Staphylococcus ratti sp. nov. Isolated from a Lab Rat

. 2022 Jan 01 ; 11 (1) : . [epub] 20220101

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35055999

Grantová podpora
MUNI/A/1522/2020 Grant Agency of Masaryk University
LM2018140 Ministry of Education Youth and Sports
NU21J-05-00035 Ministry of Health
NIPH, 75010330 Ministry of Health

Staphylococci from the Staphylococcus intermedius-Staphylococcus hyicus species group include numerous animal pathogens and are an important reservoir of virulence and antimicrobial resistance determinants. Due to their pathogenic potential, they are possible causative agents of zoonoses in humans; therefore, it is important to address the properties of these strains. Here we used a polyphasic taxonomic approach to characterize the coagulase-negative staphylococcal strain NRL/St 03/464T, isolated from the nostrils of a healthy laboratory rat during a microbiological screening of laboratory animals. The 16S rRNA sequence, MALDI-TOF mass spectrometry and positive urea hydrolysis and beta-glucuronidase tests clearly distinguished it from closely related Staphylococcus spp. All analyses have consistently shown that the closest relative is Staphylococcus chromogenes; however, values of digital DNA-DNA hybridization <35.3% and an average nucleotide identity <81.4% confirmed that the analyzed strain is a distinct Staphylococcus species. Whole-genome sequencing and expert annotation of the genome revealed the presence of novel variable genetic elements, including two plasmids named pSR9025A and pSR9025B, prophages, genomic islands and a composite transposon that may confer selective advantages to other bacteria and enhance their survival. Based on phenotypic, phylogenetic and genomic data obtained in this study, the strain NRL/St 03/464T (= CCM 9025T = LMG 31873T = DSM 111348T) represents a novel species with the suggested name Staphylococcus ratti sp. nov.

Zobrazit více v PubMed

Götz F., Bannerman T., Schleifer K.-H. The Genera Staphylococcus and Macrococcus. In: Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E., editors. The Prokaryotes. Springer; New York, NY, USA: 2006. pp. 5–75. DOI

Nováková D., Pantůček R., Hubálek Z., Falsen E., Busse H.-J., Schumann P., Sedláček I. Staphylococcus microti sp. nov., isolated from the common vole (Microtus arvalis) Int. J. Syst. Evol. Microbiol. 2010;60:566–573. doi: 10.1099/ijs.0.011429-0. PubMed DOI

Hauschild T. Phenotypic and genotypic identification of staphylococci isolated from wild small mammals. Syst. Appl. Microbiol. 2001;24:411–416. doi: 10.1078/0723-2020-00050. PubMed DOI

Hauschild T., Slizewski P., Masiewicz P. Species distribution of staphylococci from small wild mammals. Syst. Appl. Microbiol. 2010;33:457–460. doi: 10.1016/j.syapm.2010.08.007. PubMed DOI

Shimizu A., Ozaki J., Kawano J., Saitoh Y., Kimura S. Distribution of Staphylococcus species on animal skin. J. Vet. Med. Sci. 1992;54:355–357. doi: 10.1292/jvms.54.355. PubMed DOI

Raafat D., Mrochen D.M., Al’Sholui F., Heuser E., Ryll R., Pritchett-Corning K.R., Jacob J., Walther B., Matuschka F.R., Richter D., et al. Molecular epidemiology of methicillin-susceptible and methicillin-resistant Staphylococcus aureus in wild, captive and laboratory rats: Effect of habitat on the nasal S. aureus population. Toxins. 2020;12:80. doi: 10.3390/toxins12020080. PubMed DOI PMC

Mrochen D.M., Grumann D., Schulz D., Gumz J., Trube P., Pritchett-Corning K., Johnson S., Nicklas W., Kirsch P., Martelet K., et al. Global spread of mouse-adapted Staphylococcus aureus lineages CC1, CC15, and CC88 among mouse breeding facilities. Int. J. Med. Microbiol. 2018;308:598–606. doi: 10.1016/j.ijmm.2017.11.006. PubMed DOI

Hanses F., Roux C., Dunman P.M., Salzberger B., Lee J.C. Staphylococcus aureus gene expression in a rat model of infective endocarditis. Genome Med. 2014;6:93. doi: 10.1186/PREACCEPT-4819325051343079. PubMed DOI PMC

Power M.E., Olson M.E., Domingue P.A., Costerton J.W. A rat model of Staphylococcus aureus chronic osteomyelitis that provides a suitable system for studying the human infection. J. Med. Microbiol. 1990;33:189–198. doi: 10.1099/00222615-33-3-189. PubMed DOI

Donnelly T.M., Stark D.M. Susceptibility of laboratory rats, hamsters, and mice to wound infection with Staphylococcus aureus. Am. J. Vet. Res. 1985;46:2634–2638. PubMed

Devriese L.A. Staphylococci in healthy and diseased animals. J. Appl. Microbiol. 1990;69:71S–80S. doi: 10.1111/j.1365-2672.1990.tb01799.x. PubMed DOI

Bannoehr J., Guardabassi L. Staphylococcus pseudintermedius in the dog: Taxonomy, diagnostics, ecology, epidemiology and pathogenicity. Vet. Dermatol. 2012;23:253-e52. doi: 10.1111/j.1365-3164.2012.01046.x. PubMed DOI

Devriese L.A., Vancanneyt M., Baele M., Vaneechoutte M., De Graef E., Snauwaert C., Cleenwerck I., Dawyndt P., Swings J., Decostere A., et al. Staphylococcus pseudintermedius sp. nov., a coagulase-positive species from animals. Int. J. Syst. Evol. Microbiol. 2005;55:1569–1573. doi: 10.1099/ijs.0.63413-0. PubMed DOI

Igimi S., Takahashi E., Mitsuoka T. Staphylococcus schleiferi subsp. coagulans subsp. nov., isolated from the external auditory meatus of dogs with external ear otitis. Int. J. Syst. Bacteriol. 1990;40:409–411. doi: 10.1099/00207713-40-4-409. PubMed DOI

Newstead L.L., Harris J., Goodbrand S., Varjonen K., Nuttall T., Paterson G.K. Staphylococcus caledonicus sp. nov. and Staphylococcus canis sp. nov. isolated from healthy domestic dogs. Int. J. Syst. Evol. Microbiol. 2021;71:004878. doi: 10.1099/ijsem.0.004878. PubMed DOI PMC

Vrbovská V., Sedláček I., Zeman M., Švec P., Kovařovic V., Šedo O., Laichmanová M., Doskař J., Pantůček R. Characterization of Staphylococcus intermedius group isolates associated with animals from Antarctica and emended description of Staphylococcus delphini. Microorganisms. 2020;8:204. doi: 10.3390/microorganisms8020204. PubMed DOI PMC

Perreten V., Kania S.A., Bemis D. Staphylococcus ursi sp. nov., a new member of the ‘Staphylococcus intermedius group’ isolated from healthy black bears. Int. J. Syst. Evol. Microbiol. 2020;70:4637–4645. doi: 10.1099/ijsem.0.004324. PubMed DOI PMC

Worthing K., Pang S., Trott D.J., Abraham S., Coombs G.W., Jordan D., McIntyre L., Davies M.R., Norris J. Characterisation of Staphylococcus felis isolated from cats using whole genome sequencing. Vet. Microbiol. 2018;222:98–104. doi: 10.1016/j.vetmic.2018.07.002. PubMed DOI

Guardabassi L., Loeber M.E., Jacobson A. Transmission of multiple antimicrobial-resistant Staphylococcus intermedius between dogs affected by deep pyoderma and their owners. Vet. Microbiol. 2004;98:23–27. doi: 10.1016/j.vetmic.2003.09.021. PubMed DOI

Boerlin P., Eugster S., Gaschen F., Straub R., Schawalder P. Transmission of opportunistic pathogens in a veterinary teaching hospital. Vet. Microbiol. 2001;82:347–359. doi: 10.1016/S0378-1135(01)00396-0. PubMed DOI

Fudaba Y., Nishifuji K., Andresen L.O., Yamaguchi T., Komatsuzawa H., Amagai M., Sugai M. Staphylococcus hyicus exfoliative toxins selectively digest porcine desmoglein 1. Microb. Pathog. 2005;39:171–176. doi: 10.1016/j.micpath.2005.08.003. PubMed DOI

Casanova C., Iselin L., von Steiger N., Droz S., Sendi P. Staphylococcus hyicus bacteremia in a farmer. J. Clin. Microbiol. 2011;49:4377–4378. doi: 10.1128/JCM.05645-11. PubMed DOI PMC

Foissac M., Lekaditi M., Loutfi B., Ehrhart A., Dauchy F.A. Spondylodiscitis and bacteremia due to Staphylococcus hyicus in an immunocompetent man. Germs. 2016;6:106–110. doi: 10.11599/germs.2016.1097. PubMed DOI PMC

Taponen S., Supre K., Piessens V., Van Coillie E., De Vliegher S., Koort J.M.K. Staphylococcus agnetis sp. nov., a coagulase-variable species from bovine subclinical and mild clinical mastitis. Int. J. Syst. Evol. Microbiol. 2012;62:61–65. doi: 10.1099/ijs.0.028365-0. PubMed DOI

Poulsen L.L., Thofner I., Bisgaard M., Olsen R.H., Christensen J.P., Christensen H. Staphylococcus agnetis, a potential pathogen in broiler breeders. Vet. Microbiol. 2017;212:1–6. doi: 10.1016/j.vetmic.2017.10.018. PubMed DOI

Al-Rubaye A.A., Couger M.B., Ojha S., Pummill J.F., Koon J.A., 2nd, Wideman R.F., Jr., Rhoads D.D. Genome analysis of Staphylococcus agnetis, an agent of lameness in broiler chickens. PLoS ONE. 2015;10:e0143336. doi: 10.1371/journal.pone.0143336. PubMed DOI PMC

Devriese L.A., Baele M., Vaneechoutte M., Martel A., Haesebrouck F. Identification and antimicrobial susceptibility of Staphylococcus chromogenes isolates from intramammary infections of dairy cows. Vet. Microbiol. 2002;87:175–182. doi: 10.1016/S0378-1135(02)00047-0. PubMed DOI

Andresen L.O., Ahrens P., Daugaard L., Bille-Hansen V. Exudative epidermitis in pigs caused by toxigenic Staphylococcus chromogenes. Vet. Microbiol. 2005;105:291–300. doi: 10.1016/j.vetmic.2004.12.006. PubMed DOI

Andrews A.H., Lamport A. Isolation of Staphylococcus chromogenes from an unusual case of impetigo in a goat. Vet. Rec. 1997;140:584. doi: 10.1136/vr.140.22.584. PubMed DOI

Schmidt T., Kock M.M., Ehlers M.M. Diversity and antimicrobial susceptibility profiling of staphylococci isolated from bovine mastitis cases and close human contacts. J. Dairy Sci. 2015;98:6256–6269. doi: 10.3168/jds.2015-9715. PubMed DOI

Lamers R.P., Muthukrishnan G., Castoe T.A., Tafur S., Cole A.M., Parkinson C.L. Phylogenetic relationships among Staphylococcus species and refinement of cluster groups based on multilocus data. BMC Evol. Biol. 2012;12:171. doi: 10.1186/1471-2148-12-171. PubMed DOI PMC

Goris J., Konstantinidis K.T., Klappenbach J.A., Coenye T., Vandamme P., Tiedje J.M. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 2007;57:81–91. doi: 10.1099/ijs.0.64483-0. PubMed DOI

Schleifer K.-H., Bell J.A. Staphylococcus. In: Whitman W.B., editor. Bergey’s Manual of Systematics of Archaea and Bacteria. Online ed. Wiley & Sons and Bergey’s Manual Trust; Hoboken, NJ, USA: 2015. DOI

Nahaie M.R., Goodfellow M., Minnikin D.E., Hájek V. Polar lipid and isoprenoid quinone composition in the classification of Staphylococcus. J. Gen. Microbiol. 1984;130:2427–2437. doi: 10.1099/00221287-130-9-2427. PubMed DOI

Schumann P. Peptidoglycan Structure. Methods Microbiol. 2011;38:101–129. doi: 10.1016/b978-0-12-387730-7.00005-x. DOI

Devriese L.A., Hajek V., Oeding P., Meyer S.A., Schleifer K.H. Staphylococcus hyicus (Sompolinsky 1953) comb. nov. and Staphylococcus hyicus subsp. chromogenes subsp. nov. Int. J. Syst. Bacteriol. 1978;28:482–490. doi: 10.1099/00207713-28-4-482. DOI

Shwani A., Adkins P.R.F., Ekesi N.S., Alrubaye A., Calcutt M.J., Middleton J.R., Rhoads D.D. Whole-genome comparisons of Staphylococcus agnetis isolates from cattle and chickens. Appl. Environ. Microbiol. 2020;86:e00484-20. doi: 10.1128/AEM.00484-20. PubMed DOI PMC

Luthje P., von Kockritz-Blickwede M., Schwarz S. Identification and characterization of nine novel types of small staphylococcal plasmids carrying the lincosamide nucleotidyltransferase gene lnu(A) J. Antimicrob. Chemother. 2007;59:600–606. doi: 10.1093/jac/dkm008. PubMed DOI

Burkhart B.J., Schwalen C.J., Mann G., Naismith J.H., Mitchell D.A. YcaO-dependent posttranslational amide activation: Biosynthesis, structure, and function. Chem. Rev. 2017;117:5389–5456. doi: 10.1021/acs.chemrev.6b00623. PubMed DOI PMC

Chan Y.G., Frankel M.B., Missiakas D., Schneewind O. SagB glucosaminidase is a determinant of Staphylococcus aureus glycan chain length, antibiotic susceptibility, and protein secretion. J. Bacteriol. 2016;198:1123–1136. doi: 10.1128/JB.00983-15. PubMed DOI PMC

Dean B.A., Williams R.E.O., Hall F., Corse J. Phage typing of coagulase-negative staphylococci and micrococci. Epidemiol. Infect. (J. Hyg.) 1973;71:261–270. doi: 10.1017/S0022172400022737. PubMed DOI PMC

Kwan T., Liu J., DuBow M., Gros P., Pelletier J. The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc. Natl. Acad. Sci. USA. 2005;102:5174–5179. doi: 10.1073/pnas.0501140102. PubMed DOI PMC

Gutierrez D., Adriaenssens E.M., Martinez B., Rodriguez A., Lavigne R., Kropinski A.M., Garcia P. Three proposed new bacteriophage genera of staphylococcal phages: “3alikevirus”, “77likevirus” and “Phietalikevirus”. Arch. Virol. 2014;159:389–398. doi: 10.1007/s00705-013-1833-1. PubMed DOI

Tetens J., Sprotte S., Thimm G., Wagner N., Brinks E., Neve H., Holzel C.S., Franz C.M.A.P. First molecular characterization of Siphoviridae-like bacteriophages infecting Staphylococcus hyicus in a case of exudative epidermitis. Front. Microbiol. 2021;12:653501. doi: 10.3389/fmicb.2021.653501. PubMed DOI PMC

Schwendener S., Dona V., Perreten V. The novel macrolide resistance genes mef(D), msr(F), and msr(H) are present on resistance islands in Macrococcus canis, Macrococcus caseolyticus, and Staphylococcus aureus. Antimicrob. Agents Chemother. 2020;64:e00160-20. doi: 10.1128/AAC.00160-20. PubMed DOI PMC

Rosey E.L., Oskouian B., Stewart G.C. Lactose metabolism by Staphylococcus aureus: Characterization of lacABCD, the structural genes of the tagatose 6-phosphate pathway. J. Bacteriol. 1991;173:5992–5998. doi: 10.1128/jb.173.19.5992-5998.1991. PubMed DOI PMC

Naushad S., Barkema H.W., Luby C., Condas L.A., Nobrega D.B., Carson D.A., De Buck J. Comprehensive phylogenetic analysis of bovine non-aureus staphylococci species based on whole-genome sequencing. Front. Microbiol. 2016;7:1990. doi: 10.3389/fmicb.2016.01990. PubMed DOI PMC

Haft D.H., Selengut J., Mongodin E.F., Nelson K.E. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput. Biol. 2005;1:e60. doi: 10.1371/journal.pcbi.0010060. PubMed DOI PMC

Pantůček R., Švec P., Dajcs J.J., Machová I., Černohlavková J., Šedo O., Gelbíčová T., Mašlaňová I., Doškař J., Zdráhal Z., et al. Staphylococcus petrasii sp. nov. including S. petrasii subsp. petrasii subsp. nov. and S. petrasii subsp. croceilyticus subsp. nov., isolated from human clinical specimens and human ear infections. Syst. Appl. Microbiol. 2013;36:90–95. doi: 10.1016/j.syapm.2012.11.004. PubMed DOI

Mannerová S., Pantůček R., Doškař J., Švec P., Snauwaert C., Vancanneyt M., Swings J., Sedláček I. Macrococcus brunensis sp. nov., Macrococcus hajekii sp. nov. and Macrococcus lamae sp. nov., from the skin of llamas. Int. J. Syst. Evol. Microbiol. 2003;53:1647–1654. doi: 10.1099/ijs.0.02683-0. PubMed DOI

Mašlaňová I., Wertheimer Z., Sedláček I., Švec P., Indráková A., Kovařovic V., Schumann P., Spröer C., Králová S., Šedo O., et al. Description and comparative genomics of Macrococcus caseolyticus subsp. hominis subsp. nov., Macrococcus goetzii sp. nov., Macrococcus epidermidis sp. nov., and Macrococcus bohemicus sp. nov., novel macrococci from human clinical material with virulence potential and suspected uptake of foreign DNA by natural transformation. Front. Microbiol. 2018;9:1178. doi: 10.3389/fmicb.2018.01178. PubMed DOI PMC

EUCAST Breakpoint Tables for Interpretation of MICs and Zone Diameters. The European Committee on Antimicrobial Susceptibility Testing: Version 6.0. 2016. [(accessed on 10 June 2019)]. Available online: https://www.eucast.org.

Pantůček R., Sedláček I., Indraková A., Vrbovská V., Mašlaňová I., Kovařovic V., Švec P., Králová S., Krištofová L., Kekláková J., et al. Staphylococcus edaphicus sp. nov., isolated in Antarctica, harbors the mecC gene and genomic islands with a suspected role in adaptation to extreme environments. Appl. Env. Microbiol. 2018;84:e01746-17. doi: 10.1128/AEM.01746-17. PubMed DOI PMC

Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Revision July 2006 ed. MIDI Inc.; Newark, DE, USA: 1990.

Schumann P., Kalensee F., Cao J., Criscuolo A., Clermont D., Kohler J.M., Meier-Kolthoff J.P., Neumann-Schaal M., Tindall B.J., Pukall R. Reclassification of Haloactinobacterium glacieicola as Occultella glacieicola gen. nov., comb. nov., of Haloactinobacterium album as Ruania alba comb. nov, with an emended description of the genus Ruania, recognition that the genus names Haloactinobacterium and Ruania are heterotypic synonyms and description of Occultella aeris sp. nov., a halotolerant isolate from surface soil sampled at an ancient copper smelter. Int. J. Syst. Evol. Microbiol. 2021;71:004769. doi: 10.1099/ijsem.0.004769. PubMed DOI

Kämpfer P., McInroy J.A., Clermont D., Neumann-Schaal M., Criscuolo A., Busse H.-J., Glaeser S.P. Leucobacter soli sp. nov., from soil amended with humic acid. Int. J. Syst. Evol. Microbiol. 2021;71:005156. doi: 10.1099/ijsem.0.005156. PubMed DOI

Vieira S., Huber K.J., Neumann-Schaal M., Geppert A., Luckner M., Wanner G., Overmann J. Usitatibacter rugosus gen. nov., sp. nov. and Usitatibacter palustris sp. nov., novel members of Usitatibacteraceae fam. nov. within the order Nitrosomonadales isolated from soil. Int. J. Syst. Evol. Microbiol. 2021;71:004631. doi: 10.1099/ijsem.0.004631. PubMed DOI

Švec P., Pantůček R., Petráš P., Sedláček I., Nováková D. Identification of Staphylococcus spp. using (GTG)5-PCR fingerprinting. Syst. Appl. Microbiol. 2010;33:451–456. doi: 10.1016/j.syapm.2010.09.004. PubMed DOI

Pantůček R., Sedláček I., Petráš P., Koukalová D., Švec P., Štětina V., Vancanneyt M., Chrastinová L., Vokurková J., Růžičková V., et al. Staphylococcus simiae sp. nov., isolated from South American squirrel monkeys. Int. J. Syst. Evol. Microbiol. 2005;55:1953–1958. doi: 10.1099/ijs.0.63590-0. PubMed DOI

Mellmann A., Becker K., von Eiff C., Keckevoet U., Schumann P., Harmsen D. Sequencing and staphylococci identification. Emerg. Infect. Dis. 2006;12:333–336. doi: 10.3201/eid1202.050962. PubMed DOI PMC

Yoon S.H., Ha S.M., Kwon S., Lim J., Kim Y., Seo H., Chun J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017;67:1613–1617. doi: 10.1099/ijsem.0.001755. PubMed DOI PMC

Lagesen K., Hallin P., Rodland E.A., Staerfeldt H.H., Rognes T., Ussery D.W. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35:3100–3108. doi: 10.1093/nar/gkm160. PubMed DOI PMC

Kitts P.A., Church D.M., Thibaud-Nissen F., Choi J., Hem V., Sapojnikov V., Smith R.G., Tatusova T., Xiang C., Zherikov A., et al. Assembly: A resource for assembled genomes at NCBI. Nucleic Acids Res. 2016;44:D73–D80. doi: 10.1093/nar/gkv1226. PubMed DOI PMC

Sichtig H., Minogue T., Yan Y., Stefan C., Hall A., Tallon L., Sadzewicz L., Nadendla S., Klimke W., Hatcher E., et al. FDA-ARGOS is a database with public quality-controlled reference genomes for diagnostic use and regulatory science. Nat. Commun. 2019;10:3313. doi: 10.1038/s41467-019-11306-6. PubMed DOI PMC

Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC

Tamura K., Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993;10:512–526. doi: 10.1093/oxfordjournals.molbev.a040023. PubMed DOI

Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 1985;39:783–791. doi: 10.1111/j.1558-5646.1985.tb00420.x. PubMed DOI

Na S.I., Kim Y.O., Yoon S.H., Ha S.M., Baek I., Chun J. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J. Microbiol. 2018;56:280–285. doi: 10.1007/s12275-018-8014-6. PubMed DOI

Meier-Kolthoff J.P., Carbasse J.S., Peinado-Olarte R.L., Göker M. TYGS and LPSN: A database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2021;49:gkab902. doi: 10.1093/nar/gkab902. PubMed DOI PMC

Jain C., Rodriguez R.L., Phillippy A.M., Konstantinidis K.T., Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 2018;9:5114. doi: 10.1038/s41467-018-07641-9. PubMed DOI PMC

Fišarová L., Botka T., Du X., Mašlaňová I., Bárdy P., Pantůček R., Benešík M., Roudnický P., Winstel V., Larsen J., et al. Staphylococcus epidermidis phages transduce antimicrobial resistance plasmids and mobilize chromosomal islands. mSphere. 2021;6:e00223-21. doi: 10.1128/mSphere.00223-21. PubMed DOI PMC

De Coster W., D’Hert S., Schultz D.T., Cruts M., Van Broeckhoven C. NanoPack: Visualizing and processing long-read sequencing data. Bioinformatics. 2018;34:2666–2669. doi: 10.1093/bioinformatics/bty149. PubMed DOI PMC

Wick R.R., Judd L.M., Gorrie C.L., Holt K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017;13:e1005595. doi: 10.1371/journal.pcbi.1005595. PubMed DOI PMC

Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D., et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC

Walker B.J., Abeel T., Shea T., Priest M., Abouelliel A., Sakthikumar S., Cuomo C.A., Zeng Q., Wortman J., Young S.K., et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9:e112963. doi: 10.1371/journal.pone.0112963. PubMed DOI PMC

Seemann T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–2069. doi: 10.1093/bioinformatics/btu153. PubMed DOI

Page A.J., Cummins C.A., Hunt M., Wong V.K., Reuter S., Holden M.T., Fookes M., Falush D., Keane J.A., Parkhill J. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31:3691–3693. doi: 10.1093/bioinformatics/btv421. PubMed DOI PMC

Li W., O’Neill K.R., Haft D.H., DiCuccio M., Chetvernin V., Badretdin A., Coulouris G., Chitsaz F., Derbyshire M.K., Durkin A.S., et al. RefSeq: Expanding the Prokaryotic Genome Annotation Pipeline reach with protein family model curation. Nucleic Acids Res. 2021;49:D1020–D1028. doi: 10.1093/nar/gkaa1105. PubMed DOI PMC

Okonechnikov K., Golosova O., Fursov M., The UGENE Team Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics. 2012;28:1166–1167. doi: 10.1093/bioinformatics/bts091. PubMed DOI

Sullivan M.J., Petty N.K., Beatson S.A. Easyfig: A genome comparison visualizer. Bioinformatics. 2011;27:1009–1010. doi: 10.1093/bioinformatics/btr039. PubMed DOI PMC

Arndt D., Grant J.R., Marcu A., Sajed T., Pon A., Liang Y., Wishart D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–W21. doi: 10.1093/nar/gkw387. PubMed DOI PMC

Edwards R., Decewicz P., Katelyn, Daniel S., Laurasisk . Zenodo. CERN; Geneva, Switzerland: 2021. linsalrob/PhiSpy: Dropped prophages (v.4.2.19) DOI

Bertelli C., Laird M.R., Williams K.P., Simon Fraser University Research Computing Group. Lau B.Y., Hoad G., Winsor G.L., Brinkman F.S.L. IslandViewer 4: Expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017;45:W30–W35. doi: 10.1093/nar/gkx343. PubMed DOI PMC

Siguier P., Perochon J., Lestrade L., Mahillon J., Chandler M. ISfinder: The reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34:D32–D36. doi: 10.1093/nar/gkj014. PubMed DOI PMC

Russel J., Pinilla-Redondo R., Mayo-Munoz D., Shah S.A., Sorensen S.J. CRISPRCasTyper: Automated identification, annotation, and classification of CRISPR-Cas loci. CRISPR J. 2020;3:462–469. doi: 10.1089/crispr.2020.0059. PubMed DOI

Liu B., Zheng D., Jin Q., Chen L., Yang J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2019;47:D687–D692. doi: 10.1093/nar/gky1080. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...