Staphylococcus sciuri bacteriophages double-convert for staphylokinase and phospholipase, mediate interspecies plasmid transduction, and package mecA gene
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28406168
PubMed Central
PMC5390265
DOI
10.1038/srep46319
PII: srep46319
Knihovny.cz E-zdroje
- MeSH
- bakteriální geny * MeSH
- fosfolipasy metabolismus MeSH
- genom virový MeSH
- genomika metody MeSH
- hostitelská specificita MeSH
- metaloendopeptidasy metabolismus MeSH
- plazmidy genetika MeSH
- přenos genů horizontální MeSH
- přichycení viru MeSH
- stafylokokové bakteriofágy fyziologie ultrastruktura MeSH
- Staphylococcus virologie MeSH
- transdukce genetická * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- auR protein, Staphylococcus aureus MeSH Prohlížeč
- fosfolipasy MeSH
- metaloendopeptidasy MeSH
Staphylococcus sciuri is a bacterial pathogen associated with infections in animals and humans, and represents a reservoir for the mecA gene encoding methicillin-resistance in staphylococci. No S. sciuri siphophages were known. Here the identification and characterization of two temperate S. sciuri phages from the Siphoviridae family designated ϕ575 and ϕ879 are presented. The phages have icosahedral heads and flexible noncontractile tails that end with a tail spike. The genomes of the phages are 42,160 and 41,448 bp long and encode 58 and 55 ORFs, respectively, arranged in functional modules. Their head-tail morphogenesis modules are similar to those of Staphylococcus aureus ϕ13-like serogroup F phages, suggesting their common evolutionary origin. The genome of phage ϕ575 harbours genes for staphylokinase and phospholipase that might enhance the virulence of the bacterial hosts. In addition both of the phages package a homologue of the mecA gene, which is a requirement for its lateral transfer. Phage ϕ879 transduces tetracycline and aminoglycoside pSTS7-like resistance plasmids from its host to other S. sciuri strains and to S. aureus. Furthermore, both of the phages efficiently adsorb to numerous staphylococcal species, indicating that they may contribute to interspecies horizontal gene transfer.
Zobrazit více v PubMed
Kloos W. E., Schleifer K. H. & Smith R. F. Characterization of Staphylococcus sciuri sp. nov. and its subspecies. International Journal of Systematic Bacteriology 26, 22–37, doi: 10.1099/00207713-26-1-22 (1976). DOI
Švec P., Petráš P., Pantůček R., Doškař J. & Sedláček I. High intraspecies heterogeneity within Staphylococcus sciuri and rejection of its classification into S. sciuri subsp. sciuri, S. sciuri subsp. carnaticus and S. sciuri subsp. rodentium. International Journal of Systematic and Evolutionary Microbiology 66, 5181–5186, doi: 10.1099/ijsem.0.001493 (2016). PubMed DOI
Hauschild T. & Wojcik A. Species distribution and properties of staphylococci from canine dermatitis. Research in Veterinary Science 82, 1–6, doi: 10.1016/j.rvsc.2006.04.004 (2007). PubMed DOI
Chen S. et al.. A highly pathogenic strain of Staphylococcus sciuri caused fatal exudative epidermitis in piglets. PLoS One 2, e147, doi: 10.1371/journal.pone.0000147 (2007). PubMed DOI PMC
Hedin G. & Widerstrom M. Endocarditis due to Staphylococcus sciuri. European Journal of Clinical Microbiology and Infectious Diseases 17, 673–675, doi: 10.1007/BF01708356 (1998). PubMed DOI
Stepanović S., Dakić I., Djukić S., Lozuk B. & Svabic-Vlahović M. Surgical wound infection associated with Staphylococcus sciuri. Scandinavian Journal of Infectious Diseases 34, 685–686, doi: 10.1080/00365540110076949a (2002). PubMed DOI
Dakić I. et al.. Isolation and molecular characterization of Staphylococcus sciuri in the hospital environment. Journal of Clinical Microbiology 43, 2782–2785, doi: 10.1128/JCM.43.6.2782-2785.2005 (2005). PubMed DOI PMC
Stepanović S., Ježek P., Dakić I., Vuković D. & Seifert L. Staphylococcus sciuri: an unusual cause of pelvic inflammatory disease. International Journal of STD & AIDS 16, 452–453, doi: 10.1258/0956462054093999 (2005). PubMed DOI
Nemeghaire S. et al.. The ecological importance of the Staphylococcus sciuri species group as a reservoir for resistance and virulence genes. Veterinary Microbiology 171, 342–356, doi: 10.1016/j.vetmic.2014.02.005 (2014). PubMed DOI
Couto I., Wu S. W., Tomasz A. & de Lencastre H. Development of methicillin resistance in clinical isolates of Staphylococcus sciuri by transcriptional activation of the mecA homologue native to the species. Journal of Bacteriology 185, 645–653, doi: 10.1128/JB.185.2.645-653.2003 (2003). PubMed DOI PMC
Rolo J., de Lencastre H. & Miragaia M. High frequency and diversity of cassette chromosome recombinases (ccr) in methicillin-susceptible Staphylococcus sciuri. Journal of Antimicrobial Chemotherapy 69, 1461–1469, doi: 10.1093/jac/dku028 (2014). PubMed DOI
Zhou Y., Antignac A., Wu S. W. & Tomasz A. Penicillin-binding proteins and cell wall composition in beta-lactam-sensitive and -resistant strains of Staphylococcus sciuri. Journal of Bacteriology 190, 508–514, doi: 10.1128/JB.01549-07 (2008). PubMed DOI PMC
Wu S., de Lencastre H. & Tomasz A. Genetic organization of the mecA region in methicillin-susceptible and methicillin-resistant strains of Staphylococcus sciuri. Journal of Bacteriology 180, 236–242, doi: 10.1128/JB.180.2.236-242.1998 (1998). PubMed DOI PMC
Robinson D. A. & Enright M. C. Evolutionary models of the emergence of methicillin-resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 47, 3926–3934, doi: 10.1128/AAC.47.12.3926-3934.2003 (2003). PubMed DOI PMC
Otto M. Coagulase-negative staphylococci as reservoirs of genes facilitating MRSA infection. Bioessays 35, 4–11, doi: 10.1002/bies.201200112 (2013). PubMed DOI PMC
Varga M. et al.. Efficient transfer of antibiotic resistance plasmids by transduction within methicillin-resistant Staphylococcus aureus USA300 clone. FEMS Microbiology Letters 332, 146–152, doi: 10.1111/j.1574-6968.2012.02589.x (2012). PubMed DOI
Scharn C. R., Tenover F. C. & Goering R. V. Transduction of staphylococcal cassette chromosome mec elements between strains of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 57, 5233–5238, doi: 10.1128/AAC.01058-13 (2013). PubMed DOI PMC
Mašlaňová I., Stříbná S., Doškař J. & Pantůček R. Efficient plasmid transduction to Staphylococcus aureus strains insensitive to the lytic action of transducing phage. FEMS Microbiology Letters 363, fnw211, doi: 10.1093/femsle/fnw211 (2016). PubMed DOI
Stanczak-Mrozek K. I. et al.. Within-host diversity of MRSA antimicrobial resistances. Journal of Antimicrobial Chemotherapy 70, 2191–2198, doi: 10.1093/jac/dkv119 (2015). PubMed DOI PMC
Haaber J. et al.. Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells. Nature Communications 7, 13333, doi: 10.1038/ncomms13333 (2016). PubMed DOI PMC
Deghorain M. et al.. Characterization of novel phages isolated in coagulase-negative staphylococci reveals evolutionary relationships with Staphylococcus aureus phages. Journal of Bacteriology 194, 5829–5839, doi: 10.1128/JB.01085-12 (2012). PubMed DOI PMC
Daniel A., Bonnen P. E. & Fischetti V. A. First complete genome sequence of two Staphylococcus epidermidis bacteriophages. Journal of Bacteriology 189, 2086–2100, doi: 10.1128/JB.01637-06 (2007). PubMed DOI PMC
Gutiérrez D., Martínez B., Rodríguez A. & García P. Genomic characterization of two Staphylococcus epidermidis bacteriophages with anti-biofilm potential. BMC Genomics 13, 228, doi: 10.1186/1471-2164-13-228 (2012). PubMed DOI PMC
Melo L. D. et al.. Characterization of Staphylococcus epidermidis phage vB_SepS_SEP9 - a unique member of the Siphoviridae family. Research in Microbiology 165, 679–685, doi: 10.1016/j.resmic.2014.09.012 (2014). PubMed DOI
Kreiswirth B. N. et al.. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305, 709–712, doi: 10.1038/305709a0 (1983). PubMed DOI
Xia G. et al.. Wall teichoic acid-dependent adsorption of staphylococcal siphovirus and myovirus. Journal of Bacteriology 193, 4006–4009, doi: 10.1128/JB.01412-10 (2011). PubMed DOI PMC
Bera A., Herbert S., Jakob A., Vollmer W. & Götz F. Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Molecular Microbiology 55, 778–787, doi: 10.1111/j.1365-2958.2004.04446.x (2005). PubMed DOI
Winstel V., Sanchez-Carballo P., Holst O., Xia G. & Peschel A. Biosynthesis of the unique wall teichoic acid of Staphylococcus aureus lineage ST395. mBio 5, e00869, doi: 10.1128/mBio.00869-14 (2014). PubMed DOI PMC
Morgan G. J., Hatfull G. F., Casjens S. & Hendrix R. W. Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. Journal of Molecular Biology 317, 337–359, doi: 10.1006/jmbi.2002.5437 (2002). PubMed DOI
Campbell A. M. In Bacterial Genomes: Physical Structure and Analysis(eds de Bruijn F. J., Lupski J. R. & Weinstock G. M.) Ch. Prophages and Cryptic Prophages 23–29 (Springer, 1998).
Moodley S., Maxwell K. L. & Kanelis V. The protein gp74 from the bacteriophage HK97 functions as a HNH endonuclease. Protein Science 21, 809–818, doi: 10.1002/pro.2064 (2012). PubMed DOI PMC
Iandolo J. J. et al.. Comparative analysis of the genomes of the temperate bacteriophages phi 11, phi 12 and phi 13 of Staphylococcus aureus 8325. Gene 289, 109–118, doi: 10.1016/S0378-1119(02)00481-X (2002). PubMed DOI
Kaneko J., Kimura T., Kawakami Y., Tomita T. & Kamio Y. Panton-valentine leukocidin genes in a phage-like particle isolated from mitomycin C-treated Staphylococcus aureus V8 (ATCC 49775). Bioscience Biotechnology and Biochemistry 61, 1960–1962, doi: 10.1271/bbb.61.1960 (1997). PubMed DOI
Tsui L. C. & Hendrix R. W. Proteolytic processing of phage lambda tail protein gpH: timing of the cleavage. Virology 125, 257–264, doi: 10.1016/0042-6822(83)90199-X (1983). PubMed DOI
Schwarz S., Gregory P. D., Werckenthin C., Curnock S. & Dyke K. G. A novel plasmid from Staphylococcus epidermidis specifying resistance to kanamycin, neomycin and tetracycline. Journal of Medical Microbiology 45, 57–63, doi: 10.1099/00222615-45-1-57 (1996). PubMed DOI
Descloux S., Rossano A. & Perreten V. Characterization of new staphylococcal cassette chromosome mec (SCCmec) and topoisomerase genes in fluoroquinolone- and methicillin-resistant Staphylococcus pseudintermedius. Journal of Clinical Microbiology 46, 1818–1823, doi: 10.1128/JCM.02255-07 (2008). PubMed DOI PMC
Zong Z. & Lu X. Characterization of a new SCCmec element in Staphylococcus cohnii. PLoS One 5, e14016, doi: 10.1371/journal.pone.0014016 (2010). PubMed DOI PMC
Urushibara N., Paul S. K., Hossain M. A., Kawaguchiya M. & Kobayashi N. Analysis of Staphylococcal cassette chromosome mec in Staphylococcus haemolyticus and Staphylococcus sciuri: identification of a novel ccr gene complex with a newly identified ccrA allotype (ccrA7). Microbial Drug Resistance 17, 291–297, doi: 10.1089/mdr.2010.0144 (2011). PubMed DOI
Harrison E. M. et al.. A novel hybrid SCCmec-mecC region in Staphylococcus sciuri. Journal of Antimicrobial Chemotherapy 69, 911–918, doi: 10.1093/jac/dkt452 (2014). PubMed DOI PMC
Casjens S. Prophages and bacterial genomics: what have we learned so far? Molecular Microbiology 49, 277–300, doi: 10.1046/j.1365-2958.2003.03580.x (2003). PubMed DOI
Goerke C. et al.. Diversity of prophages in dominant Staphylococcus aureus clonal lineages. Journal of Bacteriology 191, 3462–3468, doi: 10.1128/JB.01804-08 (2009). PubMed DOI PMC
Takeuchi F. et al.. Whole-genome sequencing of Staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species. Journal of Bacteriology 187, 7292–7308, doi: 10.1128/JB.187.21.7292-7308.2005 (2005). PubMed DOI PMC
Baba T. et al.. Complete genome sequence of Macrococcus caseolyticus strain JCSCS5402, reflecting the ancestral genome of the human-pathogenic staphylococci. Journal of Bacteriology 191, 1180–1190, doi: 10.1128/JB.01058-08 (2009). PubMed DOI PMC
Jurczak-Kurek A. et al.. Biodiversity of bacteriophages: morphological and biological properties of a large group of phages isolated from urban sewage. Scientific Reports 6, 34338, doi: 10.1038/srep34338 (2016). PubMed DOI PMC
Kwan T., Liu J., DuBow M., Gros P. & Pelletier J. The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proceedings of the National Academy of Sciences of the USA 102, 5174–5179, doi: 10.1073/pnas.0501140102 (2005). PubMed DOI PMC
Kahánková J. et al.. Multilocus PCR typing strategy for differentiation of Staphylococcus aureus siphoviruses reflecting their modular genome structure. Environmental Microbiology 12, 2527–2538, doi: 10.1111/j.1462-2920.2010.02226.x (2010). PubMed DOI
Gutiérrez D. et al.. Three proposed new bacteriophage genera of staphylococcal phages: “3Alikevirus”, “77likevirus” and “Phietalikevirus”. Archives of Virology 159, 389–398, doi: 10.1007/s00705-013-1833-1 (2014). PubMed DOI
Riley M. C., Perreten V., Bemis D. A. & Kania S. A. Complete genome sequences of three important methicillin-resistant clinical isolates of Staphylococcus pseudintermedius. Genome Announcements 4, e01194-16, doi: 10.1128/genomeA.01194-16 (2016). PubMed DOI PMC
Misic A. M., Cain C. L., Morris D. O., Rankin S. C. & Beiting D. P. Complete genome sequence and methylome of Staphylococcus schleiferi, an important cause of skin and ear infections in veterinary medicine. Genome Announcements 3, e01011-15, doi: 10.1128/genomeA.01011-15 (2015). PubMed DOI PMC
Xu K., Yuan Z., Rayner S. & Hu X. Genome comparison provides molecular insights into the phylogeny of the reassigned new genus Lysinibacillus. BMC Genomics 16, 140, doi: 10.1186/s12864-015-1359-x (2015). PubMed DOI PMC
Kurata A., Nishimura M., Kishimoto N. & Kobayashi T. Draft genome sequence of a deep-sea bacterium, Bacillus niacini strain JAM F8, involved in the degradation of glycosaminoglycans. Genome Announcements 2, e00983-14, doi: 10.1128/genomeA.00983-14 (2014). PubMed DOI PMC
Nguyen L. T. & Vogel H. J. Staphylokinase has distinct modes of interaction with antimicrobial peptides, modulating its plasminogen-activation properties. Scientific Reports 6, 31817, doi: 10.1038/srep31817 (2016). PubMed DOI PMC
Coleman D. C. et al.. Staphylococcus aureus bacteriophages mediating the simultaneous lysogenic conversion of beta-lysin, staphylokinase and enterotoxin A: molecular mechanism of triple conversion. Journal of General Microbiology 135, 1679–1697, doi: 10.1099/00221287-135-6-1679 (1989). PubMed DOI
van Wamel W. J., Rooijakkers S. H., Ruyken M., van Kessel K. P. & van Strijp J. A. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. Journal of Bacteriology 188, 1310–1315, doi: 10.1128/JB.188.4.1310-1315.2006 (2006). PubMed DOI PMC
Sitkiewicz I., Stockbauer K. E. & Musser J. M. Secreted bacterial phospholipase A2 enzymes: better living through phospholipolysis. Trends in Microbiology 15, 63–69, doi: 10.1016/j.tim.2006.12.003 (2007). PubMed DOI
Beres S. B. et al.. Genome sequence of a serotype M3 strain of group A Streptococcus: phage-encoded toxins, the high-virulence phenotype, and clone emergence. Proceedings of the National Academy of Sciences of the USA 99, 10078–10083, doi: 10.1073/pnas.152298499 (2002). PubMed DOI PMC
Mahony J. & van Sinderen D. Structural aspects of the interaction of dairy phages with their host bacteria. Viruses 4, 1410–1424, doi: 10.3390/v4091410 (2012). PubMed DOI PMC
Sciara G. et al.. Structure of lactococcal phage p2 baseplate and its mechanism of activation. Proceedings of the National Academy of Sciences of the USA 107, 6852–6857, doi: 10.1073/pnas.1000232107 (2010). PubMed DOI PMC
Vinga I. et al.. Role of bacteriophage SPP1 tail spike protein gp21 on host cell receptor binding and trigger of phage DNA ejection. Molecular Microbiology 83, 289–303, doi: 10.1111/j.1365-2958.2011.07931.x (2012). PubMed DOI
Browning C., Shneider M. M., Bowman V. D., Schwarzer D. & Leiman P. G. Phage pierces the host cell membrane with the iron-loaded spike. Structure 20, 326–339, doi: 10.1016/j.str.2011.12.009 (2012). PubMed DOI
Yamashita E. et al.. The host-binding domain of the P2 phage tail spike reveals a trimeric iron-binding structure. Acta Crystallographica Sect. F Structural Biology and Crystallization Communications 67, 837–841, doi: 10.1107/S1744309111005999 (2011). PubMed DOI PMC
Doškař J. et al.. Genomic relatedness of Staphylococcus aureus phages of the International Typing Set and detection of serogroup A, B, and F prophages in lysogenic strains. Canadian Journal of Microbiology 46, 1066–1076, doi: 10.1139/w00-097 (2000). PubMed DOI
Chen J. et al.. Intra- and inter-generic transfer of pathogenicity island-encoded virulence genes by cos phages. ISME Journal 9, 1260–1263, doi: 10.1038/ismej.2014.187 (2015). PubMed DOI PMC
Quiles-Puchalt N. et al.. Staphylococcal pathogenicity island DNA packaging system involving cos-site packaging and phage-encoded HNH endonucleases. Proceedings of the National Academy of Sciences of the USA 111, 6016–6021, doi: 10.1073/pnas.1320538111 (2014). PubMed DOI PMC
Mir-Sanchis I. et al.. Staphylococcal SCCmec elements encode an active MCM-like helicase and thus may be replicative. Nature Structural & Molecular Biology 23, 891–898, doi: 10.1038/nsmb.3286 (2016). PubMed DOI PMC
Novick R. P., Edelman I. & Lofdahl S. Small Staphylococcus aureus plasmids are transduced as linear multimers that are formed and resolved by replicative processes. Journal of Molecular Biology 192, 209–220, doi: 10.1016/0022-2836(86)90360-8 (1986). PubMed DOI
Baptista C., Santos M. A. & Sao-Jose C. Phage SPP1 reversible adsorption to Bacillus subtilis cell wall teichoic acids accelerates virus recognition of membrane receptor YueB. Journal of Bacteriology 190, 4989–4996, doi: 10.1128/JB.00349-08 (2008). PubMed DOI PMC
Li X. et al.. An essential role for the baseplate protein Gp45 in phage adsorption to Staphylococcus aureus. Scientific Reports 6, 26455, doi: 10.1038/srep26455 (2016). PubMed DOI PMC
McDonald J. E., Smith D. L., Fogg P. C., McCarthy A. J. & Allison H. E. High-throughput method for rapid induction of prophages from lysogens and its application in the study of Shiga Toxin-encoding Escherichia coli strains. Applied and Environmental Microbiology 76, 2360–2365, doi: 10.1128/AEM.02923-09 (2010). PubMed DOI PMC
Mašlaňová I. et al.. Bacteriophages of Staphylococcus aureus efficiently package various bacterial genes and mobile genetic elements including SCCmec with different frequencies. Environmental Microbiology Reports 5, 66–73, doi: 10.1111/j.1758-2229.2012.00378.x (2013). PubMed DOI
Okonechnikov K., Golosova O., Fursov M. & team U. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28, 1166–1167, doi: 10.1093/bioinformatics/bts091 (2012). PubMed DOI
Besemer J. & Borodovsky M. GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Research 33, W451–454, doi: 10.1093/nar/gki487 (2005). PubMed DOI PMC
Aziz R. K. et al.. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9, 75, doi: 10.1186/1471-2164-9-75 (2008). PubMed DOI PMC
Altschul S. F., Gish W., Miller W., Myers E. W. & Lipman D. J. Basic local alignment search tool. Journal of Molecular Biology 215, 403–410, doi: 10.1016/S0022-2836(05)80360-2 (1990). PubMed DOI
Marchler-Bauer A. et al.. CDD: NCBI’s conserved domain database. Nucleic Acids Research 43, D222–226, doi: 10.1093/nar/gku1221 (2015). PubMed DOI PMC
Mitchell A. et al.. The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Research 43, D213–221, doi: 10.1093/nar/gku1243 (2015). PubMed DOI PMC
Schattner P., Brooks A. N. & Lowe T. M. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Research 33, W686–689, doi: 10.1093/nar/gki366 (2005). PubMed DOI PMC
Lagesen K. et al.. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research 35, 3100–3108, doi: 10.1093/nar/gkm160 (2007). PubMed DOI PMC
Finn R. D., Clements J. & Eddy S. R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Research 39, W29–37, doi: 10.1093/nar/gkr367 (2011). PubMed DOI PMC
Drozdetskiy A., Cole C., Procter J. & Barton G. J. JPred4: a protein secondary structure prediction server. Nucleic Acids Research 43, W389–394, doi: 10.1093/nar/gkv332 (2015). PubMed DOI PMC
Sullivan M. J., Petty N. K. & Beatson S. A. Easyfig: a genome comparison visualizer. Bioinformatics 27, 1009–1010, doi: 10.1093/bioinformatics/btr039 (2011). PubMed DOI PMC