Staphylococcus ratti sp. nov. Isolated from a Lab Rat
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
MUNI/A/1522/2020
Grant Agency of Masaryk University
LM2018140
Ministry of Education Youth and Sports
NU21J-05-00035
Ministry of Health
NIPH, 75010330
Ministry of Health
PubMed
35055999
PubMed Central
PMC8779110
DOI
10.3390/pathogens11010051
PII: pathogens11010051
Knihovny.cz E-zdroje
- Klíčová slova
- Hyicus-Intermedius species group, Staphylococcus, genomic island, laboratory rat, taxonomy, variable genetic element, whole genome sequencing,
- Publikační typ
- časopisecké články MeSH
Staphylococci from the Staphylococcus intermedius-Staphylococcus hyicus species group include numerous animal pathogens and are an important reservoir of virulence and antimicrobial resistance determinants. Due to their pathogenic potential, they are possible causative agents of zoonoses in humans; therefore, it is important to address the properties of these strains. Here we used a polyphasic taxonomic approach to characterize the coagulase-negative staphylococcal strain NRL/St 03/464T, isolated from the nostrils of a healthy laboratory rat during a microbiological screening of laboratory animals. The 16S rRNA sequence, MALDI-TOF mass spectrometry and positive urea hydrolysis and beta-glucuronidase tests clearly distinguished it from closely related Staphylococcus spp. All analyses have consistently shown that the closest relative is Staphylococcus chromogenes; however, values of digital DNA-DNA hybridization <35.3% and an average nucleotide identity <81.4% confirmed that the analyzed strain is a distinct Staphylococcus species. Whole-genome sequencing and expert annotation of the genome revealed the presence of novel variable genetic elements, including two plasmids named pSR9025A and pSR9025B, prophages, genomic islands and a composite transposon that may confer selective advantages to other bacteria and enhance their survival. Based on phenotypic, phylogenetic and genomic data obtained in this study, the strain NRL/St 03/464T (= CCM 9025T = LMG 31873T = DSM 111348T) represents a novel species with the suggested name Staphylococcus ratti sp. nov.
Zobrazit více v PubMed
Götz F., Bannerman T., Schleifer K.-H. The Genera Staphylococcus and Macrococcus. In: Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E., editors. The Prokaryotes. Springer; New York, NY, USA: 2006. pp. 5–75. DOI
Nováková D., Pantůček R., Hubálek Z., Falsen E., Busse H.-J., Schumann P., Sedláček I. Staphylococcus microti sp. nov., isolated from the common vole (Microtus arvalis) Int. J. Syst. Evol. Microbiol. 2010;60:566–573. doi: 10.1099/ijs.0.011429-0. PubMed DOI
Hauschild T. Phenotypic and genotypic identification of staphylococci isolated from wild small mammals. Syst. Appl. Microbiol. 2001;24:411–416. doi: 10.1078/0723-2020-00050. PubMed DOI
Hauschild T., Slizewski P., Masiewicz P. Species distribution of staphylococci from small wild mammals. Syst. Appl. Microbiol. 2010;33:457–460. doi: 10.1016/j.syapm.2010.08.007. PubMed DOI
Shimizu A., Ozaki J., Kawano J., Saitoh Y., Kimura S. Distribution of Staphylococcus species on animal skin. J. Vet. Med. Sci. 1992;54:355–357. doi: 10.1292/jvms.54.355. PubMed DOI
Raafat D., Mrochen D.M., Al’Sholui F., Heuser E., Ryll R., Pritchett-Corning K.R., Jacob J., Walther B., Matuschka F.R., Richter D., et al. Molecular epidemiology of methicillin-susceptible and methicillin-resistant Staphylococcus aureus in wild, captive and laboratory rats: Effect of habitat on the nasal S. aureus population. Toxins. 2020;12:80. doi: 10.3390/toxins12020080. PubMed DOI PMC
Mrochen D.M., Grumann D., Schulz D., Gumz J., Trube P., Pritchett-Corning K., Johnson S., Nicklas W., Kirsch P., Martelet K., et al. Global spread of mouse-adapted Staphylococcus aureus lineages CC1, CC15, and CC88 among mouse breeding facilities. Int. J. Med. Microbiol. 2018;308:598–606. doi: 10.1016/j.ijmm.2017.11.006. PubMed DOI
Hanses F., Roux C., Dunman P.M., Salzberger B., Lee J.C. Staphylococcus aureus gene expression in a rat model of infective endocarditis. Genome Med. 2014;6:93. doi: 10.1186/PREACCEPT-4819325051343079. PubMed DOI PMC
Power M.E., Olson M.E., Domingue P.A., Costerton J.W. A rat model of Staphylococcus aureus chronic osteomyelitis that provides a suitable system for studying the human infection. J. Med. Microbiol. 1990;33:189–198. doi: 10.1099/00222615-33-3-189. PubMed DOI
Donnelly T.M., Stark D.M. Susceptibility of laboratory rats, hamsters, and mice to wound infection with Staphylococcus aureus. Am. J. Vet. Res. 1985;46:2634–2638. PubMed
Devriese L.A. Staphylococci in healthy and diseased animals. J. Appl. Microbiol. 1990;69:71S–80S. doi: 10.1111/j.1365-2672.1990.tb01799.x. PubMed DOI
Bannoehr J., Guardabassi L. Staphylococcus pseudintermedius in the dog: Taxonomy, diagnostics, ecology, epidemiology and pathogenicity. Vet. Dermatol. 2012;23:253-e52. doi: 10.1111/j.1365-3164.2012.01046.x. PubMed DOI
Devriese L.A., Vancanneyt M., Baele M., Vaneechoutte M., De Graef E., Snauwaert C., Cleenwerck I., Dawyndt P., Swings J., Decostere A., et al. Staphylococcus pseudintermedius sp. nov., a coagulase-positive species from animals. Int. J. Syst. Evol. Microbiol. 2005;55:1569–1573. doi: 10.1099/ijs.0.63413-0. PubMed DOI
Igimi S., Takahashi E., Mitsuoka T. Staphylococcus schleiferi subsp. coagulans subsp. nov., isolated from the external auditory meatus of dogs with external ear otitis. Int. J. Syst. Bacteriol. 1990;40:409–411. doi: 10.1099/00207713-40-4-409. PubMed DOI
Newstead L.L., Harris J., Goodbrand S., Varjonen K., Nuttall T., Paterson G.K. Staphylococcus caledonicus sp. nov. and Staphylococcus canis sp. nov. isolated from healthy domestic dogs. Int. J. Syst. Evol. Microbiol. 2021;71:004878. doi: 10.1099/ijsem.0.004878. PubMed DOI PMC
Vrbovská V., Sedláček I., Zeman M., Švec P., Kovařovic V., Šedo O., Laichmanová M., Doskař J., Pantůček R. Characterization of Staphylococcus intermedius group isolates associated with animals from Antarctica and emended description of Staphylococcus delphini. Microorganisms. 2020;8:204. doi: 10.3390/microorganisms8020204. PubMed DOI PMC
Perreten V., Kania S.A., Bemis D. Staphylococcus ursi sp. nov., a new member of the ‘Staphylococcus intermedius group’ isolated from healthy black bears. Int. J. Syst. Evol. Microbiol. 2020;70:4637–4645. doi: 10.1099/ijsem.0.004324. PubMed DOI PMC
Worthing K., Pang S., Trott D.J., Abraham S., Coombs G.W., Jordan D., McIntyre L., Davies M.R., Norris J. Characterisation of Staphylococcus felis isolated from cats using whole genome sequencing. Vet. Microbiol. 2018;222:98–104. doi: 10.1016/j.vetmic.2018.07.002. PubMed DOI
Guardabassi L., Loeber M.E., Jacobson A. Transmission of multiple antimicrobial-resistant Staphylococcus intermedius between dogs affected by deep pyoderma and their owners. Vet. Microbiol. 2004;98:23–27. doi: 10.1016/j.vetmic.2003.09.021. PubMed DOI
Boerlin P., Eugster S., Gaschen F., Straub R., Schawalder P. Transmission of opportunistic pathogens in a veterinary teaching hospital. Vet. Microbiol. 2001;82:347–359. doi: 10.1016/S0378-1135(01)00396-0. PubMed DOI
Fudaba Y., Nishifuji K., Andresen L.O., Yamaguchi T., Komatsuzawa H., Amagai M., Sugai M. Staphylococcus hyicus exfoliative toxins selectively digest porcine desmoglein 1. Microb. Pathog. 2005;39:171–176. doi: 10.1016/j.micpath.2005.08.003. PubMed DOI
Casanova C., Iselin L., von Steiger N., Droz S., Sendi P. Staphylococcus hyicus bacteremia in a farmer. J. Clin. Microbiol. 2011;49:4377–4378. doi: 10.1128/JCM.05645-11. PubMed DOI PMC
Foissac M., Lekaditi M., Loutfi B., Ehrhart A., Dauchy F.A. Spondylodiscitis and bacteremia due to Staphylococcus hyicus in an immunocompetent man. Germs. 2016;6:106–110. doi: 10.11599/germs.2016.1097. PubMed DOI PMC
Taponen S., Supre K., Piessens V., Van Coillie E., De Vliegher S., Koort J.M.K. Staphylococcus agnetis sp. nov., a coagulase-variable species from bovine subclinical and mild clinical mastitis. Int. J. Syst. Evol. Microbiol. 2012;62:61–65. doi: 10.1099/ijs.0.028365-0. PubMed DOI
Poulsen L.L., Thofner I., Bisgaard M., Olsen R.H., Christensen J.P., Christensen H. Staphylococcus agnetis, a potential pathogen in broiler breeders. Vet. Microbiol. 2017;212:1–6. doi: 10.1016/j.vetmic.2017.10.018. PubMed DOI
Al-Rubaye A.A., Couger M.B., Ojha S., Pummill J.F., Koon J.A., 2nd, Wideman R.F., Jr., Rhoads D.D. Genome analysis of Staphylococcus agnetis, an agent of lameness in broiler chickens. PLoS ONE. 2015;10:e0143336. doi: 10.1371/journal.pone.0143336. PubMed DOI PMC
Devriese L.A., Baele M., Vaneechoutte M., Martel A., Haesebrouck F. Identification and antimicrobial susceptibility of Staphylococcus chromogenes isolates from intramammary infections of dairy cows. Vet. Microbiol. 2002;87:175–182. doi: 10.1016/S0378-1135(02)00047-0. PubMed DOI
Andresen L.O., Ahrens P., Daugaard L., Bille-Hansen V. Exudative epidermitis in pigs caused by toxigenic Staphylococcus chromogenes. Vet. Microbiol. 2005;105:291–300. doi: 10.1016/j.vetmic.2004.12.006. PubMed DOI
Andrews A.H., Lamport A. Isolation of Staphylococcus chromogenes from an unusual case of impetigo in a goat. Vet. Rec. 1997;140:584. doi: 10.1136/vr.140.22.584. PubMed DOI
Schmidt T., Kock M.M., Ehlers M.M. Diversity and antimicrobial susceptibility profiling of staphylococci isolated from bovine mastitis cases and close human contacts. J. Dairy Sci. 2015;98:6256–6269. doi: 10.3168/jds.2015-9715. PubMed DOI
Lamers R.P., Muthukrishnan G., Castoe T.A., Tafur S., Cole A.M., Parkinson C.L. Phylogenetic relationships among Staphylococcus species and refinement of cluster groups based on multilocus data. BMC Evol. Biol. 2012;12:171. doi: 10.1186/1471-2148-12-171. PubMed DOI PMC
Goris J., Konstantinidis K.T., Klappenbach J.A., Coenye T., Vandamme P., Tiedje J.M. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol. 2007;57:81–91. doi: 10.1099/ijs.0.64483-0. PubMed DOI
Schleifer K.-H., Bell J.A. Staphylococcus. In: Whitman W.B., editor. Bergey’s Manual of Systematics of Archaea and Bacteria. Online ed. Wiley & Sons and Bergey’s Manual Trust; Hoboken, NJ, USA: 2015. DOI
Nahaie M.R., Goodfellow M., Minnikin D.E., Hájek V. Polar lipid and isoprenoid quinone composition in the classification of Staphylococcus. J. Gen. Microbiol. 1984;130:2427–2437. doi: 10.1099/00221287-130-9-2427. PubMed DOI
Schumann P. Peptidoglycan Structure. Methods Microbiol. 2011;38:101–129. doi: 10.1016/b978-0-12-387730-7.00005-x. DOI
Devriese L.A., Hajek V., Oeding P., Meyer S.A., Schleifer K.H. Staphylococcus hyicus (Sompolinsky 1953) comb. nov. and Staphylococcus hyicus subsp. chromogenes subsp. nov. Int. J. Syst. Bacteriol. 1978;28:482–490. doi: 10.1099/00207713-28-4-482. DOI
Shwani A., Adkins P.R.F., Ekesi N.S., Alrubaye A., Calcutt M.J., Middleton J.R., Rhoads D.D. Whole-genome comparisons of Staphylococcus agnetis isolates from cattle and chickens. Appl. Environ. Microbiol. 2020;86:e00484-20. doi: 10.1128/AEM.00484-20. PubMed DOI PMC
Luthje P., von Kockritz-Blickwede M., Schwarz S. Identification and characterization of nine novel types of small staphylococcal plasmids carrying the lincosamide nucleotidyltransferase gene lnu(A) J. Antimicrob. Chemother. 2007;59:600–606. doi: 10.1093/jac/dkm008. PubMed DOI
Burkhart B.J., Schwalen C.J., Mann G., Naismith J.H., Mitchell D.A. YcaO-dependent posttranslational amide activation: Biosynthesis, structure, and function. Chem. Rev. 2017;117:5389–5456. doi: 10.1021/acs.chemrev.6b00623. PubMed DOI PMC
Chan Y.G., Frankel M.B., Missiakas D., Schneewind O. SagB glucosaminidase is a determinant of Staphylococcus aureus glycan chain length, antibiotic susceptibility, and protein secretion. J. Bacteriol. 2016;198:1123–1136. doi: 10.1128/JB.00983-15. PubMed DOI PMC
Dean B.A., Williams R.E.O., Hall F., Corse J. Phage typing of coagulase-negative staphylococci and micrococci. Epidemiol. Infect. (J. Hyg.) 1973;71:261–270. doi: 10.1017/S0022172400022737. PubMed DOI PMC
Kwan T., Liu J., DuBow M., Gros P., Pelletier J. The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proc. Natl. Acad. Sci. USA. 2005;102:5174–5179. doi: 10.1073/pnas.0501140102. PubMed DOI PMC
Gutierrez D., Adriaenssens E.M., Martinez B., Rodriguez A., Lavigne R., Kropinski A.M., Garcia P. Three proposed new bacteriophage genera of staphylococcal phages: “3alikevirus”, “77likevirus” and “Phietalikevirus”. Arch. Virol. 2014;159:389–398. doi: 10.1007/s00705-013-1833-1. PubMed DOI
Tetens J., Sprotte S., Thimm G., Wagner N., Brinks E., Neve H., Holzel C.S., Franz C.M.A.P. First molecular characterization of Siphoviridae-like bacteriophages infecting Staphylococcus hyicus in a case of exudative epidermitis. Front. Microbiol. 2021;12:653501. doi: 10.3389/fmicb.2021.653501. PubMed DOI PMC
Schwendener S., Dona V., Perreten V. The novel macrolide resistance genes mef(D), msr(F), and msr(H) are present on resistance islands in Macrococcus canis, Macrococcus caseolyticus, and Staphylococcus aureus. Antimicrob. Agents Chemother. 2020;64:e00160-20. doi: 10.1128/AAC.00160-20. PubMed DOI PMC
Rosey E.L., Oskouian B., Stewart G.C. Lactose metabolism by Staphylococcus aureus: Characterization of lacABCD, the structural genes of the tagatose 6-phosphate pathway. J. Bacteriol. 1991;173:5992–5998. doi: 10.1128/jb.173.19.5992-5998.1991. PubMed DOI PMC
Naushad S., Barkema H.W., Luby C., Condas L.A., Nobrega D.B., Carson D.A., De Buck J. Comprehensive phylogenetic analysis of bovine non-aureus staphylococci species based on whole-genome sequencing. Front. Microbiol. 2016;7:1990. doi: 10.3389/fmicb.2016.01990. PubMed DOI PMC
Haft D.H., Selengut J., Mongodin E.F., Nelson K.E. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput. Biol. 2005;1:e60. doi: 10.1371/journal.pcbi.0010060. PubMed DOI PMC
Pantůček R., Švec P., Dajcs J.J., Machová I., Černohlavková J., Šedo O., Gelbíčová T., Mašlaňová I., Doškař J., Zdráhal Z., et al. Staphylococcus petrasii sp. nov. including S. petrasii subsp. petrasii subsp. nov. and S. petrasii subsp. croceilyticus subsp. nov., isolated from human clinical specimens and human ear infections. Syst. Appl. Microbiol. 2013;36:90–95. doi: 10.1016/j.syapm.2012.11.004. PubMed DOI
Mannerová S., Pantůček R., Doškař J., Švec P., Snauwaert C., Vancanneyt M., Swings J., Sedláček I. Macrococcus brunensis sp. nov., Macrococcus hajekii sp. nov. and Macrococcus lamae sp. nov., from the skin of llamas. Int. J. Syst. Evol. Microbiol. 2003;53:1647–1654. doi: 10.1099/ijs.0.02683-0. PubMed DOI
Mašlaňová I., Wertheimer Z., Sedláček I., Švec P., Indráková A., Kovařovic V., Schumann P., Spröer C., Králová S., Šedo O., et al. Description and comparative genomics of Macrococcus caseolyticus subsp. hominis subsp. nov., Macrococcus goetzii sp. nov., Macrococcus epidermidis sp. nov., and Macrococcus bohemicus sp. nov., novel macrococci from human clinical material with virulence potential and suspected uptake of foreign DNA by natural transformation. Front. Microbiol. 2018;9:1178. doi: 10.3389/fmicb.2018.01178. PubMed DOI PMC
EUCAST Breakpoint Tables for Interpretation of MICs and Zone Diameters. The European Committee on Antimicrobial Susceptibility Testing: Version 6.0. 2016. [(accessed on 10 June 2019)]. Available online: https://www.eucast.org.
Pantůček R., Sedláček I., Indraková A., Vrbovská V., Mašlaňová I., Kovařovic V., Švec P., Králová S., Krištofová L., Kekláková J., et al. Staphylococcus edaphicus sp. nov., isolated in Antarctica, harbors the mecC gene and genomic islands with a suspected role in adaptation to extreme environments. Appl. Env. Microbiol. 2018;84:e01746-17. doi: 10.1128/AEM.01746-17. PubMed DOI PMC
Sasser M. Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Revision July 2006 ed. MIDI Inc.; Newark, DE, USA: 1990.
Schumann P., Kalensee F., Cao J., Criscuolo A., Clermont D., Kohler J.M., Meier-Kolthoff J.P., Neumann-Schaal M., Tindall B.J., Pukall R. Reclassification of Haloactinobacterium glacieicola as Occultella glacieicola gen. nov., comb. nov., of Haloactinobacterium album as Ruania alba comb. nov, with an emended description of the genus Ruania, recognition that the genus names Haloactinobacterium and Ruania are heterotypic synonyms and description of Occultella aeris sp. nov., a halotolerant isolate from surface soil sampled at an ancient copper smelter. Int. J. Syst. Evol. Microbiol. 2021;71:004769. doi: 10.1099/ijsem.0.004769. PubMed DOI
Kämpfer P., McInroy J.A., Clermont D., Neumann-Schaal M., Criscuolo A., Busse H.-J., Glaeser S.P. Leucobacter soli sp. nov., from soil amended with humic acid. Int. J. Syst. Evol. Microbiol. 2021;71:005156. doi: 10.1099/ijsem.0.005156. PubMed DOI
Vieira S., Huber K.J., Neumann-Schaal M., Geppert A., Luckner M., Wanner G., Overmann J. Usitatibacter rugosus gen. nov., sp. nov. and Usitatibacter palustris sp. nov., novel members of Usitatibacteraceae fam. nov. within the order Nitrosomonadales isolated from soil. Int. J. Syst. Evol. Microbiol. 2021;71:004631. doi: 10.1099/ijsem.0.004631. PubMed DOI
Švec P., Pantůček R., Petráš P., Sedláček I., Nováková D. Identification of Staphylococcus spp. using (GTG)5-PCR fingerprinting. Syst. Appl. Microbiol. 2010;33:451–456. doi: 10.1016/j.syapm.2010.09.004. PubMed DOI
Pantůček R., Sedláček I., Petráš P., Koukalová D., Švec P., Štětina V., Vancanneyt M., Chrastinová L., Vokurková J., Růžičková V., et al. Staphylococcus simiae sp. nov., isolated from South American squirrel monkeys. Int. J. Syst. Evol. Microbiol. 2005;55:1953–1958. doi: 10.1099/ijs.0.63590-0. PubMed DOI
Mellmann A., Becker K., von Eiff C., Keckevoet U., Schumann P., Harmsen D. Sequencing and staphylococci identification. Emerg. Infect. Dis. 2006;12:333–336. doi: 10.3201/eid1202.050962. PubMed DOI PMC
Yoon S.H., Ha S.M., Kwon S., Lim J., Kim Y., Seo H., Chun J. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017;67:1613–1617. doi: 10.1099/ijsem.0.001755. PubMed DOI PMC
Lagesen K., Hallin P., Rodland E.A., Staerfeldt H.H., Rognes T., Ussery D.W. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 2007;35:3100–3108. doi: 10.1093/nar/gkm160. PubMed DOI PMC
Kitts P.A., Church D.M., Thibaud-Nissen F., Choi J., Hem V., Sapojnikov V., Smith R.G., Tatusova T., Xiang C., Zherikov A., et al. Assembly: A resource for assembled genomes at NCBI. Nucleic Acids Res. 2016;44:D73–D80. doi: 10.1093/nar/gkv1226. PubMed DOI PMC
Sichtig H., Minogue T., Yan Y., Stefan C., Hall A., Tallon L., Sadzewicz L., Nadendla S., Klimke W., Hatcher E., et al. FDA-ARGOS is a database with public quality-controlled reference genomes for diagnostic use and regulatory science. Nat. Commun. 2019;10:3313. doi: 10.1038/s41467-019-11306-6. PubMed DOI PMC
Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC
Tamura K., Nei M. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 1993;10:512–526. doi: 10.1093/oxfordjournals.molbev.a040023. PubMed DOI
Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution. 1985;39:783–791. doi: 10.1111/j.1558-5646.1985.tb00420.x. PubMed DOI
Na S.I., Kim Y.O., Yoon S.H., Ha S.M., Baek I., Chun J. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J. Microbiol. 2018;56:280–285. doi: 10.1007/s12275-018-8014-6. PubMed DOI
Meier-Kolthoff J.P., Carbasse J.S., Peinado-Olarte R.L., Göker M. TYGS and LPSN: A database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2021;49:gkab902. doi: 10.1093/nar/gkab902. PubMed DOI PMC
Jain C., Rodriguez R.L., Phillippy A.M., Konstantinidis K.T., Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 2018;9:5114. doi: 10.1038/s41467-018-07641-9. PubMed DOI PMC
Fišarová L., Botka T., Du X., Mašlaňová I., Bárdy P., Pantůček R., Benešík M., Roudnický P., Winstel V., Larsen J., et al. Staphylococcus epidermidis phages transduce antimicrobial resistance plasmids and mobilize chromosomal islands. mSphere. 2021;6:e00223-21. doi: 10.1128/mSphere.00223-21. PubMed DOI PMC
De Coster W., D’Hert S., Schultz D.T., Cruts M., Van Broeckhoven C. NanoPack: Visualizing and processing long-read sequencing data. Bioinformatics. 2018;34:2666–2669. doi: 10.1093/bioinformatics/bty149. PubMed DOI PMC
Wick R.R., Judd L.M., Gorrie C.L., Holt K.E. Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 2017;13:e1005595. doi: 10.1371/journal.pcbi.1005595. PubMed DOI PMC
Bankevich A., Nurk S., Antipov D., Gurevich A.A., Dvorkin M., Kulikov A.S., Lesin V.M., Nikolenko S.I., Pham S., Prjibelski A.D., et al. SPAdes: A new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 2012;19:455–477. doi: 10.1089/cmb.2012.0021. PubMed DOI PMC
Walker B.J., Abeel T., Shea T., Priest M., Abouelliel A., Sakthikumar S., Cuomo C.A., Zeng Q., Wortman J., Young S.K., et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9:e112963. doi: 10.1371/journal.pone.0112963. PubMed DOI PMC
Seemann T. Prokka: Rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–2069. doi: 10.1093/bioinformatics/btu153. PubMed DOI
Page A.J., Cummins C.A., Hunt M., Wong V.K., Reuter S., Holden M.T., Fookes M., Falush D., Keane J.A., Parkhill J. Roary: Rapid large-scale prokaryote pan genome analysis. Bioinformatics. 2015;31:3691–3693. doi: 10.1093/bioinformatics/btv421. PubMed DOI PMC
Li W., O’Neill K.R., Haft D.H., DiCuccio M., Chetvernin V., Badretdin A., Coulouris G., Chitsaz F., Derbyshire M.K., Durkin A.S., et al. RefSeq: Expanding the Prokaryotic Genome Annotation Pipeline reach with protein family model curation. Nucleic Acids Res. 2021;49:D1020–D1028. doi: 10.1093/nar/gkaa1105. PubMed DOI PMC
Okonechnikov K., Golosova O., Fursov M., The UGENE Team Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics. 2012;28:1166–1167. doi: 10.1093/bioinformatics/bts091. PubMed DOI
Sullivan M.J., Petty N.K., Beatson S.A. Easyfig: A genome comparison visualizer. Bioinformatics. 2011;27:1009–1010. doi: 10.1093/bioinformatics/btr039. PubMed DOI PMC
Arndt D., Grant J.R., Marcu A., Sajed T., Pon A., Liang Y., Wishart D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–W21. doi: 10.1093/nar/gkw387. PubMed DOI PMC
Edwards R., Decewicz P., Katelyn, Daniel S., Laurasisk . Zenodo. CERN; Geneva, Switzerland: 2021. linsalrob/PhiSpy: Dropped prophages (v.4.2.19) DOI
Bertelli C., Laird M.R., Williams K.P., Simon Fraser University Research Computing Group. Lau B.Y., Hoad G., Winsor G.L., Brinkman F.S.L. IslandViewer 4: Expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017;45:W30–W35. doi: 10.1093/nar/gkx343. PubMed DOI PMC
Siguier P., Perochon J., Lestrade L., Mahillon J., Chandler M. ISfinder: The reference centre for bacterial insertion sequences. Nucleic Acids Res. 2006;34:D32–D36. doi: 10.1093/nar/gkj014. PubMed DOI PMC
Russel J., Pinilla-Redondo R., Mayo-Munoz D., Shah S.A., Sorensen S.J. CRISPRCasTyper: Automated identification, annotation, and classification of CRISPR-Cas loci. CRISPR J. 2020;3:462–469. doi: 10.1089/crispr.2020.0059. PubMed DOI
Liu B., Zheng D., Jin Q., Chen L., Yang J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2019;47:D687–D692. doi: 10.1093/nar/gky1080. PubMed DOI PMC