Peschel A., Weerkamp F., van Wamel W.J.B., Heezius E.C.J.M., Poppelier M.J.J.G., van Kessel K.P.M., van Strijp J.A.G. Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J. Exp. Med. 2004;199:687–695. doi: 10.1084/jem.20031636. PubMed DOI PMC
Gladysheva I.P., Turner R.B., Sazonova I.Y., Liu L., Reed G.L. Coevolutionary patterns in plasminogen activation. Proc. Natl. Acad. Sci. USA. 2003;100:9168–9172. doi: 10.1073/pnas.1631716100. PubMed DOI PMC
Holtfreter S., Bröker B.M. Staphylococcal superantigens: Do they play a role in sepsis? Arch. Immunol. Ther. Exp. 2005;53:13–27. PubMed
Rooijakkers S.H.M., Ruyken M., Roos A., Daha M.R., Presanis J.S., Sim R.B., van Wamel W.J.B., van Kessel K.P.M., van Strijp J.A.G. Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nat. Immunol. 2005;6:920–927. doi: 10.1038/ni1235. PubMed DOI
Hashimoto M., Watanabe S., Oiwa K., Ohta Y., Kishi T., Okamoto T., Giddings J.C., Yamamoto J. Enhanced thrombolysis induced by argatroban or activated protein C in the presence or absence of staphylokinase, measured in an in vivo animal model using mesenteric arterioles. Haemostasis. 2001;31:80–89. doi: 10.1159/000048048. PubMed DOI
Katayama Y., Baba T., Sekine M., Fukuda M., Hiramatsu K. Beta-hemolysin promotes skin colonization by Staphylococcus aureus. J. Bacteriol. 2013;195:1194–1203. doi: 10.1128/JB.01786-12. PubMed DOI PMC
Verkaik N.J., Benard M., Boelens H.A., de Vogel C.P., Nouwen J.L., Verbrugh H.A., Melles D.C., van Belkum A., van Wamel W.J.B. Immune evasion cluster-positive bacteriophages are highly prevalent among human Staphylococcus aureus strains, but they are not essential in the first stages of nasal colonization. Clin. Microbiol. Infect. 2011;17:343–348. doi: 10.1111/j.1469-0691.2010.03227.x. PubMed DOI
Markham N.P., Markham J.G. Staphylococci in man and animals. Distribution and characteristics of strains. J. Comp. Pathol. 1966;76:49–56. doi: 10.1016/0021-9975(66)90047-8. PubMed DOI
Grumann D., Scharf S.S., Holtfreter S., Kohler C., Steil L., Engelmann S., Hecker M., Völker U., Bröker B.M. Immune cell activation by enterotoxin gene cluster (egc)-encoded and non-egc superantigens from Staphylococcus aureus. J. Immunol. 2008;181:5054–5061. doi: 10.4049/jimmunol.181.7.5054. PubMed DOI
Holbrook M.R., Young K.E., Gibbon L.G., Webster C.A., Tranter H.S., Arbuthnott J.P., Todd I. Stimulation of rat spleen cells by staphylococcal enterotoxins. FEMS Immunol. Med. Microbiol. 1993;7:169–174. doi: 10.1111/j.1574-695X.1993.tb00396.x. PubMed DOI
Van Loo I., Huijsdens X., Tiemersma E., de Neeling A., van de Sande-Bruinsma N., Beaujean D., Voss A., Kluytmans J. Emergence of methicillin-resistant Staphylococcus aureus of animal origin in humans. Emerg. Infect. Dis. 2007;13:1834–1839. doi: 10.3201/eid1312.070384. PubMed DOI PMC
Becker K., Ballhausen B., Kahl B.C., Köck R. The clinical impact of livestock-associated methicillin-resistant Staphylococcus aureus of the clonal complex 398 for humans. Vet. Microbiol. 2017;200:33–38. doi: 10.1016/j.vetmic.2015.11.013. PubMed DOI
Gibbs S.G., Green C.F., Tarwater P.M., Mota L.C., Mena K.D., Scarpino P.V. Isolation of antibiotic-resistant bacteria from the air plume downwind of a swine confined or concentrated animal feeding operation. Environ. Health Perspect. 2006;114:1032–1037. doi: 10.1289/ehp.8910. PubMed DOI PMC
Gibbs S.G., Green C.F., Tarwater P.M., Scarpino P.V. Airborne antibiotic resistant and nonresistant bacteria and fungi recovered from two swine herd confined animal feeding operations. J. Occup. Environ. Hyg. 2004;1:699–706. doi: 10.1080/15459620490515824. PubMed DOI
Himsworth C.G., Parsons K.L., Jardine C., Patrick D.M. Rats, cities, people, and pathogens: A systematic review and narrative synthesis of literature regarding the ecology of rat-associated zoonoses in urban centers. Vector Borne Zoonotic Dis. 2013;13:349–359. doi: 10.1089/vbz.2012.1195. PubMed DOI
Wobeser G., Campbell G.D., Dallaire A., McBurney S. Tularemia, plague, yersiniosis, and Tyzzer’s disease in wild rodents and lagomorphs in Canada: A review. Can. Vet. J. 2009;50:1251–1256. PubMed PMC
Strand T.M., Lundkvist Å. Rat-borne diseases at the horizon. A systematic review on infectious agents carried by rats in Europe 1995–2016. Infect. Ecol. Epidemiol. 2019;9 doi: 10.1080/20008686.2018.1553461. PubMed DOI PMC
Taylor K.D. Range of Movement and Activity of Common Rats (Rattus norvegicus) on Agricultural Land. J. Appl. Ecol. 1978;15:663–677. doi: 10.2307/2402767. DOI
Reid R.A., Reid A.K. Route finding by rats in an open arena. Behav. Processes. 2005;68:51–67. doi: 10.1016/j.beproc.2004.11.004. PubMed DOI
Young D.M., Harris H.W., Charlebois E.D., Chambers H., Campbell A., Perdreau-Remington F., Lee C., Mankani M., Mackersie R., Schecter W.P. An epidemic of methicillin-resistant Staphylococcus aureus soft tissue infections among medically underserved patients. Arch. Surg. 2004;139:947–951. doi: 10.1001/archsurg.139.9.947. PubMed DOI
Luedicke C., Slickers P., Ehricht R., Monecke S. Molecular fingerprinting of Staphylococcus aureus from bone and joint infections. Eur. J. Clin. Microbiol. Infect. Dis. 2010;29:457–463. doi: 10.1007/s10096-010-0884-4. PubMed DOI
Price L.B., Stegger M., Hasman H., Aziz M., Larsen J., Andersen P.S., Pearson T., Waters A.E., Foster J.T., Schupp J., et al. Staphylococcus aureus CC398: Host adaptation and emergence of methicillin resistance in livestock. mBio. 2012;3:e00305-11. doi: 10.1128/mBio.00305-11. PubMed DOI PMC
Van Alen S., Ballhausen B., Kaspar U., Köck R., Becker K. Prevalence and Genomic Structure of Bacteriophage phi3 in Human-Derived Livestock-Associated Methicillin-Resistant Staphylococcus aureus Isolates from 2000 to 2015. J. Clin. Microbiol. 2018;56 doi: 10.1128/JCM.00140-18. PubMed DOI PMC
Spahr C., Knauf-Witzens T., Vahlenkamp T., Ulrich R.G., Johne R. Hepatitis E virus and related viruses in wild, domestic and zoo animals: A review. Zoonoses Public Health. 2018;65:11–29. doi: 10.1111/zph.12405. PubMed DOI
Holtfreter S., Bauer K., Thomas D., Feig C., Lorenz V., Roschack K., Friebe E., Selleng K., Lövenich S., Greve T., et al. egc-Encoded superantigens from Staphylococcus aureus are neutralized by human sera much less efficiently than are classical staphylococcal enterotoxins or toxic shock syndrome toxin. Infect. Immun. 2004;72:4061–4071. doi: 10.1128/IAI.72.7.4061-4071.2004. PubMed DOI PMC
Holtfreter S., Grumann D., Schmudde M., Nguyen H.T.T., Eichler P., Strommenger B., Kopron K., Kolata J., Giedrys-Kalemba S., Steinmetz I., et al. Clonal distribution of superantigen genes in clinical Staphylococcus aureus isolates. J. Clin. Microbiol. 2007;45:2669–2680. doi: 10.1128/JCM.00204-07. PubMed DOI PMC
Völzke H., Alte D., Schmidt C.O., Radke D., Lorbeer R., Friedrich N., Aumann N., Lau K., Piontek M., Born G., et al. Cohort profile: The study of health in Pomerania. Int. J. Epidemiol. 2011;40:294–307. doi: 10.1093/ije/dyp394. PubMed DOI
Zhang K., Sparling J., Chow B.L., Elsayed S., Hussain Z., Church D.L., Gregson D.B., Louie T., Conly J.M. New Quadriplex PCR Assay for Detection of Methicillin and Mupirocin Resistance and Simultaneous Discrimination of Staphylococcus aureus from Coagulase-Negative Staphylococci. J. Clin. Microbiol. 2004;42:4947–4955. doi: 10.1128/JCM.42.11.4947-4955.2004. PubMed DOI PMC
Strommenger B., Kettlitz C., Weniger T., Harmsen D., Friedrich A.W., Witte W. Assignment of Staphylococcus Isolates to Groups by spa Typing, SmaI Macrorestriction Analysis, and Multilocus Sequence Typing. J. Clin. Microbiol. 2006;44:2533–2540. doi: 10.1128/JCM.00420-06. PubMed DOI PMC
Enright M.C., Day N.P., Davies C.E., Peacock S.J., Spratt B.G. Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J. Clin. Microbiol. 2000;38:1008–1015. doi: 10.1128/JCM.38.3.1008-1015.2000. PubMed DOI PMC
Harmsen D., Claus H., Witte W., Rothgänger J., Claus H., Turnwald D., Vogel U. Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J. Clin. Microbiol. 2003;41:5442–5448. doi: 10.1128/JCM.41.12.5442-5448.2003. PubMed DOI PMC
Goerke C., Pantucek R., Holtfreter S., Schulte B., Zink M., Grumann D., Bröker B.M., Doskar J., Wolz C. Diversity of prophages in dominant Staphylococcus aureus clonal lineages. J. Bacteriol. 2009;191:3462–3468. doi: 10.1128/JB.01804-08. PubMed DOI PMC
Jean B., Mpw P., Eliopoulos G.M., Jenkins S.G. M100: Performance Standards for Antimicrobial Susceptibility Testing. 28th ed. CLSI; Wayne, PA, USA: 2018.
Schwendener S., Cotting K., Perreten V. Novel methicillin resistance gene mecD in clinical Macrococcus caseolyticus strains from bovine and canine sources. Sci. Rep. 2017;7:43797. doi: 10.1038/srep43797. PubMed DOI PMC
Cuny C., Layer F., Strommenger B., Witte W. Rare occurrence of methicillin-resistant Staphylococcus aureus CC130 with a novel mecA homologue in humans in Germany. PLoS ONE. 2011;6:e24360. doi: 10.1371/journal.pone.0024360. PubMed DOI PMC
Becker K., van Alen S., Idelevich E.A., Schleimer N., Seggewiß J., Mellmann A., Kaspar U., Peters G. Plasmid-Encoded Transferable mecB-Mediated Methicillin Resistance in Staphylococcus aureus. Emerg. Infect. Dis. 2018;24:242–248. doi: 10.3201/eid2402.171074. PubMed DOI PMC
Sperber W.H., Tatini S.R. Interpretation of the Tube Coagulase Test for Identification of Staphylococcus aureus. Appl. Microbiol. 1975;29:502–505. doi: 10.1128/AEM.29.4.502-505.1975. PubMed DOI PMC
Staphylococcus ratti sp. nov. Isolated from a Lab Rat