Staphylococcus sciuri bacteriophages double-convert for staphylokinase and phospholipase, mediate interspecies plasmid transduction, and package mecA gene

. 2017 Apr 13 ; 7 () : 46319. [epub] 20170413

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid28406168

Staphylococcus sciuri is a bacterial pathogen associated with infections in animals and humans, and represents a reservoir for the mecA gene encoding methicillin-resistance in staphylococci. No S. sciuri siphophages were known. Here the identification and characterization of two temperate S. sciuri phages from the Siphoviridae family designated ϕ575 and ϕ879 are presented. The phages have icosahedral heads and flexible noncontractile tails that end with a tail spike. The genomes of the phages are 42,160 and 41,448 bp long and encode 58 and 55 ORFs, respectively, arranged in functional modules. Their head-tail morphogenesis modules are similar to those of Staphylococcus aureus ϕ13-like serogroup F phages, suggesting their common evolutionary origin. The genome of phage ϕ575 harbours genes for staphylokinase and phospholipase that might enhance the virulence of the bacterial hosts. In addition both of the phages package a homologue of the mecA gene, which is a requirement for its lateral transfer. Phage ϕ879 transduces tetracycline and aminoglycoside pSTS7-like resistance plasmids from its host to other S. sciuri strains and to S. aureus. Furthermore, both of the phages efficiently adsorb to numerous staphylococcal species, indicating that they may contribute to interspecies horizontal gene transfer.

Zobrazit více v PubMed

Kloos W. E., Schleifer K. H. & Smith R. F. Characterization of Staphylococcus sciuri sp. nov. and its subspecies. International Journal of Systematic Bacteriology 26, 22–37, doi: 10.1099/00207713-26-1-22 (1976). DOI

Švec P., Petráš P., Pantůček R., Doškař J. & Sedláček I. High intraspecies heterogeneity within Staphylococcus sciuri and rejection of its classification into S. sciuri subsp. sciuri, S. sciuri subsp. carnaticus and S. sciuri subsp. rodentium. International Journal of Systematic and Evolutionary Microbiology 66, 5181–5186, doi: 10.1099/ijsem.0.001493 (2016). PubMed DOI

Hauschild T. & Wojcik A. Species distribution and properties of staphylococci from canine dermatitis. Research in Veterinary Science 82, 1–6, doi: 10.1016/j.rvsc.2006.04.004 (2007). PubMed DOI

Chen S. et al.. A highly pathogenic strain of Staphylococcus sciuri caused fatal exudative epidermitis in piglets. PLoS One 2, e147, doi: 10.1371/journal.pone.0000147 (2007). PubMed DOI PMC

Hedin G. & Widerstrom M. Endocarditis due to Staphylococcus sciuri. European Journal of Clinical Microbiology and Infectious Diseases 17, 673–675, doi: 10.1007/BF01708356 (1998). PubMed DOI

Stepanović S., Dakić I., Djukić S., Lozuk B. & Svabic-Vlahović M. Surgical wound infection associated with Staphylococcus sciuri. Scandinavian Journal of Infectious Diseases 34, 685–686, doi: 10.1080/00365540110076949a (2002). PubMed DOI

Dakić I. et al.. Isolation and molecular characterization of Staphylococcus sciuri in the hospital environment. Journal of Clinical Microbiology 43, 2782–2785, doi: 10.1128/JCM.43.6.2782-2785.2005 (2005). PubMed DOI PMC

Stepanović S., Ježek P., Dakić I., Vuković D. & Seifert L. Staphylococcus sciuri: an unusual cause of pelvic inflammatory disease. International Journal of STD & AIDS 16, 452–453, doi: 10.1258/0956462054093999 (2005). PubMed DOI

Nemeghaire S. et al.. The ecological importance of the Staphylococcus sciuri species group as a reservoir for resistance and virulence genes. Veterinary Microbiology 171, 342–356, doi: 10.1016/j.vetmic.2014.02.005 (2014). PubMed DOI

Couto I., Wu S. W., Tomasz A. & de Lencastre H. Development of methicillin resistance in clinical isolates of Staphylococcus sciuri by transcriptional activation of the mecA homologue native to the species. Journal of Bacteriology 185, 645–653, doi: 10.1128/JB.185.2.645-653.2003 (2003). PubMed DOI PMC

Rolo J., de Lencastre H. & Miragaia M. High frequency and diversity of cassette chromosome recombinases (ccr) in methicillin-susceptible Staphylococcus sciuri. Journal of Antimicrobial Chemotherapy 69, 1461–1469, doi: 10.1093/jac/dku028 (2014). PubMed DOI

Zhou Y., Antignac A., Wu S. W. & Tomasz A. Penicillin-binding proteins and cell wall composition in beta-lactam-sensitive and -resistant strains of Staphylococcus sciuri. Journal of Bacteriology 190, 508–514, doi: 10.1128/JB.01549-07 (2008). PubMed DOI PMC

Wu S., de Lencastre H. & Tomasz A. Genetic organization of the mecA region in methicillin-susceptible and methicillin-resistant strains of Staphylococcus sciuri. Journal of Bacteriology 180, 236–242, doi: 10.1128/JB.180.2.236-242.1998 (1998). PubMed DOI PMC

Robinson D. A. & Enright M. C. Evolutionary models of the emergence of methicillin-resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 47, 3926–3934, doi: 10.1128/AAC.47.12.3926-3934.2003 (2003). PubMed DOI PMC

Otto M. Coagulase-negative staphylococci as reservoirs of genes facilitating MRSA infection. Bioessays 35, 4–11, doi: 10.1002/bies.201200112 (2013). PubMed DOI PMC

Varga M. et al.. Efficient transfer of antibiotic resistance plasmids by transduction within methicillin-resistant Staphylococcus aureus USA300 clone. FEMS Microbiology Letters 332, 146–152, doi: 10.1111/j.1574-6968.2012.02589.x (2012). PubMed DOI

Scharn C. R., Tenover F. C. & Goering R. V. Transduction of staphylococcal cassette chromosome mec elements between strains of Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 57, 5233–5238, doi: 10.1128/AAC.01058-13 (2013). PubMed DOI PMC

Mašlaňová I., Stříbná S., Doškař J. & Pantůček R. Efficient plasmid transduction to Staphylococcus aureus strains insensitive to the lytic action of transducing phage. FEMS Microbiology Letters 363, fnw211, doi: 10.1093/femsle/fnw211 (2016). PubMed DOI

Stanczak-Mrozek K. I. et al.. Within-host diversity of MRSA antimicrobial resistances. Journal of Antimicrobial Chemotherapy 70, 2191–2198, doi: 10.1093/jac/dkv119 (2015). PubMed DOI PMC

Haaber J. et al.. Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells. Nature Communications 7, 13333, doi: 10.1038/ncomms13333 (2016). PubMed DOI PMC

Deghorain M. et al.. Characterization of novel phages isolated in coagulase-negative staphylococci reveals evolutionary relationships with Staphylococcus aureus phages. Journal of Bacteriology 194, 5829–5839, doi: 10.1128/JB.01085-12 (2012). PubMed DOI PMC

Daniel A., Bonnen P. E. & Fischetti V. A. First complete genome sequence of two Staphylococcus epidermidis bacteriophages. Journal of Bacteriology 189, 2086–2100, doi: 10.1128/JB.01637-06 (2007). PubMed DOI PMC

Gutiérrez D., Martínez B., Rodríguez A. & García P. Genomic characterization of two Staphylococcus epidermidis bacteriophages with anti-biofilm potential. BMC Genomics 13, 228, doi: 10.1186/1471-2164-13-228 (2012). PubMed DOI PMC

Melo L. D. et al.. Characterization of Staphylococcus epidermidis phage vB_SepS_SEP9 - a unique member of the Siphoviridae family. Research in Microbiology 165, 679–685, doi: 10.1016/j.resmic.2014.09.012 (2014). PubMed DOI

Kreiswirth B. N. et al.. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305, 709–712, doi: 10.1038/305709a0 (1983). PubMed DOI

Xia G. et al.. Wall teichoic acid-dependent adsorption of staphylococcal siphovirus and myovirus. Journal of Bacteriology 193, 4006–4009, doi: 10.1128/JB.01412-10 (2011). PubMed DOI PMC

Bera A., Herbert S., Jakob A., Vollmer W. & Götz F. Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Molecular Microbiology 55, 778–787, doi: 10.1111/j.1365-2958.2004.04446.x (2005). PubMed DOI

Winstel V., Sanchez-Carballo P., Holst O., Xia G. & Peschel A. Biosynthesis of the unique wall teichoic acid of Staphylococcus aureus lineage ST395. mBio 5, e00869, doi: 10.1128/mBio.00869-14 (2014). PubMed DOI PMC

Morgan G. J., Hatfull G. F., Casjens S. & Hendrix R. W. Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. Journal of Molecular Biology 317, 337–359, doi: 10.1006/jmbi.2002.5437 (2002). PubMed DOI

Campbell A. M. In Bacterial Genomes: Physical Structure and Analysis(eds de Bruijn F. J., Lupski J. R. & Weinstock G. M.) Ch. Prophages and Cryptic Prophages 23–29 (Springer, 1998).

Moodley S., Maxwell K. L. & Kanelis V. The protein gp74 from the bacteriophage HK97 functions as a HNH endonuclease. Protein Science 21, 809–818, doi: 10.1002/pro.2064 (2012). PubMed DOI PMC

Iandolo J. J. et al.. Comparative analysis of the genomes of the temperate bacteriophages phi 11, phi 12 and phi 13 of Staphylococcus aureus 8325. Gene 289, 109–118, doi: 10.1016/S0378-1119(02)00481-X (2002). PubMed DOI

Kaneko J., Kimura T., Kawakami Y., Tomita T. & Kamio Y. Panton-valentine leukocidin genes in a phage-like particle isolated from mitomycin C-treated Staphylococcus aureus V8 (ATCC 49775). Bioscience Biotechnology and Biochemistry 61, 1960–1962, doi: 10.1271/bbb.61.1960 (1997). PubMed DOI

Tsui L. C. & Hendrix R. W. Proteolytic processing of phage lambda tail protein gpH: timing of the cleavage. Virology 125, 257–264, doi: 10.1016/0042-6822(83)90199-X (1983). PubMed DOI

Schwarz S., Gregory P. D., Werckenthin C., Curnock S. & Dyke K. G. A novel plasmid from Staphylococcus epidermidis specifying resistance to kanamycin, neomycin and tetracycline. Journal of Medical Microbiology 45, 57–63, doi: 10.1099/00222615-45-1-57 (1996). PubMed DOI

Descloux S., Rossano A. & Perreten V. Characterization of new staphylococcal cassette chromosome mec (SCCmec) and topoisomerase genes in fluoroquinolone- and methicillin-resistant Staphylococcus pseudintermedius. Journal of Clinical Microbiology 46, 1818–1823, doi: 10.1128/JCM.02255-07 (2008). PubMed DOI PMC

Zong Z. & Lu X. Characterization of a new SCCmec element in Staphylococcus cohnii. PLoS One 5, e14016, doi: 10.1371/journal.pone.0014016 (2010). PubMed DOI PMC

Urushibara N., Paul S. K., Hossain M. A., Kawaguchiya M. & Kobayashi N. Analysis of Staphylococcal cassette chromosome mec in Staphylococcus haemolyticus and Staphylococcus sciuri: identification of a novel ccr gene complex with a newly identified ccrA allotype (ccrA7). Microbial Drug Resistance 17, 291–297, doi: 10.1089/mdr.2010.0144 (2011). PubMed DOI

Harrison E. M. et al.. A novel hybrid SCCmec-mecC region in Staphylococcus sciuri. Journal of Antimicrobial Chemotherapy 69, 911–918, doi: 10.1093/jac/dkt452 (2014). PubMed DOI PMC

Casjens S. Prophages and bacterial genomics: what have we learned so far? Molecular Microbiology 49, 277–300, doi: 10.1046/j.1365-2958.2003.03580.x (2003). PubMed DOI

Goerke C. et al.. Diversity of prophages in dominant Staphylococcus aureus clonal lineages. Journal of Bacteriology 191, 3462–3468, doi: 10.1128/JB.01804-08 (2009). PubMed DOI PMC

Takeuchi F. et al.. Whole-genome sequencing of Staphylococcus haemolyticus uncovers the extreme plasticity of its genome and the evolution of human-colonizing staphylococcal species. Journal of Bacteriology 187, 7292–7308, doi: 10.1128/JB.187.21.7292-7308.2005 (2005). PubMed DOI PMC

Baba T. et al.. Complete genome sequence of Macrococcus caseolyticus strain JCSCS5402, reflecting the ancestral genome of the human-pathogenic staphylococci. Journal of Bacteriology 191, 1180–1190, doi: 10.1128/JB.01058-08 (2009). PubMed DOI PMC

Jurczak-Kurek A. et al.. Biodiversity of bacteriophages: morphological and biological properties of a large group of phages isolated from urban sewage. Scientific Reports 6, 34338, doi: 10.1038/srep34338 (2016). PubMed DOI PMC

Kwan T., Liu J., DuBow M., Gros P. & Pelletier J. The complete genomes and proteomes of 27 Staphylococcus aureus bacteriophages. Proceedings of the National Academy of Sciences of the USA 102, 5174–5179, doi: 10.1073/pnas.0501140102 (2005). PubMed DOI PMC

Kahánková J. et al.. Multilocus PCR typing strategy for differentiation of Staphylococcus aureus siphoviruses reflecting their modular genome structure. Environmental Microbiology 12, 2527–2538, doi: 10.1111/j.1462-2920.2010.02226.x (2010). PubMed DOI

Gutiérrez D. et al.. Three proposed new bacteriophage genera of staphylococcal phages: “3Alikevirus”, “77likevirus” and “Phietalikevirus”. Archives of Virology 159, 389–398, doi: 10.1007/s00705-013-1833-1 (2014). PubMed DOI

Riley M. C., Perreten V., Bemis D. A. & Kania S. A. Complete genome sequences of three important methicillin-resistant clinical isolates of Staphylococcus pseudintermedius. Genome Announcements 4, e01194-16, doi: 10.1128/genomeA.01194-16 (2016). PubMed DOI PMC

Misic A. M., Cain C. L., Morris D. O., Rankin S. C. & Beiting D. P. Complete genome sequence and methylome of Staphylococcus schleiferi, an important cause of skin and ear infections in veterinary medicine. Genome Announcements 3, e01011-15, doi: 10.1128/genomeA.01011-15 (2015). PubMed DOI PMC

Xu K., Yuan Z., Rayner S. & Hu X. Genome comparison provides molecular insights into the phylogeny of the reassigned new genus Lysinibacillus. BMC Genomics 16, 140, doi: 10.1186/s12864-015-1359-x (2015). PubMed DOI PMC

Kurata A., Nishimura M., Kishimoto N. & Kobayashi T. Draft genome sequence of a deep-sea bacterium, Bacillus niacini strain JAM F8, involved in the degradation of glycosaminoglycans. Genome Announcements 2, e00983-14, doi: 10.1128/genomeA.00983-14 (2014). PubMed DOI PMC

Nguyen L. T. & Vogel H. J. Staphylokinase has distinct modes of interaction with antimicrobial peptides, modulating its plasminogen-activation properties. Scientific Reports 6, 31817, doi: 10.1038/srep31817 (2016). PubMed DOI PMC

Coleman D. C. et al.. Staphylococcus aureus bacteriophages mediating the simultaneous lysogenic conversion of beta-lysin, staphylokinase and enterotoxin A: molecular mechanism of triple conversion. Journal of General Microbiology 135, 1679–1697, doi: 10.1099/00221287-135-6-1679 (1989). PubMed DOI

van Wamel W. J., Rooijakkers S. H., Ruyken M., van Kessel K. P. & van Strijp J. A. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. Journal of Bacteriology 188, 1310–1315, doi: 10.1128/JB.188.4.1310-1315.2006 (2006). PubMed DOI PMC

Sitkiewicz I., Stockbauer K. E. & Musser J. M. Secreted bacterial phospholipase A2 enzymes: better living through phospholipolysis. Trends in Microbiology 15, 63–69, doi: 10.1016/j.tim.2006.12.003 (2007). PubMed DOI

Beres S. B. et al.. Genome sequence of a serotype M3 strain of group A Streptococcus: phage-encoded toxins, the high-virulence phenotype, and clone emergence. Proceedings of the National Academy of Sciences of the USA 99, 10078–10083, doi: 10.1073/pnas.152298499 (2002). PubMed DOI PMC

Mahony J. & van Sinderen D. Structural aspects of the interaction of dairy phages with their host bacteria. Viruses 4, 1410–1424, doi: 10.3390/v4091410 (2012). PubMed DOI PMC

Sciara G. et al.. Structure of lactococcal phage p2 baseplate and its mechanism of activation. Proceedings of the National Academy of Sciences of the USA 107, 6852–6857, doi: 10.1073/pnas.1000232107 (2010). PubMed DOI PMC

Vinga I. et al.. Role of bacteriophage SPP1 tail spike protein gp21 on host cell receptor binding and trigger of phage DNA ejection. Molecular Microbiology 83, 289–303, doi: 10.1111/j.1365-2958.2011.07931.x (2012). PubMed DOI

Browning C., Shneider M. M., Bowman V. D., Schwarzer D. & Leiman P. G. Phage pierces the host cell membrane with the iron-loaded spike. Structure 20, 326–339, doi: 10.1016/j.str.2011.12.009 (2012). PubMed DOI

Yamashita E. et al.. The host-binding domain of the P2 phage tail spike reveals a trimeric iron-binding structure. Acta Crystallographica Sect. F Structural Biology and Crystallization Communications 67, 837–841, doi: 10.1107/S1744309111005999 (2011). PubMed DOI PMC

Doškař J. et al.. Genomic relatedness of Staphylococcus aureus phages of the International Typing Set and detection of serogroup A, B, and F prophages in lysogenic strains. Canadian Journal of Microbiology 46, 1066–1076, doi: 10.1139/w00-097 (2000). PubMed DOI

Chen J. et al.. Intra- and inter-generic transfer of pathogenicity island-encoded virulence genes by cos phages. ISME Journal 9, 1260–1263, doi: 10.1038/ismej.2014.187 (2015). PubMed DOI PMC

Quiles-Puchalt N. et al.. Staphylococcal pathogenicity island DNA packaging system involving cos-site packaging and phage-encoded HNH endonucleases. Proceedings of the National Academy of Sciences of the USA 111, 6016–6021, doi: 10.1073/pnas.1320538111 (2014). PubMed DOI PMC

Mir-Sanchis I. et al.. Staphylococcal SCCmec elements encode an active MCM-like helicase and thus may be replicative. Nature Structural & Molecular Biology 23, 891–898, doi: 10.1038/nsmb.3286 (2016). PubMed DOI PMC

Novick R. P., Edelman I. & Lofdahl S. Small Staphylococcus aureus plasmids are transduced as linear multimers that are formed and resolved by replicative processes. Journal of Molecular Biology 192, 209–220, doi: 10.1016/0022-2836(86)90360-8 (1986). PubMed DOI

Baptista C., Santos M. A. & Sao-Jose C. Phage SPP1 reversible adsorption to Bacillus subtilis cell wall teichoic acids accelerates virus recognition of membrane receptor YueB. Journal of Bacteriology 190, 4989–4996, doi: 10.1128/JB.00349-08 (2008). PubMed DOI PMC

Li X. et al.. An essential role for the baseplate protein Gp45 in phage adsorption to Staphylococcus aureus. Scientific Reports 6, 26455, doi: 10.1038/srep26455 (2016). PubMed DOI PMC

McDonald J. E., Smith D. L., Fogg P. C., McCarthy A. J. & Allison H. E. High-throughput method for rapid induction of prophages from lysogens and its application in the study of Shiga Toxin-encoding Escherichia coli strains. Applied and Environmental Microbiology 76, 2360–2365, doi: 10.1128/AEM.02923-09 (2010). PubMed DOI PMC

Mašlaňová I. et al.. Bacteriophages of Staphylococcus aureus efficiently package various bacterial genes and mobile genetic elements including SCCmec with different frequencies. Environmental Microbiology Reports 5, 66–73, doi: 10.1111/j.1758-2229.2012.00378.x (2013). PubMed DOI

Okonechnikov K., Golosova O., Fursov M. & team U. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28, 1166–1167, doi: 10.1093/bioinformatics/bts091 (2012). PubMed DOI

Besemer J. & Borodovsky M. GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Research 33, W451–454, doi: 10.1093/nar/gki487 (2005). PubMed DOI PMC

Aziz R. K. et al.. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9, 75, doi: 10.1186/1471-2164-9-75 (2008). PubMed DOI PMC

Altschul S. F., Gish W., Miller W., Myers E. W. & Lipman D. J. Basic local alignment search tool. Journal of Molecular Biology 215, 403–410, doi: 10.1016/S0022-2836(05)80360-2 (1990). PubMed DOI

Marchler-Bauer A. et al.. CDD: NCBI’s conserved domain database. Nucleic Acids Research 43, D222–226, doi: 10.1093/nar/gku1221 (2015). PubMed DOI PMC

Mitchell A. et al.. The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Research 43, D213–221, doi: 10.1093/nar/gku1243 (2015). PubMed DOI PMC

Schattner P., Brooks A. N. & Lowe T. M. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Research 33, W686–689, doi: 10.1093/nar/gki366 (2005). PubMed DOI PMC

Lagesen K. et al.. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research 35, 3100–3108, doi: 10.1093/nar/gkm160 (2007). PubMed DOI PMC

Finn R. D., Clements J. & Eddy S. R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Research 39, W29–37, doi: 10.1093/nar/gkr367 (2011). PubMed DOI PMC

Drozdetskiy A., Cole C., Procter J. & Barton G. J. JPred4: a protein secondary structure prediction server. Nucleic Acids Research 43, W389–394, doi: 10.1093/nar/gkv332 (2015). PubMed DOI PMC

Sullivan M. J., Petty N. K. & Beatson S. A. Easyfig: a genome comparison visualizer. Bioinformatics 27, 1009–1010, doi: 10.1093/bioinformatics/btr039 (2011). PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...