Staphylococcus sciuri bacteriophages double-convert for staphylokinase and phospholipase, mediate interspecies plasmid transduction, and package mecA gene
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28406168
PubMed Central
PMC5390265
DOI
10.1038/srep46319
PII: srep46319
Knihovny.cz E-zdroje
- MeSH
- bakteriální geny * MeSH
- fosfolipasy metabolismus MeSH
- genom virový MeSH
- genomika metody MeSH
- hostitelská specificita MeSH
- metaloendopeptidasy metabolismus MeSH
- plazmidy genetika MeSH
- přenos genů horizontální MeSH
- přichycení viru MeSH
- stafylokokové bakteriofágy fyziologie ultrastruktura MeSH
- Staphylococcus virologie MeSH
- transdukce genetická * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- auR protein, Staphylococcus aureus MeSH Prohlížeč
- fosfolipasy MeSH
- metaloendopeptidasy MeSH
Staphylococcus sciuri is a bacterial pathogen associated with infections in animals and humans, and represents a reservoir for the mecA gene encoding methicillin-resistance in staphylococci. No S. sciuri siphophages were known. Here the identification and characterization of two temperate S. sciuri phages from the Siphoviridae family designated ϕ575 and ϕ879 are presented. The phages have icosahedral heads and flexible noncontractile tails that end with a tail spike. The genomes of the phages are 42,160 and 41,448 bp long and encode 58 and 55 ORFs, respectively, arranged in functional modules. Their head-tail morphogenesis modules are similar to those of Staphylococcus aureus ϕ13-like serogroup F phages, suggesting their common evolutionary origin. The genome of phage ϕ575 harbours genes for staphylokinase and phospholipase that might enhance the virulence of the bacterial hosts. In addition both of the phages package a homologue of the mecA gene, which is a requirement for its lateral transfer. Phage ϕ879 transduces tetracycline and aminoglycoside pSTS7-like resistance plasmids from its host to other S. sciuri strains and to S. aureus. Furthermore, both of the phages efficiently adsorb to numerous staphylococcal species, indicating that they may contribute to interspecies horizontal gene transfer.
Zobrazit více v PubMed
Kloos W. E., Schleifer K. H. & Smith R. F. Characterization of DOI
Švec P., Petráš P., Pantůček R., Doškař J. & Sedláček I. High intraspecies heterogeneity within PubMed DOI
Hauschild T. & Wojcik A. Species distribution and properties of staphylococci from canine dermatitis. Research in Veterinary Science 82, 1–6, doi: 10.1016/j.rvsc.2006.04.004 (2007). PubMed DOI
Chen S. et al. A highly pathogenic strain of PubMed DOI PMC
Hedin G. & Widerstrom M. Endocarditis due to PubMed DOI
Stepanović S., Dakić I., Djukić S., Lozuk B. & Svabic-Vlahović M. Surgical wound infection associated with PubMed DOI
Dakić I. et al. Isolation and molecular characterization of PubMed DOI PMC
Stepanović S., Ježek P., Dakić I., Vuković D. & Seifert L. PubMed DOI
Nemeghaire S. et al. The ecological importance of the PubMed DOI
Couto I., Wu S. W., Tomasz A. & de Lencastre H. Development of methicillin resistance in clinical isolates of PubMed DOI PMC
Rolo J., de Lencastre H. & Miragaia M. High frequency and diversity of cassette chromosome recombinases ( PubMed DOI
Zhou Y., Antignac A., Wu S. W. & Tomasz A. Penicillin-binding proteins and cell wall composition in beta-lactam-sensitive and -resistant strains of PubMed DOI PMC
Wu S., de Lencastre H. & Tomasz A. Genetic organization of the PubMed DOI PMC
Robinson D. A. & Enright M. C. Evolutionary models of the emergence of methicillin-resistant PubMed DOI PMC
Otto M. Coagulase-negative staphylococci as reservoirs of genes facilitating MRSA infection. Bioessays 35, 4–11, doi: 10.1002/bies.201200112 (2013). PubMed DOI PMC
Varga M. et al. Efficient transfer of antibiotic resistance plasmids by transduction within methicillin-resistant PubMed DOI
Scharn C. R., Tenover F. C. & Goering R. V. Transduction of staphylococcal cassette chromosome PubMed DOI PMC
Mašlaňová I., Stříbná S., Doškař J. & Pantůček R. Efficient plasmid transduction to PubMed DOI
Stanczak-Mrozek K. I. et al. Within-host diversity of MRSA antimicrobial resistances. Journal of Antimicrobial Chemotherapy 70, 2191–2198, doi: 10.1093/jac/dkv119 (2015). PubMed DOI PMC
Haaber J. et al. Bacterial viruses enable their host to acquire antibiotic resistance genes from neighbouring cells. Nature Communications 7, 13333, doi: 10.1038/ncomms13333 (2016). PubMed DOI PMC
Deghorain M. et al. Characterization of novel phages isolated in coagulase-negative staphylococci reveals evolutionary relationships with PubMed DOI PMC
Daniel A., Bonnen P. E. & Fischetti V. A. First complete genome sequence of two PubMed DOI PMC
Gutiérrez D., Martínez B., Rodríguez A. & García P. Genomic characterization of two PubMed DOI PMC
Melo L. D. et al. Characterization of PubMed DOI
Kreiswirth B. N. et al. The toxic shock syndrome exotoxin structural gene is not detectably transmitted by a prophage. Nature 305, 709–712, doi: 10.1038/305709a0 (1983). PubMed DOI
Xia G. et al. Wall teichoic acid-dependent adsorption of staphylococcal siphovirus and myovirus. Journal of Bacteriology 193, 4006–4009, doi: 10.1128/JB.01412-10 (2011). PubMed DOI PMC
Bera A., Herbert S., Jakob A., Vollmer W. & Götz F. Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of PubMed DOI
Winstel V., Sanchez-Carballo P., Holst O., Xia G. & Peschel A. Biosynthesis of the unique wall teichoic acid of PubMed DOI PMC
Morgan G. J., Hatfull G. F., Casjens S. & Hendrix R. W. Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in PubMed DOI
Campbell A. M. In Bacterial Genomes: Physical Structure and Analysis(eds de Bruijn F. J., Lupski J. R. & Weinstock G. M.) Ch. Prophages and Cryptic Prophages 23–29 (Springer, 1998).
Moodley S., Maxwell K. L. & Kanelis V. The protein gp74 from the bacteriophage HK97 functions as a HNH endonuclease. Protein Science 21, 809–818, doi: 10.1002/pro.2064 (2012). PubMed DOI PMC
Iandolo J. J. et al. Comparative analysis of the genomes of the temperate bacteriophages phi 11, phi 12 and phi 13 of PubMed DOI
Kaneko J., Kimura T., Kawakami Y., Tomita T. & Kamio Y. Panton-valentine leukocidin genes in a phage-like particle isolated from mitomycin C-treated PubMed DOI
Tsui L. C. & Hendrix R. W. Proteolytic processing of phage lambda tail protein gpH: timing of the cleavage. Virology 125, 257–264, doi: 10.1016/0042-6822(83)90199-X (1983). PubMed DOI
Schwarz S., Gregory P. D., Werckenthin C., Curnock S. & Dyke K. G. A novel plasmid from PubMed DOI
Descloux S., Rossano A. & Perreten V. Characterization of new staphylococcal cassette chromosome PubMed DOI PMC
Zong Z. & Lu X. Characterization of a new SCC PubMed DOI PMC
Urushibara N., Paul S. K., Hossain M. A., Kawaguchiya M. & Kobayashi N. Analysis of Staphylococcal cassette chromosome PubMed DOI
Harrison E. M. et al. A novel hybrid SCC PubMed DOI PMC
Casjens S. Prophages and bacterial genomics: what have we learned so far? Molecular Microbiology 49, 277–300, doi: 10.1046/j.1365-2958.2003.03580.x (2003). PubMed DOI
Goerke C. et al. Diversity of prophages in dominant PubMed DOI PMC
Takeuchi F. et al. Whole-genome sequencing of PubMed DOI PMC
Baba T. et al. Complete genome sequence of PubMed DOI PMC
Jurczak-Kurek A. et al. Biodiversity of bacteriophages: morphological and biological properties of a large group of phages isolated from urban sewage. Scientific Reports 6, 34338, doi: 10.1038/srep34338 (2016). PubMed DOI PMC
Kwan T., Liu J., DuBow M., Gros P. & Pelletier J. The complete genomes and proteomes of 27 PubMed DOI PMC
Kahánková J. et al. Multilocus PCR typing strategy for differentiation of PubMed DOI
Gutiérrez D. et al. Three proposed new bacteriophage genera of staphylococcal phages: “3Alikevirus”, “77likevirus” and “Phietalikevirus”. Archives of Virology 159, 389–398, doi: 10.1007/s00705-013-1833-1 (2014). PubMed DOI
Riley M. C., Perreten V., Bemis D. A. & Kania S. A. Complete genome sequences of three important methicillin-resistant clinical isolates of PubMed DOI PMC
Misic A. M., Cain C. L., Morris D. O., Rankin S. C. & Beiting D. P. Complete genome sequence and methylome of PubMed DOI PMC
Xu K., Yuan Z., Rayner S. & Hu X. Genome comparison provides molecular insights into the phylogeny of the reassigned new genus Lysinibacillus. BMC Genomics 16, 140, doi: 10.1186/s12864-015-1359-x (2015). PubMed DOI PMC
Kurata A., Nishimura M., Kishimoto N. & Kobayashi T. Draft genome sequence of a deep-sea bacterium, PubMed DOI PMC
Nguyen L. T. & Vogel H. J. Staphylokinase has distinct modes of interaction with antimicrobial peptides, modulating its plasminogen-activation properties. Scientific Reports 6, 31817, doi: 10.1038/srep31817 (2016). PubMed DOI PMC
Coleman D. C. et al. PubMed DOI
van Wamel W. J., Rooijakkers S. H., Ruyken M., van Kessel K. P. & van Strijp J. A. The innate immune modulators staphylococcal complement inhibitor and chemotaxis inhibitory protein of PubMed DOI PMC
Sitkiewicz I., Stockbauer K. E. & Musser J. M. Secreted bacterial phospholipase A2 enzymes: better living through phospholipolysis. Trends in Microbiology 15, 63–69, doi: 10.1016/j.tim.2006.12.003 (2007). PubMed DOI
Beres S. B. et al. Genome sequence of a serotype M3 strain of group A PubMed DOI PMC
Mahony J. & van Sinderen D. Structural aspects of the interaction of dairy phages with their host bacteria. Viruses 4, 1410–1424, doi: 10.3390/v4091410 (2012). PubMed DOI PMC
Sciara G. et al. Structure of lactococcal phage p2 baseplate and its mechanism of activation. Proceedings of the National Academy of Sciences of the USA 107, 6852–6857, doi: 10.1073/pnas.1000232107 (2010). PubMed DOI PMC
Vinga I. et al. Role of bacteriophage SPP1 tail spike protein gp21 on host cell receptor binding and trigger of phage DNA ejection. Molecular Microbiology 83, 289–303, doi: 10.1111/j.1365-2958.2011.07931.x (2012). PubMed DOI
Browning C., Shneider M. M., Bowman V. D., Schwarzer D. & Leiman P. G. Phage pierces the host cell membrane with the iron-loaded spike. Structure 20, 326–339, doi: 10.1016/j.str.2011.12.009 (2012). PubMed DOI
Yamashita E. et al. The host-binding domain of the P2 phage tail spike reveals a trimeric iron-binding structure. Acta Crystallographica Sect. F Structural Biology and Crystallization Communications 67, 837–841, doi: 10.1107/S1744309111005999 (2011). PubMed DOI PMC
Doškař J. et al. Genomic relatedness of PubMed DOI
Chen J. et al. Intra- and inter-generic transfer of pathogenicity island-encoded virulence genes by PubMed DOI PMC
Quiles-Puchalt N. et al. Staphylococcal pathogenicity island DNA packaging system involving cos-site packaging and phage-encoded HNH endonucleases. Proceedings of the National Academy of Sciences of the USA 111, 6016–6021, doi: 10.1073/pnas.1320538111 (2014). PubMed DOI PMC
Mir-Sanchis I. et al. Staphylococcal SCC PubMed DOI PMC
Novick R. P., Edelman I. & Lofdahl S. Small PubMed DOI
Baptista C., Santos M. A. & Sao-Jose C. Phage SPP1 reversible adsorption to PubMed DOI PMC
Li X. et al. An essential role for the baseplate protein Gp45 in phage adsorption to PubMed DOI PMC
McDonald J. E., Smith D. L., Fogg P. C., McCarthy A. J. & Allison H. E. High-throughput method for rapid induction of prophages from lysogens and its application in the study of Shiga Toxin-encoding PubMed DOI PMC
Mašlaňová I. et al. Bacteriophages of PubMed DOI
Okonechnikov K., Golosova O., Fursov M. & team U. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28, 1166–1167, doi: 10.1093/bioinformatics/bts091 (2012). PubMed DOI
Besemer J. & Borodovsky M. GeneMark: web software for gene finding in prokaryotes, eukaryotes and viruses. Nucleic Acids Research 33, W451–454, doi: 10.1093/nar/gki487 (2005). PubMed DOI PMC
Aziz R. K. et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9, 75, doi: 10.1186/1471-2164-9-75 (2008). PubMed DOI PMC
Altschul S. F., Gish W., Miller W., Myers E. W. & Lipman D. J. Basic local alignment search tool. Journal of Molecular Biology 215, 403–410, doi: 10.1016/S0022-2836(05)80360-2 (1990). PubMed DOI
Marchler-Bauer A. et al. CDD: NCBI’s conserved domain database. Nucleic Acids Research 43, D222–226, doi: 10.1093/nar/gku1221 (2015). PubMed DOI PMC
Mitchell A. et al. The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Research 43, D213–221, doi: 10.1093/nar/gku1243 (2015). PubMed DOI PMC
Schattner P., Brooks A. N. & Lowe T. M. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Research 33, W686–689, doi: 10.1093/nar/gki366 (2005). PubMed DOI PMC
Lagesen K. et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Research 35, 3100–3108, doi: 10.1093/nar/gkm160 (2007). PubMed DOI PMC
Finn R. D., Clements J. & Eddy S. R. HMMER web server: interactive sequence similarity searching. Nucleic Acids Research 39, W29–37, doi: 10.1093/nar/gkr367 (2011). PubMed DOI PMC
Drozdetskiy A., Cole C., Procter J. & Barton G. J. JPred4: a protein secondary structure prediction server. Nucleic Acids Research 43, W389–394, doi: 10.1093/nar/gkv332 (2015). PubMed DOI PMC
Sullivan M. J., Petty N. K. & Beatson S. A. Easyfig: a genome comparison visualizer. Bioinformatics 27, 1009–1010, doi: 10.1093/bioinformatics/btr039 (2011). PubMed DOI PMC