Staphylococcus sciuri bacteriophages double-convert for staphylokinase and phospholipase, mediate interspecies plasmid transduction, and package mecA gene

. 2017 Apr 13 ; 7 () : 46319. [epub] 20170413

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28406168

Staphylococcus sciuri is a bacterial pathogen associated with infections in animals and humans, and represents a reservoir for the mecA gene encoding methicillin-resistance in staphylococci. No S. sciuri siphophages were known. Here the identification and characterization of two temperate S. sciuri phages from the Siphoviridae family designated ϕ575 and ϕ879 are presented. The phages have icosahedral heads and flexible noncontractile tails that end with a tail spike. The genomes of the phages are 42,160 and 41,448 bp long and encode 58 and 55 ORFs, respectively, arranged in functional modules. Their head-tail morphogenesis modules are similar to those of Staphylococcus aureus ϕ13-like serogroup F phages, suggesting their common evolutionary origin. The genome of phage ϕ575 harbours genes for staphylokinase and phospholipase that might enhance the virulence of the bacterial hosts. In addition both of the phages package a homologue of the mecA gene, which is a requirement for its lateral transfer. Phage ϕ879 transduces tetracycline and aminoglycoside pSTS7-like resistance plasmids from its host to other S. sciuri strains and to S. aureus. Furthermore, both of the phages efficiently adsorb to numerous staphylococcal species, indicating that they may contribute to interspecies horizontal gene transfer.

Zobrazit více v PubMed

Kloos W. E., Schleifer K. H. & Smith R. F. Characterization of DOI

Švec P., Petráš P., Pantůček R., Doškař J. & Sedláček I. High intraspecies heterogeneity within PubMed DOI

Hauschild T. & Wojcik A. Species distribution and properties of staphylococci from canine dermatitis. Research in Veterinary Science 82, 1–6, doi: 10.1016/j.rvsc.2006.04.004 (2007). PubMed DOI

Chen S. et al. A highly pathogenic strain of PubMed DOI PMC

Hedin G. & Widerstrom M. Endocarditis due to PubMed DOI

Stepanović S., Dakić I., Djukić S., Lozuk B. & Svabic-Vlahović M. Surgical wound infection associated with PubMed DOI

Dakić I. et al. Isolation and molecular characterization of PubMed DOI PMC

Stepanović S., Ježek P., Dakić I., Vuković D. & Seifert L. PubMed DOI

Nemeghaire S. et al. The ecological importance of the PubMed DOI

Couto I., Wu S. W., Tomasz A. & de Lencastre H. Development of methicillin resistance in clinical isolates of PubMed DOI PMC

Rolo J., de Lencastre H. & Miragaia M. High frequency and diversity of cassette chromosome recombinases ( PubMed DOI

Zhou Y., Antignac A., Wu S. W. & Tomasz A. Penicillin-binding proteins and cell wall composition in beta-lactam-sensitive and -resistant strains of PubMed DOI PMC

Wu S., de Lencastre H. & Tomasz A. Genetic organization of the PubMed DOI PMC

Robinson D. A. & Enright M. C. Evolutionary models of the emergence of methicillin-resistant PubMed DOI PMC

Otto M. Coagulase-negative staphylococci as reservoirs of genes facilitating MRSA infection. Bioessays 35, 4–11, doi: 10.1002/bies.201200112 (2013). PubMed DOI PMC

Varga M. et al. Efficient transfer of antibiotic resistance plasmids by transduction within methicillin-resistant PubMed DOI

Scharn C. R., Tenover F. C. & Goering R. V. Transduction of staphylococcal cassette chromosome PubMed DOI PMC

Mašlaňová I., Stříbná S., Doškař J. & Pantůček R. Efficient plasmid transduction to PubMed DOI

Stanczak-Mrozek K. I. et al. Within-host diversity of MRSA antimicrobial resistances. Journal of Antimicrobial Chemotherapy 70, 2191–2198, doi: 10.1093/jac/dkv119 (2015). PubMed DOI PMC

Haaber J. et al. Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells. Nature Communications 7, 13333, doi: 10.1038/ncomms13333 (2016). PubMed DOI PMC

Deghorain M. et al. Characterization of novel phages isolated in coagulase-negative staphylococci reveals evolutionary relationships with PubMed DOI PMC

Daniel A., Bonnen P. E. & Fischetti V. A. First complete genome sequence of two PubMed DOI PMC

Gutiérrez D., Martínez B., Rodríguez A. & García P. Genomic characterization of two PubMed DOI PMC

Melo L. D. et al. Characterization of PubMed DOI

Kreiswirth B. N. et al. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305, 709–712, doi: 10.1038/305709a0 (1983). PubMed DOI

Xia G. et al. Wall teichoic acid-dependent adsorption of staphylococcal siphovirus and myovirus. Journal of Bacteriology 193, 4006–4009, doi: 10.1128/JB.01412-10 (2011). PubMed DOI PMC

Bera A., Herbert S., Jakob A., Vollmer W. & Götz F. Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of PubMed DOI

Winstel V., Sanchez-Carballo P., Holst O., Xia G. & Peschel A. Biosynthesis of the unique wall teichoic acid of PubMed DOI PMC

Morgan G. J., Hatfull G. F., Casjens S. & Hendrix R. W. Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in PubMed DOI

Campbell A. M. In Bacterial Genomes: Physical Structure and Analysis(eds de Bruijn F. J., Lupski J. R. & Weinstock G. M.) Ch. Prophages and Cryptic Prophages 23–29 (Springer, 1998).

Moodley S., Maxwell K. L. & Kanelis V. The protein gp74 from the bacteriophage HK97 functions as a HNH endonuclease. Protein Science 21, 809–818, doi: 10.1002/pro.2064 (2012). PubMed DOI PMC

Iandolo J. J. et al. Comparative analysis of the genomes of the temperate bacteriophages phi 11, phi 12 and phi 13 of PubMed DOI

Kaneko J., Kimura T., Kawakami Y., Tomita T. & Kamio Y. Panton-valentine leukocidin genes in a phage-like particle isolated from mitomycin C-treated PubMed DOI

Tsui L. C. & Hendrix R. W. Proteolytic processing of phage lambda tail protein gpH: timing of the cleavage. Virology 125, 257–264, doi: 10.1016/0042-6822(83)90199-X (1983). PubMed DOI

Schwarz S., Gregory P. D., Werckenthin C., Curnock S. & Dyke K. G. A novel plasmid from PubMed DOI

Descloux S., Rossano A. & Perreten V. Characterization of new staphylococcal cassette chromosome PubMed DOI PMC

Zong Z. & Lu X. Characterization of a new SCC PubMed DOI PMC

Urushibara N., Paul S. K., Hossain M. A., Kawaguchiya M. & Kobayashi N. Analysis of Staphylococcal cassette chromosome PubMed DOI

Harrison E. M. et al. A novel hybrid SCC PubMed DOI PMC

Casjens S. Prophages and bacterial genomics: what have we learned so far? Molecular Microbiology 49, 277–300, doi: 10.1046/j.1365-2958.2003.03580.x (2003). PubMed DOI

Goerke C. et al. Diversity of prophages in dominant PubMed DOI PMC

Takeuchi F. et al. Whole-genome sequencing of PubMed DOI PMC

Baba T. et al. Complete genome sequence of PubMed DOI PMC

Jurczak-Kurek A. et al. Biodiversity of bacteriophages: morphological and biological properties of a large group of phages isolated from urban sewage. Scientific Reports 6, 34338, doi: 10.1038/srep34338 (2016). PubMed DOI PMC

Kwan T., Liu J., DuBow M., Gros P. & Pelletier J. The complete genomes and proteomes of 27 PubMed DOI PMC

Kahánková J. et al. Multilocus PCR typing strategy for differentiation of PubMed DOI

Gutiérrez D. et al. Three proposed new bacteriophage genera of staphylococcal phages: “3Alikevirus”, “77likevirus” and “Phietalikevirus”. Archives of Virology 159, 389–398, doi: 10.1007/s00705-013-1833-1 (2014). PubMed DOI

Riley M. C., Perreten V., Bemis D. A. & Kania S. A. Complete genome sequences of three important methicillin-resistant clinical isolates of PubMed DOI PMC

Misic A. M., Cain C. L., Morris D. O., Rankin S. C. & Beiting D. P. Complete genome sequence and methylome of PubMed DOI PMC

Xu K., Yuan Z., Rayner S. & Hu X. Genome comparison provides molecular insights into the phylogeny of the reassigned new genus Lysinibacillus. BMC Genomics 16, 140, doi: 10.1186/s12864-015-1359-x (2015). PubMed DOI PMC

Kurata A., Nishimura M., Kishimoto N. & Kobayashi T. Draft genome sequence of a deep-sea bacterium, PubMed DOI PMC

Nguyen L. T. & Vogel H. J. Staphylokinase has distinct modes of interaction with antimicrobial peptides, modulating its plasminogen-activation properties. Scientific Reports 6, 31817, doi: 10.1038/srep31817 (2016). PubMed DOI PMC

Coleman D. C. et al. PubMed DOI

van Wamel W. J., Rooijakkers S. H., Ruyken M., van Kessel K. P. & van Strijp J. A. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of PubMed DOI PMC

Sitkiewicz I., Stockbauer K. E. & Musser J. M. Secreted bacterial phospholipase A2 enzymes: better living through phospholipolysis. Trends in Microbiology 15, 63–69, doi: 10.1016/j.tim.2006.12.003 (2007). PubMed DOI

Beres S. B. et al. Genome sequence of a serotype M3 strain of group A PubMed DOI PMC

Mahony J. & van Sinderen D. Structural aspects of the interaction of dairy phages with their host bacteria. Viruses 4, 1410–1424, doi: 10.3390/v4091410 (2012). PubMed DOI PMC

Sciara G. et al. Structure of lactococcal phage p2 baseplate and its mechanism of activation. Proceedings of the National Academy of Sciences of the USA 107, 6852–6857, doi: 10.1073/pnas.1000232107 (2010). PubMed DOI PMC

Vinga I. et al. Role of bacteriophage SPP1 tail spike protein gp21 on host cell receptor binding and trigger of phage DNA ejection. Molecular Microbiology 83, 289–303, doi: 10.1111/j.1365-2958.2011.07931.x (2012). PubMed DOI

Browning C., Shneider M. M., Bowman V. D., Schwarzer D. & Leiman P. G. Phage pierces the host cell membrane with the iron-loaded spike. Structure 20, 326–339, doi: 10.1016/j.str.2011.12.009 (2012). PubMed DOI

Yamashita E. et al. The host-binding domain of the P2 phage tail spike reveals a trimeric iron-binding structure. Acta Crystallographica Sect. F Structural Biology and Crystallization Communications 67, 837–841, doi: 10.1107/S1744309111005999 (2011). PubMed DOI PMC

Doškař J. et al. Genomic relatedness of PubMed DOI

Chen J. et al. Intra- and inter-generic transfer of pathogenicity island-encoded virulence genes by PubMed DOI PMC

Quiles-Puchalt N. et al. Staphylococcal pathogenicity island DNA packaging system involving cos-site packaging and phage-encoded HNH endonucleases. Proceedings of the National Academy of Sciences of the USA 111, 6016–6021, doi: 10.1073/pnas.1320538111 (2014). PubMed DOI PMC

Mir-Sanchis I. et al. Staphylococcal SCC PubMed DOI PMC

Novick R. P., Edelman I. & Lofdahl S. Small PubMed DOI

Baptista C., Santos M. A. & Sao-Jose C. Phage SPP1 reversible adsorption to PubMed DOI PMC

Li X. et al. An essential role for the baseplate protein Gp45 in phage adsorption to PubMed DOI PMC

McDonald J. E., Smith D. L., Fogg P. C., McCarthy A. J. & Allison H. E. High-throughput method for rapid induction of prophages from lysogens and its application in the study of Shiga Toxin-encoding PubMed DOI PMC

Mašlaňová I. et al. Bacteriophages of PubMed DOI

Okonechnikov K., Golosova O., Fursov M. & team U. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28, 1166–1167, doi: 10.1093/bioinformatics/bts091 (2012). PubMed DOI

Besemer J. & Borodovsky M. GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Research 33, W451–454, doi: 10.1093/nar/gki487 (2005). PubMed DOI PMC

Aziz R. K. et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9, 75, doi: 10.1186/1471-2164-9-75 (2008). PubMed DOI PMC

Altschul S. F., Gish W., Miller W., Myers E. W. & Lipman D. J. Basic local alignment search tool. Journal of Molecular Biology 215, 403–410, doi: 10.1016/S0022-2836(05)80360-2 (1990). PubMed DOI

Marchler-Bauer A. et al. CDD: NCBI’s conserved domain database. Nucleic Acids Research 43, D222–226, doi: 10.1093/nar/gku1221 (2015). PubMed DOI PMC

Mitchell A. et al. The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Research 43, D213–221, doi: 10.1093/nar/gku1243 (2015). PubMed DOI PMC

Schattner P., Brooks A. N. & Lowe T. M. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Research 33, W686–689, doi: 10.1093/nar/gki366 (2005). PubMed DOI PMC

Lagesen K. et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research 35, 3100–3108, doi: 10.1093/nar/gkm160 (2007). PubMed DOI PMC

Finn R. D., Clements J. & Eddy S. R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Research 39, W29–37, doi: 10.1093/nar/gkr367 (2011). PubMed DOI PMC

Drozdetskiy A., Cole C., Procter J. & Barton G. J. JPred4: a protein secondary structure prediction server. Nucleic Acids Research 43, W389–394, doi: 10.1093/nar/gkv332 (2015). PubMed DOI PMC

Sullivan M. J., Petty N. K. & Beatson S. A. Easyfig: a genome comparison visualizer. Bioinformatics 27, 1009–1010, doi: 10.1093/bioinformatics/btr039 (2011). PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...