Description and Comparative Genomics of Macrococcus caseolyticus subsp. hominis subsp. nov., Macrococcus goetzii sp. nov., Macrococcus epidermidis sp. nov., and Macrococcus bohemicus sp. nov., Novel Macrococci From Human Clinical Material With Virulence Potential and Suspected Uptake of Foreign DNA by Natural Transformation
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29951040
PubMed Central
PMC6008420
DOI
10.3389/fmicb.2018.01178
Knihovny.cz E-zdroje
- Klíčová slova
- CRISPR-Cas, Gram-positive pathogens, Macrococcus, Staphylococcal Cassette Chromosome (SCC), bacteriophage, methicillin resistance, plasmids, prokaryotic transformation,
- Publikační typ
- časopisecké články MeSH
The genus Macrococcus is a close relative of the genus Staphylococcus. Whilst staphylococci are widespread as human pathogens, macrococci have not yet been reported from human clinical specimens. Here we investigated Gram-positive and catalase-positive cocci recovered from human clinical material and identified as Macrococcus sp. by a polyphasic taxonomic approach and by comparative genomics. Relevant phenotypic, genotypic and chemotaxonomic methods divided the analyzed strains into two separate clusters within the genus Macrococcus. Comparative genomics of four representative strains revealed enormous genome structural plasticity among the studied isolates. We hypothesize that high genomic variability is due to the presence of a com operon, which plays a key role in the natural transformation of bacilli and streptococci. The possible uptake of exogenous DNA by macrococci can contribute to a different mechanism of evolution from staphylococci, where phage-mediated horizontal gene transfer predominates. The described macrococcal genomes harbor novel plasmids, genomic islands and islets, as well as prophages. Capsule gene clusters, intracellular protease, and a fibronectin-binding protein enabling opportunistic pathogenesis were found in all four strains. Furthermore, the presence of a CRISPR-Cas system with 90 spacers in one of the sequenced genomes corresponds with the need to limit the burden of foreign DNA. The highly dynamic genomes could serve as a platform for the exchange of virulence and resistance factors, as was described for the methicillin resistance gene, which was found on the novel composite SCCmec-like element containing a unique mec gene complex that is considered to be one of the missing links in SCC evolution. The phenotypic, genotypic, chemotaxonomic and genomic results demonstrated that the analyzed strains represent one novel subspecies and three novel species of the genus Macrococcus, for which the names Macrococcus caseolyticus subsp. hominis subsp. nov. (type strain CCM 7927T = DSM 103682T), Macrococcus goetzii sp. nov. (type strain CCM 4927T = DSM 103683T), Macrococcus epidermidis sp. nov. (type strain CCM 7099T = DSM 103681T), and Macrococcus bohemicus sp. nov. (type strain CCM 7100T = DSM 103680T) are proposed. Moreover, a formal description of Macrococcus caseolyticus subsp. caseolyticus subsp. nov. and an emended description of the genus Macrococcus are provided.
Central European Institute of Technology Masaryk University Brno Czechia
National Centre for Biomolecular Research Faculty of Science Masaryk University Brno Czechia
Reference Laboratory for Staphylococci National Institute of Public Health Prague Czechia
Zobrazit více v PubMed
Arndt D., Grant J. R., Marcu A., Sajed T., Pon A., Liang Y., et al. . (2016). PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44, W16–W21. 10.1093/nar/gkw387 PubMed DOI PMC
Arthur M., Depardieu F., Gerbaud G., Galimand M., Leclercq R., Courvalin P. (1997). The VanS sensor negatively controls VanR-mediated transcriptional activation of glycopeptide resistance genes of Tn1546 and related elements in the absence of induction. J. Bacteriol. 179, 97–106. 10.1128/jb.179.1.97-106.1997 PubMed DOI PMC
Aziz R. K., Bartels D., Best A. A., Dejongh M., Disz T., Edwards R. A., et al. . (2008). The RAST server: rapid annotations using subsystems technology. BMC Genomics 9:75. 10.1186/1471-2164-9-75 PubMed DOI PMC
Baba T., Kuwahara-Arai K., Uchiyama I., Takeuchi F., Ito T., Hiramatsu K. (2009). Complete genome sequence of Macrococcus caseolyticus strain JCSCS5402, reflecting the ancestral genome of the human-pathogenic staphylococci. J. Bacteriol. 191, 1180–1190. 10.1128/JB.01058-08 PubMed DOI PMC
Baida G. E., Kuzmin N. P. (1996). Mechanism of action of hemolysin III from Bacillus cereus. Biochim. Biophys. Acta 1284, 122–124. 10.1016/S0005-2736(96)00168-X PubMed DOI
Bay D. C., Turner R. J. (2012). Small multidrug resistance protein EmrE reduces host pH and osmotic tolerance to metabolic quaternary cation osmoprotectants. J. Bacteriol. 194, 5941–5948. 10.1128/JB.00666-12 PubMed DOI PMC
Becker K., Heilmann C., Peters G. (2014). Coagulase-negative staphylococci. Clin. Microbiol. Rev. 27, 870–926. 10.1128/CMR.00109-13 PubMed DOI PMC
Becker K., Van Alen S., Idelevich E. A., Schleimer N., Seggewiss J., Mellmann A., et al. . (2018). Plasmid-encoded transferable mecB-mediated methicillin resistance in Staphylococcus aureus. Emerging Infect. Dis. 24, 242–248. 10.3201/eid2402.171074 PubMed DOI PMC
Ben Zakour N. L., Bannoehr J., Van Den Broek A. H., Thoday K. L., Fitzgerald J. R. (2011). Complete genome sequence of the canine pathogen Staphylococcus pseudintermedius. J. Bacteriol. 193, 2363–2364. 10.1128/JB.00137-11 PubMed DOI PMC
Cashion P., Holder-Franklin M. A., McCully J., Franklin M. (1977). A rapid method for the base ratio determination of bacterial DNA. Anal. Biochem. 81, 461–466. 10.1016/0003-2697(77)90720-5 PubMed DOI
Castillo D., Espejo R., Middelboe M. (2014). Genomic structure of bacteriophage 6H and its distribution as prophage in Flavobacterium psychrophilum strains. FEMS Microbiol. Lett. 351, 51–58. 10.1111/1574-6968.12342 PubMed DOI
Chanchaithong P., Prapasarakul N., Perreten V., Schwendener S. (2016). Characterization of a novel composite staphylococcal cassette chromosome mec in methicillin-resistant Staphylococcus pseudintermedius from Thailand. Antimicrob. Agents Chemother. 60, 1153–1157. 10.1128/AAC.02268-15 PubMed DOI PMC
Chen L., Zheng D., Liu B., Yang J., Jin Q. (2016). VFDB 2016: hierarchical and refined dataset for big data analysis−10 years on. Nucleic Acids Res. 44, D694–D697. 10.1093/nar/gkv1239 PubMed DOI PMC
Christie J., McNab R., Jenkinson H. F. (2002). Expression of fibronectin-binding protein FbpA modulates adhesion in Streptococcus gordonii. Microbiology 148, 1615–1625. 10.1099/00221287-148-6-1615 PubMed DOI
Christo-Foroux E., Vallaeys T., Loux V., Dassa E., Deutscher J., Wandersman C., et al. . (2017). Manual and expert annotation of the nearly complete genome sequence of Staphylococcus sciuri strain ATCC 29059: a reference for the oxidase-positive staphylococci that supports the atypical phenotypic features of the species group. Syst. Appl. Microbiol. 40, 401–410. 10.1016/j.syapm.2017.07.002 PubMed DOI
Chung Y. S., Dubnau D. (1995). ComC is required for the processing and translocation of ComGC, a pilin-like competence protein of Bacillus subtilis. Mol. Microbiol. 15, 543–551. 10.1111/j.1365-2958.1995.tb02267.x PubMed DOI
Cicconi-Hogan K. M., Belomestnykh N., Gamroth M., Ruegg P. L., Tikofsky L., Schukken Y. H. (2014). Prevalence of methicillin resistance in coagulase-negative staphylococci and Staphylococcus aureus isolated from bulk milk on organic and conventional dairy farms in the United States. J. Dairy Sci. 97, 2959–2964. 10.3168/jds.2013-7523 PubMed DOI
CLSI (2015). Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard - 12th Edn. CLSI document M02-A12. Wayne, PA: Clinical and Laboratory Standards Institute.
Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. (1977). Distribution of menaquinones in actinomycetes and corynebacteria. J. Gen. Microbiol. 100, 221–230. 10.1099/00221287-100-2-221 PubMed DOI
Costa S. S., Mourato C., Viveiros M., Melo-Cristino J., Amaral L., Couto I. (2013). Description of plasmid pSM52, harbouring the gene for the Smr efflux pump, and its involvement in resistance to biocides in a meticillin-resistant Staphylococcus aureus strain. Int. J. Antimicrob. Agents 41, 490–492. 10.1016/j.ijantimicag.2013.01.003 PubMed DOI
Cotting K., Strauss C., Rodriguez-Campos S., Rostaher A., Fischer N. M., Roosje P. J., et al. . (2017). Macrococcus canis and M. caseolyticus in dogs: occurrence, genetic diversity and antibiotic resistance. Vet. Dermatol. 28, 559–e133. 10.1111/vde.12474 PubMed DOI
De Ley J., Cattoir H., Reynaerts A. (1970). The quantitative measurement of DNA hybridization from renaturation rates. Eur. J. Biochem. 12, 133–142. 10.1111/j.1432-1033.1970.tb00830.x PubMed DOI
De Vos P., Trüper H. G. (2000). Judicial Commission of the International Committee on Systematic Bacteriology; IXth International (IUMS) Congress of Bacteriology and Applied Microbiology. Int. J. Syst. Evol. Microbiol. 50, 2239–2244. 10.1099/00207713-50-6-2239 DOI
Demple B., Halbrook J., Linn S. (1983). Escherichia coli xth mutants are hypersensitive to hydrogen peroxide. J. Bacteriol. 153, 1079–1082. PubMed PMC
Dhillon B. K., Laird M. R., Shay J. A., Winsor G. L., Lo R., Nizam F., et al. . (2015). IslandViewer 3: more flexible, interactive genomic island discovery, visualization and analysis. Nucleic Acids Res. 43, W104–W108. 10.1093/nar/gkv401 PubMed DOI PMC
Dominguez-Moñino I., Jurado V., Gonzalez-Pimentel J. L., Miller A. Z., Hermosin B., Saiz-Jimenez C. (2018). Bacillus onubensis sp. nov., isolated from the air of two Andalusian caves. Syst. Appl. Microbiol. 10.1016/j.syapm.2018.01.001 PubMed DOI
EUCAST (2017). Breakpoint Tables for Interpretation of MICs and Zone Diameters. The European Committee on Antimicrobial Susceptibility Testing. Available online at: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_7.1_Breakpoint_Tables.pdf
Fagerlund A., Granum P. E., Havarstein L. S. (2014). Staphylococcus aureus competence genes: mapping of the SigH, ComK1 and ComK2 regulons by transcriptome sequencing. Mol. Microbiol. 94, 557–579. 10.1111/mmi.12767 PubMed DOI
Freiwald A., Sauer S. (2009). Phylogenetic classification and identification of bacteria by mass spectrometry. Nat. Protoc. 4, 732–742. 10.1038/nprot.2009.37 PubMed DOI
Gevers D., Huys G., Swings J. (2001). Applicability of rep-PCR fingerprinting for identification of Lactobacillus species. FEMS Microbiol. Lett. 205, 31–36. 10.1111/j.1574-6968.2001.tb10921.x PubMed DOI
Gobeli Brawand S., Cotting K., Gomez-Sanz E., Collaud A., Thomann A., Brodard I., et al. . (2017). Macrococcus canis sp. nov., a skin bacterium associated with infections in dogs. Int. J. Syst. Evol. Microbiol. 67, 621–626. 10.1099/ijsem.0.001673 PubMed DOI
Gobeli Brawand S., Rychener L., Schwendener S., Pantucek R., Perreten V. (2018). Complete genome sequence of the type strain of Macrococcus canis. Genome Announc. 6:e01507–17. 10.1128/genomeA.01507-17 PubMed DOI PMC
Gómez-Sanz E., Schwendener S., Thomann A., Gobeli Brawand S., Perreten V. (2015). First staphylococcal cassette chromosome mec containing a mecB-carrying gene complex independent of transposon Tn6045 in a Macrococcus caseolyticus isolate from a canine infection. Antimicrob. Agents Chemother. 59, 4577–4583. 10.1128/AAC.05064-14 PubMed DOI PMC
Götz F., Bannerman T., Schleifer K.-H. (2006). The genera Staphylococcus and Macrococcus,” in The Prokaryotes. A Handbook on the Biology of Bacteria. Volume 4: Bacteria: Firmicutes, Cyanobacteria, eds Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E. (New York, NY: Springer; ), 5–75.
Grohmann E., Muth G., Espinosa M. (2003). Conjugative plasmid transfer in gram-positive bacteria. Microbiol. Mol. Biol. Rev. 67, 277–301. 10.1128/MMBR.67.2.277-301.2003 PubMed DOI PMC
Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. (1996). Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int. J. Syst. Bacteriol. 46, 234–239. 10.1099/00207713-46-1-234 PubMed DOI
Hansen C. M., Meixell B. W., Van Hemert C., Hare R. F., Hueffer K. (2015). Microbial infections are associated with embryo mortality in Arctic-nesting geese. Appl. Environ. Microbiol. 81, 5583–5592. 10.1128/AEM.00706-15 PubMed DOI PMC
Heir E., Sundheim G., Holck A. L. (1998). The Staphylococcus qacH gene product: a new member of the SMR family encoding multidrug resistance. FEMS Microbiol. Lett. 163, 49–56. 10.1111/j.1574-6968.1998.tb13025.x PubMed DOI
Huss V. A., Festl H., Schleifer K. H. (1983). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst. Appl. Microbiol. 4, 184–192. 10.1016/S0723-2020(83)80048-4 PubMed DOI
Indráková A., Mašlanová I., Kováčová V., Doškar J., Pantuček R. (2016). The evolutionary pathway of the staphylococcal cassette chromosome element. Biologia 71, 1195–1203. 10.1515/biolog-2016-0156 DOI
Joh D., Wann E. R., Kreikemeyer B., Speziale P., Hook M. (1999). Role of fibronectin-binding MSCRAMMs in bacterial adherence and entry into mammalian cells. Matrix Biol. 18, 211–223. 10.1016/S0945-053X(99)00025-6 PubMed DOI
Jones P., Binns D., Chang H. Y., Fraser M., Li W., McAnulla C., et al. . (2014). InterProScan 5: genome-scale protein function classification. Bioinformatics 30, 1236–1240. 10.1093/bioinformatics/btu031 PubMed DOI PMC
Kahánková J., Pantuček R., Goerke C., Ruzičková V., Holochová P., Doškar J. (2010). Multilocus PCR typing strategy for differentiation of Staphylococcus aureus siphoviruses reflecting their modular genome structure. Environ. Microbiol. 12, 2527–2538. 10.1111/j.1462-2920.2010.02226.x PubMed DOI
Kim H. K., Thammavongsa V., Schneewind O., Missiakas D. (2012). Recurrent infections and immune evasion strategies of Staphylococcus aureus. Curr. Opin. Microbiol. 15, 92–99. 10.1016/j.mib.2011.10.012 PubMed DOI PMC
Kloos W. E., Ballard D. N., George C. G., Webster J. A., Hubner R. J., Ludwig W., et al. . (1998). Delimiting the genus Staphylococcus through description of Macrococcus caseolyticus gen. nov., comb. nov. and Macrococcus equipercicus sp. nov., and Macrococcus bovicus sp. no. and Macrococcus carouselicus sp. nov. Int. J. Syst. Bacteriol. 48, 859–877. 10.1099/00207713-48-3-859 PubMed DOI
Kumar S., Stecher G., Tamura K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874. 10.1093/molbev/msw054 PubMed DOI PMC
Laanto E., Bamford J. K., Ravantti J. J., Sundberg L. R. (2015). The use of phage FCL-2 as an alternative to chemotherapy against columnaris disease in aquaculture. Front. Microbiol. 6:829. 10.3389/fmicb.2015.00829 PubMed DOI PMC
Lagesen K., Hallin P., Rodland E. A., Staerfeldt H. H., Rognes T., Ussery D. W. (2007). RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100–3108. 10.1093/nar/gkm160 PubMed DOI PMC
Lei Y., Oshima T., Ogasawara N., Ishikawa S. (2013). Functional analysis of the protein Veg, which stimulates biofilm formation in Bacillus subtilis. J. Bacteriol. 195, 1697–1705. 10.1128/JB.02201-12 PubMed DOI PMC
Li D., Wang Y., Schwarz S., Cai J., Fan R., Li J., et al. . (2016). Co-location of the oxazolidinone resistance genes optrA and cfr on a multiresistance plasmid from Staphylococcus sciuri. J. Antimicrob. Chemother. 71, 1474–1478. 10.1093/jac/dkw040 PubMed DOI
Madonna A. J., Basile F., Ferrer I., Meetani M. A., Rees J. C., Voorhees K. J. (2000). On-probe sample pretreatment for the detection of proteins above 15 KDa from whole cell bacteria by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 14, 2220–2229. 10.1002/1097-0231(20001215)14:23<2220::AID-RCM155>3.0.CO;2-4 PubMed DOI
Mannerová S., Pantuček R., Doškar J., Švec P., Snauwaert C., Vancanneyt M., et al. . (2003). Macrococcus brunensis sp. nov., Macrococcus hajekii sp. nov. and Macrococcus lamae sp. nov., from the skin of llamas. Int. J. Syst. Evol. Microbiol. 53, 1647–1654. 10.1099/ijs.0.02683-0 PubMed DOI
Meier-Kolthoff J. P., Auch A. F., Klenk H. P., Goker M. (2013). Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14:60. 10.1186/1471-2105-14-60 PubMed DOI PMC
Micheel V., Hogan B., Koller T., Warnke P., Crusius S., Hinz R., et al. . (2015). Screening agars for MRSA: evaluation of a stepwise diagnostic approach with two different selective agars for the screening for methicillin-resistant Staphylococcus aureus (MRSA). Mil. Med. Res. 2:18. 10.1186/s40779-015-0046-1 PubMed DOI PMC
Mukherjee A., Chettri B., Langpoklakpam J. S., Singh A. K., Chattopadhyay D. (2016). Draft genome sequence of hydrocarbon-degrading Staphylococcus saprophyticus strain CNV2, isolated from crude oil-contaminated soil from the Noonmati Oil Refinery, Guwahati, Assam, India. Genome Announc. 4:e00370–16. 10.1128/genomeA.00370-16 PubMed DOI PMC
Müller A., Rychli K., Muhterem-Uyar M., Zaiser A., Stessl B., Guinane C. M., et al. . (2013). Tn6188 - a novel transposon in Listeria monocytogenes responsible for tolerance to benzalkonium chloride. PLoS ONE 8:e76835. 10.1371/journal.pone.0076835 PubMed DOI PMC
Muschiol S., Balaban M., Normark S., Henriques-Normark B. (2015). Uptake of extracellular DNA: competence induced pili in natural transformation of Streptococcus pneumoniae. Bioessays 37, 426–435. 10.1002/bies.201400125 PubMed DOI PMC
Nurk S., Bankevich A., Antipov D., Gurevich A., Korobeynikov A., Lapidus A., et al. (2013). Assembling genomes and mini-metagenomes from highly chimeric reads,” in Research in Computational Molecular Biology. RECOMB 2013. Lecture Notes in Computer Science, Vol. 7821, eds Deng M., Jiang R., Sun F., Zhang X. (Berlin, Heidelberg: Springer; ), 7158–7170.
Okonechnikov K., Golosova O., Fursov M., Ugene Team. (2012). Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28, 1166–1167. 10.1093/bioinformatics/bts091 PubMed DOI
O'Riordan K., Lee J. C. (2004). Staphylococcus aureus capsular polysaccharides. Clin. Microbiol. Rev. 17, 218–234. 10.1128/CMR.17.1.218-234.2004 PubMed DOI PMC
Pantuček R., Götz F., Doškar J., Rosypal S. (1996). Genomic variability of Staphylococcus aureus and the other coagulase-positive Staphylococcus species estimated by macrorestriction analysis using pulsed-field gel electrophoresis. Int. J. Syst. Bacteriol. 46, 216–222. 10.1099/00207713-46-1-216 PubMed DOI
Pantuček R., Sedláček I., Indráková A., Vrbovská V., Mašlanová I., Kovarovic V., et al. (2017). Staphylococcus edaphicus sp. nov., isolated in Antarctica, harbours mecC gene and genomic islands with suspected role in adaptation to extreme environment. Appl. Environ. Microbiol. 84:e01746–17. 10.1128/AEM.01746-17 PubMed DOI PMC
Pantuček R., Sedláček I., Petráš P., Koukalová D., Švec P., Štětina V., Vancanneyt M., et al. . (2005). Staphylococcus simiae sp. nov., isolated from South American squirrel monkeys. Int. J. Syst. Evol. Microbiol. 55, 1953–1958. 10.1099/ijs.0.63590-0 PubMed DOI
Pantuček R., Švec P., Dajcs J. J., Machová I., Cernohlávková J., Šedo O., et al. . (2013). Staphylococcus petrasii sp. nov. including S. petrasii subsp. petrasii subsp. nov. and S. petrasii subsp. croceilyticus subsp. nov., isolated from human clinical specimens and human ear infections. Syst. Appl. Microbiol. 36, 90–95. 10.1016/j.syapm.2012.11.004 PubMed DOI
Parker C. T., Tindall B. J., Garrity G. M. (2015). International code of nomenclature of prokaryotes. Int. J. Syst. Evol. Microbiol. 10.1099/ijsem.0.000778. [Epub ahead of print]. PubMed DOI
Parte A. C. (2014). LPSN-list of prokaryotic names with standing in nomenclature. Nucleic Acids Res. 42, D613–D616. 10.1093/nar/gkt1111 PubMed DOI PMC
Paterson G. K., Harrison E. M., Holmes M. A. (2014). The emergence of mecC methicillin-resistant Staphylococcus aureus. Trends Microbiol. 22, 42–47. 10.1016/j.tim.2013.11.003 PubMed DOI PMC
Penadés J. R., Christie G. E. (2015). The Phage-Inducible chromosomal islands: a family of highly evolved molecular parasites. Annu. Rev. Virol. 2, 181–201. 10.1146/annurev-virology-031413-085446 PubMed DOI
Prakash O., Muduli S., Kumar R., Kumari C., Nimonkar Y., Shouche Y. S., et al. . (2017). Description of Auricoccus indicus gen. nov., sp. nov., isolated from skin of human ear. Int. J. Syst. Evol. Microbiol. 67, 1212–1218. 10.1099/ijsem.0.001787 PubMed DOI
Pritchard L., Glover R. H., Humphris S., Elphinstone J. G., Toth I. K. (2016). Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal. Methods 8, 12–24. 10.1039/C5AY02550H DOI
Richter M., Rosselló-Móra R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. U.S.A. 106, 19126–19131. 10.1073/pnas.0906412106 PubMed DOI PMC
Rissman A. I., Mau B., Biehl B. S., Darling A. E., Glasner J. D., Perna N. T. (2009). Reordering contigs of draft genomes using the Mauve aligner. Bioinformatics 25, 2071–2073. 10.1093/bioinformatics/btp356 PubMed DOI PMC
Rohde H., Frankenberger S., Zahringer U., Mack D. (2010). Structure, function and contribution of polysaccharide intercellular adhesin (PIA) to Staphylococcus epidermidis biofilm formation and pathogenesis of biomaterial-associated infections. Eur. J. Cell Biol. 89, 103–111. 10.1016/j.ejcb.2009.10.005 PubMed DOI
Rubin D., Zhang W., Karch H., Kuczius T. (2017). Distinct expression of immunoglobulin-binding proteins in Shiga Toxin-producing Escherichia coli implicates high protein stability and a characteristic phenotype. Toxins 9:153. 10.3390/toxins9050153 PubMed DOI PMC
Rubin J. E., Chirino-Trejo M. (2010). Inducibly cefoxitin-resistant Macrococcus-like organism falsely identified as methicillin-resistant Staphylococcus aureus on CHROMagar with oxacillin. J. Clin. Microbiol. 48, 3037–3038. 10.1128/JCM.00519-10 PubMed DOI PMC
Sandt C. H., Hopper J. E., Hill C. W. (2002). Activation of prophage eib genes for immunoglobulin-binding proteins by genes from the IbrAB genetic island of Escherichia coli ECOR-9. J. Bacteriol. 184, 3640–3648. 10.1128/JB.184.13.3640-3648.2002 PubMed DOI PMC
Sasser M. (1990). Identification of Bacteria by Gas Chromatography of Cellular Fatty Acids, MIDI Technical Note 101. Newark, DE: Microbial ID Inc.
Sau S., Lee C. Y. (1996). Cloning of type 8 capsule genes and analysis of gene clusters for the production of different capsular polysaccharides in Staphylococcus aureus. J. Bacteriol. 178, 2118–2126. 10.1128/jb.178.7.2118-2126.1996 PubMed DOI PMC
Sau S., Bhasin N., Wann E. R., Lee J. C., Foster T. J., Lee C. Y. (1997). The Staphylococcus aureus allelic genetic loci for serotype 5 and 8 capsule expression contain the type-specific genes flanked by common genes. Microbiology 143, 2395–2405. 10.1099/00221287-143-7-2395 PubMed DOI
Schleifer K. H., Bell J. A. (2009). Genus I. Staphylococcus Rosenbach 1884, 18AL (Nom. Cons. Opin. 17 Jud. Comm. 1958, 153.),” in Bergey's Manual of Systematic Bacteriology, The Firmicutes, eds De Vos P., Garrity G. M., Jones D., Krieg N. R., Ludwig W., Rainey F. A., Schleifer K. H., Whitman W. B. (New York, NY: Springer-Verlag; ), 392–421.
Schleifer K. H., Kilpper-Balz R., Fischer U., Faller A., Endl J. (1982). Identification of “Micrococcus candidus” ATCC 14852 as a strain of Staphylococcus epidermidis and of “Micrococcus caseolyticus” ATCC 13548 and Micrococcus varians ATCC 29750 as members of a new species, Staphylococcus caseolyticus. Int. J. Syst. Bacteriol. 32, 15–20. 10.1099/00207713-32-1-15 DOI
Schleifer K.-H. (2015). Macrococcus (Kloos, Ballard, George,Webster,Hubner, Ludwig, Schleifer, Fiedler and Schubert 1998, 871VP),” in Bergey's Manual of Systematics of Archaea and Bacteria, ed Whitman W. B. (Indianapolis, IN: John Wiley & Sons; ), 1–6.
Schreiter E. R., Drennan C. L. (2007). Ribbon-helix-helix transcription factors: variations on a theme. Nat. Rev. Microbiol. 5, 710–720. 10.1038/nrmicro1717 PubMed DOI
Schumann P. (2011). Peptidoglycan structure. Methods Microbiol. 38, 101–129. 10.1016/B978-0-12-387730-7.00005-X DOI
Schwendener S., Cotting K., Perreten V. (2017). Novel methicillin resistance gene mecD in clinical Macrococcus caseolyticus strains from bovine and canine sources. Sci. Rep. 7:43797. 10.1038/srep43797 PubMed DOI PMC
Siguier P., Perochon J., Lestrade L., Mahillon J., Chandler M. (2006). ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 34, D32–D36. 10.1093/nar/gkj014 PubMed DOI PMC
Švec P., Cernohlávková J., Busse H. J., Vojtková H., Pantuček R., Cnockaert M., Mašlanová I., et al. . (2015). Classification of strain CCM 4446T as Rhodococcus degradans sp. nov. Int. J. Syst. Evol. Microbiol. 65, 4381–4387. 10.1099/ijsem.0.000584 PubMed DOI
Švec P., Pantuček R., Petráš P., Sedláček I., Nováková D. (2010). Identification of Staphylococcus spp. using (GTG)5-PCR fingerprinting. Syst. Appl. Microbiol. 33, 451–456. 10.1016/j.syapm.2010.09.004 PubMed DOI
Švec P., Petráš P., Pantuček R., Doškar J., Sedláček I. (2016). High intraspecies heterogeneity within Staphylococcus sciuri and rejection of its classification into S. sciuri subsp. sciuri, S. sciuri subsp. carnaticus and S. sciuri subsp. rodentium. Int. J. Syst. Evol. Microbiol. 66, 5181–5186. 10.1099/ijsem.0.001493 PubMed DOI
Takeuchi F., Watanabe S., Baba T., Yuzawa H., Ito T., Morimoto Y., et al. . (2005). Whole-genome sequencing of Staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species. J. Bacteriol. 187, 7292–7308. 10.1128/JB.187.21.7292-7308.2005 PubMed DOI PMC
Thammavongsa V., Kern J. W., Missiakas D. M., Schneewind O. (2009). Staphylococcus aureus synthesizes adenosine to escape host immune responses. J. Exp. Med. 206, 2417–2427. 10.1084/jem.20090097 PubMed DOI PMC
Thammavongsa V., Schneewind O., Missiakas D. M. (2011). Enzymatic properties of Staphylococcus aureus adenosine synthase (AdsA). BMC Biochem. 12:56. 10.1186/1471-2091-12-56 PubMed DOI PMC
Tsubakishita S., Kuwahara-Arai K., Baba T., Hiramatsu K. (2010). Staphylococcal cassette chromosome mec-like element in Macrococcus caseolyticus. Antimicrob. Agents Chemother. 54, 1469–1475. 10.1128/AAC.00575-09 PubMed DOI PMC
Vasudevan P., McElligott J., Attkisson C., Betteken M., Popham D. L. (2009). Homologues of the Bacillus subtilis SpoVB protein are involved in cell wall metabolism. J. Bacteriol. 191, 6012–6019. 10.1128/JB.00604-09 PubMed DOI PMC
Verstappen K. M., Huijbregts L., Spaninks M., Wagenaar J. A., Fluit A. C., Duim B. (2017). Development of a real-time PCR for detection of Staphylococcus pseudintermedius using a novel automated comparison of whole-genome sequences. PLoS ONE 12:e0183925 10.1371/journal.pone.0183925 PubMed DOI PMC
Wang Y., Coleman-Derr D., Chen G., Gu Y. Q. (2015). OrthoVenn: a web server for genome wide comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 43, W78–W84. 10.1093/nar/gkv487 PubMed DOI PMC
Watts A., Ke D., Wang Q., Pillay A., Nicholson-Weller A., Lee J. C. (2005). Staphylococcus aureus strains that express serotype 5 or serotype 8 capsular polysaccharides differ in virulence. Infect. Immun. 73, 3502–3511. 10.1128/IAI.73.6.3502-3511.2005 PubMed DOI PMC
Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A., Kandler O., Truper H. G., et al. (1987). Report of the Ad-Hoc-Committee on reconciliation of approaches to bacterial systematics. Int. J. Syst. Bacteriol. 37, 463–464. 10.1099/00207713-37-4-463 DOI
Wick R. R., Schultz M. B., Zobel J., Holt K. E. (2015). Bandage: interactive visualization of de novo genome assemblies. Bioinformatics 31, 3350–3352. 10.1093/bioinformatics/btv383 PubMed DOI PMC
Yoon S. H., Ha S. M., Kwon S., Lim J., Kim Y., Seo H., et al. . (2017). Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617. 10.1099/ijsem.0.001755 PubMed DOI PMC
Zechner E. L., Moncalian G., De La Cruz F. (2017). Relaxases and plasmid transfer in Gram-negative bacteria. Curr. Top. Microbiol. Immunol. 413, 93–113. 10.1007/978-3-319-75241-9_4 PubMed DOI
Zeman M., Mašlanová I., Indráková A., Šiborová M., Mikulášek K., Bendíčková K., et al. . (2017). Staphylococcus sciuri bacteriophages double-convert for staphylokinase and phospholipase, mediate interspecies plasmid transduction, and package mecA gene. Sci. Rep. 7:46319. 10.1038/srep46319 PubMed DOI PMC
Zhang Q., Ye Y. (2017). Not all predicted CRISPR-Cas systems are equal: isolated cas genes and classes of CRISPR like elements. BMC Bioinformatics 18:92. 10.1186/s12859-017-1512-4 PubMed DOI PMC
Staphylococcus ratti sp. nov. Isolated from a Lab Rat