Evidence of in vitro mecB-mediated β-lactam antibiotic resistance transfer to Staphylococcus aureus from Macrococcus psychrotolerans sp. nov., a psychrophilic bacterium from food-producing animals and human clinical specimens

. 2025 Apr 23 ; 91 (4) : e0165224. [epub] 20250311

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40066988

Grantová podpora
LX22NPO5103, LM2023042, LM2023067, 90254 Ministerstvo Školství, Mládeže a Tělovýchovy
NIPH 75010330 Ministerstvo Zdravotnictví Ceské Republiky
MUNI/A/1603/2024 Masarykova Univerzita

Macrococci are usually found as commensals on the skin and mucosa of animals and have been isolated from mammal-derived fermented foods; however, they can also act as opportunistic pathogens. Here, we used whole-genome sequencing, comparative genomics, extensive biotyping, MALDI-TOF mass spectrometry, and chemotaxonomy to characterize Macrococcus sp. strains isolated from livestock and human-related specimens. Based on the results of polyphasic taxonomy, we propose the species Macrococcus psychrotolerans sp. nov. (type strain NRL/St 95/376T = CCM 8659T = DSM 111350T) belonging to the Macrococcus caseolyticus phylogenetic clade. It grows at 4°C, and the core genome of the isolates contains suspected genes contributing to low-temperature tolerance. Variable genetic elements include prophages, chromosomal islands, a composite staphylococcal cassette chromosome island, and many plasmids that affect the overall genome expansion and adaptation to specific ecological settings of the studied isolates. Large plasmids carrying the methicillin resistance gene mecB were identified in M. psychrotolerans sp. nov. strains and confirmed as self-transmissible to Staphylococcus aureus in vitro. In addition to plasmids with circular topology, a 150-kb-long linear plasmid with 14.1-kb-long inverted terminal repeats, harboring many IS elements and putative genes for a type IV secretion system was revealed. The described strains were isolated from human clinical material, food-producing animals, meat, and a wooden cheese board and have the potential to proliferate at refrigerator temperatures. Their presence in the food chain and human infections indicates that attention needs to be paid to this potential novel opportunistic pathogen.IMPORTANCEThe study offers insights into the phenotypic and genomic features of a novel species of the genus Macrococcus that occurs in livestock, food, and humans. The large number of diverse mobile genetic elements contributes to the adaptation of macrococci to various environments. The ability of the described microorganisms to grow at refrigerator temperatures, enabled by genes that are predicted to contribute to low-temperature tolerance, raises food safety concerns. Confirmed in vitro conjugative transfer of plasmid-borne mecB gene to S. aureus poses a significant risk of spread of broad β-lactam resistance. In addition, the intergeneric plasmid transfer to S. aureus is indicative of horizontal gene transfer events that may be more frequent than generally accepted. Determining a complete sequence and gene content of linear megaplasmid with exceptional topology for the Staphylococcaceae family suggests its possible role in shuttling adaptive traits through an exchange of genetic information.

Zobrazit více v PubMed

Parte AC, Sardà Carbasse J, Meier-Kolthoff JP, Reimer LC, Göker M. 2020. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int J Syst Evol Microbiol 70:5607–5612. doi:10.1099/ijsem.0.004332 PubMed DOI PMC

de la Fuente R, Suarez G, Ruiz Santa Quiteria JA, Meugnier H, Bes M, Freney J, Fleurette J. 1992. Identification of coagulase negative staphylococci isolated from lambs as Staphylococcus caseolyticus. Comp Immunol Microbiol Infect Dis 15:47–52. doi:10.1016/0147-9571(92)90101-v PubMed DOI

Schwendener S, Cotting K, Perreten V. 2017. Novel methicillin resistance gene mecD in clinical Macrococcus caseolyticus strains from bovine and canine sources. Sci Rep 7:43797. doi:10.1038/srep43797 PubMed DOI PMC

Li G, Du X, Zhou D, Li C, Huang L, Zheng Q, Cheng Z. 2018. Emergence of pathogenic and multiple-antibiotic-resistant Macrococcus caseolyticus in commercial broiler chickens. Transbound Emerg Dis 65:1605–1614. doi:10.1111/tbed.12912 PubMed DOI

Gobeli Brawand S, Cotting K, Gómez-Sanz E, Collaud A, Thomann A, Brodard I, Rodriguez-Campos S, Strauss C, Perreten V. 2017. Macrococcus canis sp. nov., a skin bacterium associated with infections in dogs. Int J Syst Evol Microbiol 67:621–626. doi:10.1099/ijsem.0.001673 PubMed DOI

Cotting K, Strauss C, Rodriguez-Campos S, Rostaher A, Fischer NM, Roosje PJ, Favrot C, Perreten V. 2017. Macrococcus canis and M. caseolyticus in dogs: occurrence, genetic diversity and antibiotic resistance. Vet Dermatol 28:559–e133. doi:10.1111/vde.12474 PubMed DOI

Mašlaňová I, Wertheimer Z, Sedláček I, Švec P, Indráková A, Kovařovic V, Schumann P, Spröer C, Králová S, Šedo O, Krištofová L, Vrbovská V, Füzik T, Petráš P, Zdráhal Z, Ružičková V, Doškař J, Pantůček R. 2018. Description and comparative genomics of Macrococcus caseolyticus subsp. hominis subsp. nov., Macrococcus goetzii sp. nov., Macrococcus epidermidis sp. nov., and Macrococcus bohemicus sp. nov., novel macrococci from human clinical material with virulence potential and suspected uptake of foreign DNA by natural transformation. Front Microbiol 9:1178. doi:10.3389/fmicb.2018.01178 PubMed DOI PMC

Jost G, Schwendener S, Liassine N, Perreten V. 2021. Methicillin-resistant Macrococcus canis in a human wound. Infect Genet Evol 96:105125. doi:10.1016/j.meegid.2021.105125 PubMed DOI

Carroll LM, Pierneef R, Mafuna T, Magwedere K, Matle I. 2023. Genus-wide genomic characterization of Macrococcus: insights into evolution, population structure, and functional potential. Front Microbiol 14:1181376. doi:10.3389/fmicb.2023.1181376 PubMed DOI PMC

MacFadyen AC, Fisher EA, Costa B, Cullen C, Paterson GK. 2018. Genome analysis of methicillin resistance in Macrococcus caseolyticus from dairy cattle in England and Wales. Microb Genom 4:000191. doi:10.1099/mgen.0.000191 PubMed DOI PMC

Ramos GLPA, Vigoder HC, Nascimento JS. 2021. Technological applications of Macrococcus caseolyticus and its impact on food safety. Curr Microbiol 78:11–16. doi:10.1007/s00284-020-02281-z PubMed DOI

Mazhar S, Hill C, McAuliffe O. 2018. The genus Macrococcus: an insight into its biology, evolution, and relationship with Staphylococcus. Adv Appl Microbiol 105:1–50. doi:10.1016/bs.aambs.2018.05.002 PubMed DOI

Schwendener S, Perreten V. 2021. Complete circular genome sequence of a mecB- and mecD-containing strain of Macrococcus canis. Microbiol Resour Announc 10:e00408-21. doi:10.1128/MRA.00408-21 PubMed DOI PMC

Schwendener S, Keller JE, Overesch G, Perreten V. 2021. Novel SCCmec element containing the methicillin resistance gene mecD in Macrococcus bohemicus. J Glob Antimicrob Resist 24:360–362. doi:10.1016/j.jgar.2021.02.001 PubMed DOI

Schwendener S, Perreten V. 2022. The bla and mec families of β-lactam resistance genes in the genera Macrococcus, Mammaliicoccus and Staphylococcus: an in-depth analysis with emphasis on Macrococcus. J Antimicrob Chemother 77:1796–1827. doi:10.1093/jac/dkac107 PubMed DOI

Chanchaithong P, Perreten V, Schwendener S. 2019. Macrococcus canis contains recombinogenic methicillin resistance elements and the mecB plasmid found in Staphylococcus aureus. J Antimicrob Chemother 74:2531–2536. doi:10.1093/jac/dkz260 PubMed DOI

Baba T, Kuwahara-Arai K, Uchiyama I, Takeuchi F, Ito T, Hiramatsu K. 2009. Complete genome sequence of Macrococcus caseolyticus strain JCSCS5402, reflecting the ancestral genome of the human-pathogenic staphylococci. J Bacteriol 191:1180–1190. doi:10.1128/JB.01058-08 PubMed DOI PMC

Tsubakishita S, Kuwahara-Arai K, Baba T, Hiramatsu K. 2010. Staphylococcal cassette chromosome mec-like element in Macrococcus caseolyticus. Antimicrob Agents Chemother 54:1469–1475. doi:10.1128/AAC.00575-09 PubMed DOI PMC

Becker K, van Alen S, Idelevich EA, Schleimer N, Seggewiß J, Mellmann A, Kaspar U, Peters G. 2018. Plasmid-encoded transferable mecB-mediated methicillin resistance in Staphylococcus aureus. Emerg Infect Dis 24:242–248. doi:10.3201/eid2402.171074 PubMed DOI PMC

Zhang Y, Min S, Sun Y, Ye J, Zhou Z, Li H. 2022. Characteristics of population structure, antimicrobial resistance, virulence factors, and morphology of methicillin-resistant Macrococcus caseolyticus in global clades. BMC Microbiol 22:266. doi:10.1186/s12866-022-02679-8 PubMed DOI PMC

Keller JE, Schwendener S, Neuenschwander J, Overesch G, Perreten V. 2022. Prevalence and characterization of methicillin-resistant Macrococcus spp. in food producing animals and meat in Switzerland in 2019. Schweiz Arch Tierheilkd 164:153–164. doi:10.17236/sat00343 PubMed DOI

Keller JE, Schwendener S, Overesch G, Perreten V. 2022. Macrococcus armenti sp. nov., a novel bacterium isolated from the skin and nasal cavities of healthy pigs and calves. Int J Syst Evol Microbiol 72:005245. doi:10.1099/ijsem.0.005245 PubMed DOI

Keller JE, Schwendener S, Nováková D, Pantůček R, Perreten V. 2023. Letter to the editor: novel antimicrobial genetic elements in methicillin-resistant Macrococcus armenti. Microb Drug Resist 29:65–68. doi:10.1089/mdr.2022.0162 PubMed DOI

Kim M, Oh HS, Park SC, Chun J. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int J Syst Evol Microbiol 64:346–351. doi:10.1099/ijs.0.059774-0 PubMed DOI

Madonna AJ, Basile F, Ferrer I, Meetani MA, Rees JC, Voorhees KJ. 2000. On-probe sample pretreatment for the detection of proteins above 15 KDa from whole cell bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 14:2220–2229. doi:10.1002/1097-0231(20001215)14:23<2220::AID-RCM155>3.0.CO;2-4 PubMed DOI

Thomas PD, Ebert D, Muruganujan A, Mushayahama T, Albou LP, Mi H. 2022. PANTHER: making genome-scale phylogenetics accessible to all. Protein Sci 31:8–22. doi:10.1002/pro.4218 PubMed DOI PMC

Beckering CL, Steil L, Weber MHW, Völker U, Marahiel MA. 2002. Genomewide transcriptional analysis of the cold shock response in Bacillus subtilis. J Bacteriol 184:6395–6402. doi:10.1128/JB.184.22.6395-6402.2002 PubMed DOI PMC

Kahánková J, Pantůček R, Goerke C, Růžičková V, Holochová P, Doškař J. 2010. Multilocus PCR typing strategy for differentiation of Staphylococcus aureus siphoviruses reflecting their modular genome structure. Environ Microbiol 12:2527–2538. doi:10.1111/j.1462-2920.2010.02226.x PubMed DOI

Penadés JR, Christie GE. 2015. The phage-inducible chromosomal islands: a family of highly evolved molecular parasites. Annu Rev Virol 2:181–201. doi:10.1146/annurev-virology-031413-085446 PubMed DOI

Wipf JRK, Schwendener S, Nielsen JB, Westh H, Perreten V. 2015. The new macrolide-lincosamide-streptogramin B resistance gene erm(45) is located within a genomic island in Staphylococcus fleurettii. Antimicrob Agents Chemother 59:3578–3581. doi:10.1128/AAC.00369-15 PubMed DOI PMC

Tangney M, Fitzgerald GF. 2002. Effectiveness of the lactococcal abortive infection systems AbiA, AbiE, AbiF and AbiG against P335 type phages. FEMS Microbiol Lett 210:67–72. doi:10.1111/j.1574-6968.2002.tb11161.x PubMed DOI

Gómez-Sanz E, Schwendener S, Thomann A, Gobeli Brawand S, Perreten V. 2015. First staphylococcal cassette chromosome mec containing a mecB-carrying gene complex independent of transposon Tn6045 in a Macrococcus canis isolate from a canine infection. Antimicrob Agents Chemother 59:4577–4583. doi:10.1128/AAC.05064-14 PubMed DOI PMC

Shintani M, Sanchez ZK, Kimbara K. 2015. Genomics of microbial plasmids: classification and identification based on replication and transfer systems and host taxonomy. Front Microbiol 6:242. doi:10.3389/fmicb.2015.00242 PubMed DOI PMC

Goessweiner-Mohr N, Arends K, Keller W, Grohmann E. 2013. Conjugative type IV secretion systems in Gram-positive bacteria. Plasmid 70:289–302. doi:10.1016/j.plasmid.2013.09.005 PubMed DOI PMC

Neyfakh AA, Borsch CM, Kaatz GW. 1993. Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter. Antimicrob Agents Chemother 37:128–129. doi:10.1128/AAC.37.1.128 PubMed DOI PMC

Bello S, Mudassir SH, Rudra B, Gupta RS. 2023. Phylogenomic and molecular markers based studies on Staphylococcaceae and Gemella species. Proposals for an emended family Staphylococcaceae and three new families (Abyssicoccaceae fam. nov., Salinicoccaceae fam. nov. and Gemellaceae fam. nov.) harboring four new genera, Lacicoccus gen. nov., Macrococcoides gen. nov., Gemelliphila gen. nov., and Phocicoccus gen. nov. Antonie Van Leeuwenhoek 116:937–973. doi:10.1007/s10482-023-01857-6 PubMed DOI

Li X, Wang H, Guo C, Wang L. 2024. Profiling of microbial populations present in ground beef and plant-based meat analogues. LWT 196:115845. doi:10.1016/j.lwt.2024.115845 DOI

Almada L, Guibert EE, Rodriguez JV. 2002. A simple GC method for determination of cryoprotector diols 1,4-butanediol or 2,3-butanediol in isolated rat hepatocytes. Cryo Letters 23:113–120. https://www.ingentaconnect.com/content/cryo/cryo/2002/00000023/00000002/art00006. PubMed

Xiao Z, Xu P. 2007. Acetoin metabolism in bacteria. Crit Rev Microbiol 33:127–140. doi:10.1080/10408410701364604 PubMed DOI

Lu P, Bai R, Gao T, Chen J, Jiang K, Zhu Y, Lu Y, Zhang S, Xu F, Zhao H. 2024. Systemic metabolic engineering of Enterobacter aerogenes for efficient 2,3-butanediol production. Appl Microbiol Biotechnol 108:146. doi:10.1007/s00253-023-12911-8 PubMed DOI PMC

Ermolenko DN, Makhatadze GI. 2002. Bacterial cold-shock proteins. Cell Mol Life Sci 59:1902–1913. doi:10.1007/pl00012513 PubMed DOI PMC

Zhou Z, Tang H, Wang W, Zhang L, Su F, Wu Y, Bai L, Li S, Sun Y, Tao F, Xu P. 2021. A cold shock protein promotes high-temperature microbial growth through binding to diverse RNA species. Cell Discov 7:15. doi:10.1038/s41421-021-00246-5 PubMed DOI PMC

Freese E, Sass H, Rütters H, Schledjewski R, Rullkötter J. 2008. Variable temperature-related changes in fatty acid composition of bacterial isolates from German Wadden sea sediments representing different bacterial phyla. Org Geochem 39:1427–1438. doi:10.1016/j.orggeochem.2008.06.005 DOI

Suutari M, Laakso S. 1994. Microbial fatty acids and thermal adaptation. Crit Rev Microbiol 20:285–328. doi:10.3109/10408419409113560 PubMed DOI

Pelicic V. 2023. Mechanism of assembly of type 4 filaments: everything you always wanted to know (but were afraid to ask). Microbiology (Reading) 169:001311. doi:10.1099/mic.0.001311 PubMed DOI PMC

Chung YS, Dubnau D. 1998. All seven comG open reading frames are required for DNA binding during transformation of competent Bacillus subtilis. J Bacteriol 180:41–45. doi:10.1128/JB.180.1.41-45.1998 PubMed DOI PMC

Brooks MR, Padilla-Vélez L, Khan TA, Qureshi AA, Pieper JB, Maddox CW, Alam MT. 2020. Prophage-mediated disruption of genetic competence in Staphylococcus pseudintermedius. mSystems 5:e00684-19. doi:10.1128/mSystems.00684-19 PubMed DOI PMC

Mingoia M, Morici E, Tili E, Giovanetti E, Montanari MP, Varaldo PE. 2013. Characterization of Tn5801.Sag, a variant of Staphylococcus aureus Tn916 family transposon Tn5801 that is widespread in clinical isolates of Streptococcus agalactiae. Antimicrob Agents Chemother 57:4570–4574. doi:10.1128/AAC.00521-13 PubMed DOI PMC

Song L, Pan Y, Chen S, Zhang X. 2012. Structural characteristics of genomic islands associated with GMP synthases as integration hotspot among sequenced microbial genomes. Comput Biol Chem 36:62–70. doi:10.1016/j.compbiolchem.2012.01.001 PubMed DOI

Novick RP, Christie GE, Penadés JR. 2010. The phage-related chromosomal islands of Gram-positive bacteria. Nat Rev Microbiol 8:541–551. doi:10.1038/nrmicro2393 PubMed DOI PMC

Chan LC, Basuino L, Diep B, Hamilton S, Chatterjee SS, Chambers HF. 2015. Ceftobiprole- and ceftaroline-resistant methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 59:2960–2963. doi:10.1128/AAC.05004-14 PubMed DOI PMC

Sengupta M, Austin S. 2011. Prevalence and significance of plasmid maintenance functions in the virulence plasmids of pathogenic bacteria. Infect Immun 79:2502–2509. doi:10.1128/IAI.00127-11 PubMed DOI PMC

Dib JR, Wagenknecht M, Farías ME, Meinhardt F. 2015. Strategies and approaches in plasmidome studies-uncovering plasmid diversity disregarding of linear elements? Front Microbiol 6:463. doi:10.3389/fmicb.2015.00463 PubMed DOI PMC

Neyaz L, Karki AB, Fakhr MK. 2020. Draft genome sequence of megaplasmid-bearing Staphylococcus sciuri strain B9-58B, isolated from retail pork. Microbiol Resour Announc 9:e01474-19. doi:10.1128/MRA.01474-19 PubMed DOI PMC

Lysnyansky I, Calcutt MJ, Ben-Barak I, Ron Y, Levisohn S, Methé BA, Yogev D. 2009. Molecular characterization of newly identified IS3, IS4 and IS30 insertion sequence-like elements in Mycoplasma bovis and their possible roles in genome plasticity. FEMS Microbiol Lett 294:172–182. doi:10.1111/j.1574-6968.2009.01562.x PubMed DOI

Boer DR, Ruiz-Masó JA, Rueda M, Petoukhov MV, Machón C, Svergun DI, Orozco M, del Solar G, Coll M. 2016. Conformational plasticity of RepB, the replication initiator protein of promiscuous streptococcal plasmid pMV158. Sci Rep 6:20915. doi:10.1038/srep20915 PubMed DOI PMC

Pantůček R, Švec P, Dajcs JJ, Machová I, Černohlávková J, Šedo O, Gelbíčová T, Mašlaňová I, Doškař J, Zdráhal Z, Růžičková V, Sedláček I. 2013. Staphylococcus petrasii sp. nov. including S. petrasii subsp. petrasii subsp. nov. and S. petrasii subsp. croceilyticus subsp. nov., isolated from human clinical specimens and human ear infections. Syst Appl Microbiol 36:90–95. doi:10.1016/j.syapm.2012.11.004 PubMed DOI

Kovařovic V, Sedláček I, Petráš P, Králová S, Mašlaňová I, Švec P, Neumann-Schaal M, Botka T, Gelbíčová T, Staňková E, Doškař J, Pantůček R. 2022. Staphylococcus ratti sp. nov. isolated from a lab rat. Pathogens 11:51. doi:10.3390/pathogens11010051 PubMed DOI PMC

EUCAST . 2024. Breakpoint tables for interpretation of MICs and zone diameters, version 14.0. The European Committee on Antimicrobial Susceptibility Testing. Available from: http://www.eucast.org

Kovařovic V, Finstrlová A, Sedláček I, Petráš P, Švec P, Mašlaňová I, Neumann-Schaal M, Šedo O, Botka T, Staňková E, Doškař J, Pantůček R. 2023. Staphylococcus brunensis sp. nov. isolated from human clinical specimens with a staphylococcal cassette chromosome-related genomic island outside of the rlmH gene bearing the ccrDE recombinase gene complex. Microbiol Spectr 11:e0134223. doi:10.1128/spectrum.01342-23 PubMed DOI PMC

Freiwald A, Sauer S. 2009. Phylogenetic classification and identification of bacteria by mass spectrometry. Nat Protoc 4:732–742. doi:10.1038/nprot.2009.37 PubMed DOI

Švec P, Pantůček R, Petráš P, Sedláček I, Nováková D. 2010. Identification of Staphylococcus spp. using (GTG)₅-PCR fingerprinting. Syst Appl Microbiol 33:451–456. doi:10.1016/j.syapm.2010.09.004 PubMed DOI

Sasser M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids, MIDI technical note 101, Revision July 2006 ed. MIDI Inc., Newark, DE. Available from: http://midi-inc.com/pdf/MIS_Technote_101.pdf

Vieira S, Huber KJ, Neumann-Schaal M, Geppert A, Luckner M, Wanner G, Overmann J. 2021. Usitatibacter rugosus gen. nov., sp. nov. and Usitatibacter palustris sp. nov., novel members of Usitatibacteraceae fam. nov. within the order Nitrosomonadales isolated from soil. Int J Syst Evol Microbiol 71:004631. doi:10.1099/ijsem.0.004631 PubMed DOI

Moss CW, Lambert-Fair MA. 1989. Location of double bonds in monounsaturated fatty acids of Campylobacter cryaerophila with dimethyl disulfide derivatives and combined gas chromatography-mass spectrometry. J Clin Microbiol 27:1467–1470. doi:10.1128/jcm.27.7.1467-1470.1989 PubMed DOI PMC

Schumann P. 2011. Peptidoglycan structure. Methods Microbiol 38:101–129. doi:10.1016/B978-0-12-387730-7.00005-X DOI

Schumann P, Kalensee F, Cao J, Criscuolo A, Clermont D, Köhler JM, Meier-Kolthoff JP, Neumann-Schaal M, Tindall BJ, Pukall R. 2021. Reclassification of Haloactinobacterium glacieicola as Occultella glacieicola gen. nov., comb. nov., of Haloactinobacterium album as Ruania alba comb. nov, with an emended description of the genus Ruania, recognition that the genus names Haloactinobacterium and Ruania are heterotypic synonyms and description of Occultella aeris sp. nov., a halotolerant isolate from surface soil sampled at an ancient copper smelter. Int J Syst Evol Microbiol 71:004769. doi:10.1099/ijsem.0.004769 PubMed DOI

Kämpfer P, McInroy JA, Clermont D, Neumann-Schaal M, Criscuolo A, Busse H-J, Glaeser SP. 2021. Leucobacter soli sp. nov., from soil amended with humic acid. Int J Syst Evol Microbiol 71:005156. doi:10.1099/ijsem.0.005156 PubMed DOI

Chlebowicz MA, Mašlaňová I, Kuntová L, Grundmann H, Pantůček R, Doškař J, van Dijl JM, Buist G. 2014. The staphylococcal cassette chromosome mec type V from Staphylococcus aureus ST398 is packaged into bacteriophage capsids. Int J Med Microbiol 304:764–774. doi:10.1016/j.ijmm.2014.05.010 PubMed DOI

Forbes BA, Schaberg DR. 1983. Transfer of resistance plasmids from Staphylococcus epidermidis to Staphylococcus aureus: evidence for conjugative exchange of resistance. J Bacteriol 153:627–634. doi:10.1128/jb.153.2.627-634.1983 PubMed DOI PMC

Fišarová L, Botka T, Du X, Mašlaňová I, Bárdy P, Pantůček R, Benešík M, Roudnický P, Winstel V, Larsen J, Rosenstein R, Peschel A, Doškař J. 2021. Staphylococcus epidermidis phages transduce antimicrobial resistance plasmids and mobilize chromosomal islands. mSphere 6:e00223-21. doi:10.1128/mSphere.00223-21 PubMed DOI PMC

Wingett SW, Andrews S. 2018. FastQ Screen: a tool for multi-genome mapping and quality control. F1000Res 7:1338. doi:10.12688/f1000research.15931.2 PubMed DOI PMC

Wick RR, Judd LM, Cerdeira LT, Hawkey J, Méric G, Vezina B, Wyres KL, Holt KE. 2021. Trycycler: consensus long-read assemblies for bacterial genomes. Genome Biol 22:266. doi:10.1186/s13059-021-02483-z PubMed DOI PMC

Wick R.R, Holt KE. 2022. Polypolish: short-read polishing of long-read bacterial genome assemblies. PLoS Comput Biol 18:e1009802. doi:10.1371/journal.pcbi.1009802 PubMed DOI PMC

Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics 34:3094–3100. doi:10.1093/bioinformatics/bty191 PubMed DOI PMC

Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nat Methods 9:357–359. doi:10.1038/nmeth.1923 PubMed DOI PMC

Pantůček R, Sedláček I, Petráš P, Koukalová D, Švec P, Štětina V, Vancanneyt M, Chrastinová L, Vokurková J, Růžičková V, Doškař J, Swings J, Hájek V. 2005. Staphylococcus simiae sp. nov., isolated from South American squirrel monkeys. Int J Syst Evol Microbiol 55:1953–1958. doi:10.1099/ijs.0.63590-0 PubMed DOI

Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, Chun J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol 67:1613–1617. doi:10.1099/ijsem.0.001755 PubMed DOI PMC

Tamura K, Stecher G, Kumar S. 2021. MEGA11: molecular evolutionary genetics analysis version 11. Mol Biol Evol 38:3022–3027. doi:10.1093/molbev/msab120 PubMed DOI PMC

Felsenstein J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791. doi:10.1111/j.1558-5646.1985.tb00420.x PubMed DOI

Na SI, Kim YO, Yoon SH, Ha SM, Baek I, Chun J. 2018. UBCG: up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J Microbiol 56:280–285. doi:10.1007/s12275-018-8014-6 PubMed DOI

Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. 2022. TYGS and LPSN: a database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res 50:D801–D807. doi:10.1093/nar/gkab902 PubMed DOI PMC

Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun 9:5114. doi:10.1038/s41467-018-07641-9 PubMed DOI PMC

Li W, O’Neill KR, Haft DH, DiCuccio M, Chetvernin V, Badretdin A, Coulouris G, Chitsaz F, Derbyshire MK, Durkin AS, Gonzales NR, Gwadz M, Lanczycki CJ, Song JS, Thanki N, Wang J, Yamashita RA, Yang M, Zheng C, Marchler-Bauer A, Thibaud-Nissen F. 2021. RefSeq: expanding the prokaryotic genome annotation pipeline reach with protein family model curation. Nucleic Acids Res 49:D1020–D1028. doi:10.1093/nar/gkaa1105 PubMed DOI PMC

Arndt D, Grant JR, Marcu A, Sajed T, Pon A, Liang Y, Wishart DS. 2016. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res 44:W16–W21. doi:10.1093/nar/gkw387 PubMed DOI PMC

Edwards R, Decewicz P, Katelyn D, Laurasisk S. 2022. linsalrob/PhiSpy: dropped prophages (v.4.2.21). Zenodo 2022:5945762. Available from: 10.5281/zenodo.3475716 DOI

Bertelli C, Laird MR, Williams KP, Lau BY, Hoad G, Winsor GL, Brinkman FS, Simon Fraser University Research Computing Group . 2017. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res 45:W30–W35. doi:10.1093/nar/gkx343 PubMed DOI PMC

Wang M, Goh YX, Tai C, Wang H, Deng Z, Ou HY. 2022. VRprofile2: detection of antibiotic resistance-associated mobilome in bacterial pathogens. Nucleic Acids Res 50:W768–W773. doi:10.1093/nar/gkac321 PubMed DOI PMC

Siguier P, Perochon J, Lestrade L, Mahillon J, Chandler M. 2006. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34:D32–D36. doi:10.1093/nar/gkj014 PubMed DOI PMC

Jia B, Raphenya AR, Alcock B, Waglechner N, Guo P, Tsang KK, Lago BA, Dave BM, Pereira S, Sharma AN, Doshi S, Courtot M, Lo R, Williams LE, Frye JG, Elsayegh T, Sardar D, Westman EL, Pawlowski AC, Johnson TA, Brinkman FSL, Wright GD, McArthur AG. 2017. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 45:D566–D573. doi:10.1093/nar/gkw1004 PubMed DOI PMC

Bortolaia V, Kaas RS, Ruppe E, Roberts MC, Schwarz S, Cattoir V, Philippon A, Allesoe RL, Rebelo AR, Florensa AF, et al. . 2020. ResFinder 4.0 for predictions of phenotypes from genotypes. J Antimicrob Chemother 75:3491–3500. doi:10.1093/jac/dkaa345 PubMed DOI PMC

Liu B, Zheng D, Zhou S, Chen L, Yang J. 2022. VFDB 2022: a general classification scheme for bacterial virulence factors. Nucleic Acids Res 50:D912–D917. doi:10.1093/nar/gkab1107 PubMed DOI PMC

Sun J, Lu F, Luo Y, Bie L, Xu L, Wang Y. 2023. OrthoVenn3: an integrated platform for exploring and visualizing orthologous data across genomes. Nucleic Acids Res 51:W397–W403. doi:10.1093/nar/gkad313 PubMed DOI PMC

Sullivan MJ, Petty NK, Beatson SA. 2011. Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010. doi:10.1093/bioinformatics/btr039 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...