Characterization of Staphylococcus intermedius Group Isolates Associated with Animals from Antarctica and Emended Description of Staphylococcus delphini

. 2020 Feb 01 ; 8 (2) : . [epub] 20200201

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32024111

Grantová podpora
LM2015078 Ministerstvo Školství, Mládeže a Tělovýchovy
16-29916A Ministerstvo Zdravotnictví Ceské Republiky
LM2015043 Ministerstvo Školství, Mládeže a Tělovýchovy
LM2015091 Ministerstvo Školství, Mládeže a Tělovýchovy
LQ1601 Ministerstvo Školství, Mládeže a Tělovýchovy
MUNI/A/0958/2018 Grantová Agentura Masarykovy Univerzity

Odkazy

PubMed 32024111
PubMed Central PMC7074773
DOI 10.3390/microorganisms8020204
PII: microorganisms8020204
Knihovny.cz E-zdroje

Members of the genus Staphylococcus are widespread in nature and occupy a variety of niches, however, staphylococcal colonization of animals in the Antarctic environment has not been adequately studied. Here, we describe the first isolation and characterization of two Staphylococcus intermedius group (SIG) members, Staphylococcus delphini and Staphylococcus pseudintermedius, in Antarctic wildlife. Staphylococcus delphini were found exclusively in Adélie penguins. The report of S. pseudintermedius from Weddell seals confirmed its occurrence in all families of the suborder Caniformia. Partial RNA polymerase beta-subunit (rpoB) gene sequencing, repetitive PCR fingerprinting with the (GTG)5 primer, and matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry gave consistent identification results and proved to be suitable for identifying SIG members. Comparative genomics of S. delphini isolates revealed variable genomic elements, including new prophages, a novel phage-inducible chromosomal island, and numerous putative virulence factors. Surface and extracellular protein distribution were compared between genomes and showed strain-specific profiles. The pathogenic potential of S. delphini was enhanced by a novel type of exfoliative toxin, trypsin-like serine protease cluster, and enterotoxin C. Detailed analysis of phenotypic characteristics performed on six Antarctic isolates of S. delphini and eight reference strains from different animal sources enabled us to emend the species description of S. delphini.

Zobrazit více v PubMed

Götz F., Bannerman T., Schleifer K.-H. The Genera Staphylococcus and Macrococcus. In: Dworkin M., Falkow S., Rosenberg E., Schleifer K.-H., Stackebrandt E., editors. The Prokaryotes. Volume 4: Bacteria: Firmicutes, Cyanobacteria. Volume 4. Springer Science; New York, NY, USA: 2006. pp. 5–75.

Pantůček R., Sedláček I., Indráková A., Vrbovská V., Mašlaňová I., Kovařovic V., Švec P., Králová S., Krištofová L., Kekláková J., et al. Staphylococcus edaphicus sp. nov., isolated in Antarctica, harbors the mecC gene and genomic islands with a suspected role in adaptation to extreme environments. Appl. Env. Microbiol. 2018;84 doi: 10.1128/AEM.01746-17. PubMed DOI PMC

Shivaji S., Begum Z., Shiva Nageswara Rao S.S., Vishnu Vardhan Reddy P.V., Manasa P., Sailaja B., Prathiba M.S., Thamban M., Krishnan K.P., Singh S.M., et al. Antarctic ice core samples: Culturable bacterial diversity. Res. Microbiol. 2013;164:70–82. doi: 10.1016/j.resmic.2012.09.001. PubMed DOI

Peeters K., Hodgson D.A., Convey P., Willems A. Culturable diversity of heterotrophic bacteria in Forlidas Pond (Pensacola Mountains) and Lundstrom Lake (Shackleton Range), Antarctica. Microbiol. Ecol. 2011;62:399–413. doi: 10.1007/s00248-011-9842-7. PubMed DOI

Arenas F.A., Pugin B., Henriquez N.A., Arenas-Salinas M.A., Diaz-Vasquez W.A., Pozo M.F., Munoz C.M., Chasteen T.G., Perez-Donoso J.M., Vasquez C.C. Isolation, identification and characterization of highly tellurite-resistant, tellurite-reducing bacteria from Antarctica. Polar Sci. 2014;8:40–52. doi: 10.1016/j.polar.2014.01.001. DOI

Leiva S., Alvarado P., Huang Y., Wang J., Garrido I. Diversity of pigmented Gram-positive bacteria associated with marine macroalgae from Antarctica. FEMS Microbiol. Lett. 2015;362:fnv206. doi: 10.1093/femsle/fnv206. PubMed DOI

Sieburth J.M. Gastrointestinal microflora of Antarctic birds. J. Bacteriol. 1959;77:521–531. doi: 10.1128/JB.77.5.521-531.1959. PubMed DOI PMC

Vazquez S.C., Merino L.N.R., Maccormack W.P., Fraile E.R. Protease-producing psychrotrophic bacteria isolated from Antarctica. Polar Biol. 1995;15:131–135. doi: 10.1007/BF00241051. DOI

Nievas V.F., Leotta G.A., Vigo G.B. Subcutaneous clostridial infection in Adelie penguins in Hope Bay, Antarctica. Polar Biol. 2007;30:249–252. doi: 10.1007/s00300-006-0179-5. DOI

Mellish J., Tuomi P., Hindle A., Jang S., Horning M. Skin microbial flora and effectiveness of aseptic technique for deep muscle biopsies in Weddell seals (Leptonychotes weddellii) in McMurdo Sound, Antarctica. J. Wildlife Dis. 2010;46:655–658. doi: 10.7589/0090-3558-46.2.655. PubMed DOI

Bannoehr J., Ben Zakour N.L., Waller A.S., Guardabassi L., Thoday K.L., van den Broek A.H.M., Fitzgerald J.R. Population genetic structure of the Staphylococcus intermedius group: Insights into agr diversification and the emergence of methicillin-resistant strains. J. Bacteriol. 2007;189:8685–8692. doi: 10.1128/JB.01150-07. PubMed DOI PMC

Sasaki T., Kikuchi K., Tanaka Y., Takahashi N., Kamata S., Hiramatsu K. Reclassification of phenotypically identified Staphylococcus intermedius strains. J. Clin. Microbiol. 2007;45:2770–2778. doi: 10.1128/JCM.00360-07. PubMed DOI PMC

Hájek V. Staphylococcus intermedius, a new species isolated from animals. Int. J. Syst. Bacteriol. 1976;26:401–408. doi: 10.1099/00207713-26-4-401. DOI

Devriese L.A., Vancanneyt M., Baele M., Vaneechoutte M., De Graef E., Snauwaert C., Cleenwerck I., Dawyndt P., Swings J., Decostere A., et al. Staphylococcus pseudintermedius sp. nov., a coagulase-positive species from animals. Int. J. Syst. Evol. Microbiol. 2005;55:1569–1573. doi: 10.1099/ijs.0.63413-0. PubMed DOI

Varaldo P.E., Kilpperbalz R., Biavasco F., Satta G., Schleifer K.H. Staphylococcus delphini sp. nov., a coagulase-positive species isolated from dolphins. Int. J. Syst. Bacteriol. 1988;38:436–439. doi: 10.1099/00207713-38-4-436. DOI

Murray A.K., Lee J., Bendall R., Zhang L., Sunde M., Schau Slettemeas J., Gaze W., Page A.J., Vos M. Staphylococcus cornubiensis sp. nov., a member of the Staphylococcus intermedius group (SIG) Int. J. Syst. Evol. Microbiol. 2018;68:3404–3408. doi: 10.1099/ijsem.0.002992. PubMed DOI

Bond R., Loeffler A. What’s happened to Staphylococcus intermedius? Taxonomic revision and emergence of multi-drug resistance. J. Small Anim. Pr. 2012;53:147–154. doi: 10.1111/j.1748-5827.2011.01165.x. PubMed DOI

Viau R., Hujer A.M., Hujer K.M., Bonomo R.A., Jump R.L.P. Are Staphylococcus intermedius infections in humans cases of mistaken identity? A case series and literature review. Open Forum Infect. Dis. 2015;2:ofv110. doi: 10.1093/ofid/ofv110. PubMed DOI PMC

Decristophoris P., Fasola A., Benagli C., Tonolla M., Petrini O. Identification of Staphylococcus intermedius group by MALDI-TOF MS. Syst. Appl. Microbiol. 2011;34:45–51. doi: 10.1016/j.syapm.2010.11.004. PubMed DOI

Murugaiyan J., Walther B., Stamm I., Abou-Elnaga Y., Brueggemann-Schwarze S., Vincze S., Wieler L.H., Lubke-Becker A., Semmler T., Roesler U. Species differentiation within the Staphylococcus intermedius group using a refined MALDI-TOF MS database. Clin. Microbiol. Infect. 2014;20:1007–1014. doi: 10.1111/1469-0691.12662. PubMed DOI

Sasaki T., Tsubakishita S., Tanaka Y., Sakusabe A., Ohtsuka M., Hirotaki S., Kawakami T., Fukata T., Hiramatsu K. Multiplex-PCR method for species identification of coagulase-positive staphylococci. J. Clin. Microbiol. 2010;48:765–769. doi: 10.1128/JCM.01232-09. PubMed DOI PMC

Lee J., Murray A., Bendall R., Gaze W., Zhang L.H., Vos M. Improved detection of Staphylococcus intermedius group in a routine diagnostic laboratory. J. Clin. Microbiol. 2015;53:961–963. doi: 10.1128/JCM.02474-14. PubMed DOI PMC

Slettemeas J.S., Mikalsen J., Sunde M. Further diversity of the Staphylococcus intermedius group and heterogeneity in the MboI restriction site used for Staphylococcus pseudintermedius species identification. J. Vet. Diagn. Invest. 2010;22:756–759. doi: 10.1177/104063871002200517. PubMed DOI

Solyman S.M., Black C.C., Duim B., Perreten V., van Duijkeren E., Wagenaar J.A., Eberlein L.C., Sadeghi L.N., Videla R., Bemis D.A., et al. Multilocus sequence typing for characterization of Staphylococcus pseudintermedius. J. Clin. Microbiol. 2013;51:306–310. doi: 10.1128/JCM.02421-12. PubMed DOI PMC

Ben Zakour N.L., Beatson S.A., van den Broek A.H.M., Thoday K.L., Fitzgerald J.R. Comparative genomics of the Staphylococcus intermedius group of animal pathogens. Front. Cell. Infect. Microbiol. 2012;2:44. doi: 10.3389/fcimb.2012.00044. PubMed DOI PMC

Verstappen K.M., Huijbregts L., Spaninks M., Wagenaar J.A., Fluit A.C., Duim B. Development of a real-time PCR for detection of Staphylococcus pseudintermedius using a novel automated comparison of whole-genome sequences. PLoS ONE. 2017;12:e0189520. doi: 10.1371/journal.pone.0183925. PubMed DOI PMC

Bannoehr J., Franco A., Iurescia M., Battisti A., Fitzgerald J.R. Molecular diagnostic identification of Staphylococcus pseudintermedius. J. Clin. Microbiol. 2009;47:469–471. doi: 10.1128/JCM.01915-08. PubMed DOI PMC

Borjesson S., Gomez-Sanz E., Ekstrom K., Torres C., Gronlund U. Staphylococcus pseudintermedius can be misdiagnosed as Staphylococcus aureus in humans with dog bite wounds. Eur. J. Clin. Microbiol. 2015;34:839–844. doi: 10.1007/s10096-014-2300-y. PubMed DOI

Lainhart W., Yarbrough M.L., Burnham C.A. The brief case: Staphylococcus intermedius group-look what the dog dragged in. J. Clin. Microbiol. 2018;56:e00839-17. doi: 10.1128/JCM.00839-17. PubMed DOI PMC

Hanselman B.A., Kruth S.A., Rousseau J., Weese J.S. Coagulase positive staphylococcal colonization of humans and their household pets. Can. Vet. J. 2009;50:954–958. PubMed PMC

Ishihara K., Shimokubo N., Sakagami A., Ueno H., Muramatsu Y., Kadosawa T., Yanagisawa C., Hanaki H., Nakajima C., Suzuki Y., et al. Occurrence and molecular characteristics of methicillin-resistant Staphylococcus aureus and methicillin-resistant Staphylococcus pseudintermedius in an academic veterinary hospital. Appl. Env. Microbiol. 2010;76:5165–5174. doi: 10.1128/AEM.02780-09. PubMed DOI PMC

Sasaki T., Kikuchi K., Tanaka Y., Takahashi N., Kamata S., Hiramatsu K. Methicillin-resistant Staphylococcus pseudintermedius in a veterinary teaching hospital. J. Clin. Microbiol. 2007;45:1118–1125. doi: 10.1128/JCM.02193-06. PubMed DOI PMC

Soedarmanto I., Kanbar T., Ulbegi-Mohyla H., Hijazin M., Alber J., Lammler C., Akineden O., Weiss R., Moritz A., Zschock M. Genetic relatedness of methicillin-resistant Staphylococcus pseudintermedius (MRSP) isolated from a dog and the dog owner. Res. Vet. Sci. 2011;91:E25–E27. doi: 10.1016/j.rvsc.2011.01.027. PubMed DOI

Van Hoovels L., Vankeerberghen A., Boel A., Van Vaerenbergh K., De Beenhouwer H. First case of Staphylococcus pseudintermedius infection in a human. J. Clin. Microbiol. 2006;44:4609–4612. doi: 10.1128/JCM.01308-06. PubMed DOI PMC

Guardabassi L., Schmidt K.R., Petersen T.S., Espinosa-Gongora C., Moodley A., Agerso Y., Olsen J.E. Mustelidae are natural hosts of Staphylococcus delphini group A. Vet. Microbiol. 2012;159:351–353. doi: 10.1016/j.vetmic.2012.04.004. PubMed DOI

Magleby R., Bemis D.A., Kim D., Carroll K.C., Castanheira M., Kania S.A., Jenkins S.G., Westblade L.F. First reported human isolation of Staphylococcus delphini. Diagn. Microbiol. Infect. Dis. 2019;94:274–276. doi: 10.1016/j.diagmicrobio.2019.01.014. PubMed DOI

Nikolaisen N.K., Lassen D.C.K., Chriel M., Larsen G., Jensen V.F., Pedersen K. Antimicrobial resistance among pathogenic bacteria from mink (Neovison vison) in Denmark. Acta. Vet. Scand. 2017;59:60. doi: 10.1186/s13028-017-0328-6. PubMed DOI PMC

Novakova D., Sedlacek I., Pantucek R., Stetina V., Svec P., Petras P. Staphylococcus equorum and Staphylococcus succinus isolated from human clinical specimens. J. Med. Microbiol. 2006;55:523–528. doi: 10.1099/jmm.0.46246-0. PubMed DOI

Yoon S.H., Ha S.M., Kwon S., Lim J., Kim Y., Seo H., Chun J. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 2017;67:1613–1617. doi: 10.1099/ijsem.0.001755. PubMed DOI PMC

Mellmann A., Becker K., von Eiff C., Keckevoet U., Schumann P., Harmsen D. Sequencing and staphylococci identification. Emerg. Infect. Dis. 2006;12:333–336. doi: 10.3201/eid1202.050962. PubMed DOI PMC

Kumar S., Stecher G., Li M., Knyaz C., Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol. Biol. Evol. 2018;35:1547–1549. doi: 10.1093/molbev/msy096. PubMed DOI PMC

Švec P., Pantůček R., Petráš P., Sedláček I., Nováková D. Identification of Staphylococcus spp. using (GTG)5-PCR fingerprinting. Syst. Appl. Microbiol. 2010;33:451–456. doi: 10.1016/j.syapm.2010.09.004. PubMed DOI

Freiwald A., Sauer S. Phylogenetic classification and identification of bacteria by mass spectrometry. Nat. Protoc. 2009;4:732–742. doi: 10.1038/nprot.2009.37. PubMed DOI

Wingett S.W., Andrews S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000 Research. 2018;7:1338. doi: 10.12688/f1000research.15931.2. PubMed DOI PMC

Nurk S., Bankevich A., Antipov D., Gurevich A.A., Korobeynikov A., Lapidus A., Prjibelski A.D., Pyshkin A., Sirotkin A., Sirotkin Y., et al. Assembling single-cell genomes and mini-metagenomes from chimeric MDA products. J. Comput. Biol. 2013;20:714–737. doi: 10.1089/cmb.2013.0084. PubMed DOI PMC

Bushnell B. BBMap Short-Read Aligner, and Other Bioinformatics Tools. Lawrence Berkeley National Lab.; Berkeley, CA, USA: [(accessed on 1 March 2019)]. Available online: http://sourceforge.net/projects/bbmap/

Darling A.E., Mau B., Perna N.T. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE. 2010;5:e11147. doi: 10.1371/journal.pone.0011147. PubMed DOI PMC

Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–2069. doi: 10.1093/bioinformatics/btu153. PubMed DOI

Yu N.Y., Wagner J.R., Laird M.R., Melli G., Rey S., Lo R., Dao P., Sahinalp S.C., Ester M., Foster L.J., et al. PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics. 2010;26:1608–1615. doi: 10.1093/bioinformatics/btq249. PubMed DOI PMC

Yu C.S., Cheng C.W., Su W.C., Chang K.C., Huang S.W., Hwang J.K., Lu C.H. CELLO2GO: A web server for protein subCELlular LOcalization prediction with functional gene ontology annotation. PLoS ONE. 2014;9:e99368. doi: 10.1371/journal.pone.0099368. PubMed DOI PMC

Liu B., Zheng D., Jin Q., Chen L., Yang J. VFDB 2019: A comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res. 2019;47:D687–D692. doi: 10.1093/nar/gky1080. PubMed DOI PMC

Xu L., Dong Z., Fang L., Luo Y., Wei Z., Guo H., Zhang G., Gu Y.Q., Coleman-Derr D., Xia Q., et al. OrthoVenn2: A web server for whole-genome comparison and annotation of orthologous clusters across multiple species. Nucleic Acids Res. 2019;47:W52–W58. doi: 10.1093/nar/gkz333. PubMed DOI PMC

Arndt D., Grant J.R., Marcu A., Sajed T., Pon A., Liang Y., Wishart D.S. PHASTER: A better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44:W16–W21. doi: 10.1093/nar/gkw387. PubMed DOI PMC

Couvin D., Bernheim A., Toffano-Nioche C., Touchon M., Michalik J., Néron B., Rocha E.P.C., Vergnaud G., Gautheret D., Pourcel C. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 2018;46:W246–W251. doi: 10.1093/nar/gky425. PubMed DOI PMC

Petkau A., Stuart-Edwards M., Stothard P., Van Domselaar G. Interactive microbial genome visualization with GView. Bioinformatics. 2010;26:3125–3126. doi: 10.1093/bioinformatics/btq588. PubMed DOI PMC

Okonechnikov K., Golosova O., Fursov M. Unipro UGENE: A unified bioinformatics toolkit. Bioinformatics. 2012;28:1166–1167. doi: 10.1093/bioinformatics/bts091. PubMed DOI

Sullivan M.J., Petty N.K., Beatson S.A. Easyfig: A genome comparison visualizer. Bioinformatics. 2011;27:1009–1010. doi: 10.1093/bioinformatics/btr039. PubMed DOI PMC

Yoon S.H., Ha S.M., Lim J., Kwon S., Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek. 2017;110:1281–1286. doi: 10.1007/s10482-017-0844-4. PubMed DOI

Na S.I., Kim Y.O., Yoon S.H., Ha S.M., Baek I., Chun J. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J. Microbiol. 2018;56:280–285. doi: 10.1007/s12275-018-8014-6. PubMed DOI

Cole K., Foster D., Russell J.E., Golubchik T., Llewelyn M., Wilson D.J., Crook D., Paul J., Modernising Medical Microbiology Consortium Draft genome sequences of 64 type strains of 50 species and 25 subspecies of the genus Staphylococcus Rosenbach 1884. Microbiol. Resour. Announc. 2019;8:e00062-19. doi: 10.1128/MRA.00062-19. PubMed DOI PMC

Stepan J., Pantucek R., Doskar J. Molecular diagnostics of clinically important staphylococci. Folia Microbiol. 2004;49:353–386. doi: 10.1007/BF03354664. PubMed DOI

Richter M., Rossello-Mora R. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA. 2009;106:19126–19131. doi: 10.1073/pnas.0906412106. PubMed DOI PMC

Becker K., Harmsen D., Mellmann A., Meier C., Schumann P., Peters G., von Eiff C. Development and evaluation of a quality-controlled ribosomal sequence database for 16S ribosomal DNA-based identification of Staphylococcus species. J. Clin. Microbiol. 2004;42:4988–4995. doi: 10.1128/JCM.42.11.4988-4995.2004. PubMed DOI PMC

Ah Tow L., Cowan D.A. Dissemination and survival of non-indigenous bacterial genomes in pristine Antarctic environments. Extremophiles. 2005;9:385–389. doi: 10.1007/s00792-005-0452-5. PubMed DOI

van Elk C.E., Boelens H.A.M., van Belkum A., Foster G., Kuiken T. Indications for both host-specific and introduced genotypes of Staphylococcus aureus in marine mammals. Vet. Microbiol. 2012;156:343–346. doi: 10.1016/j.vetmic.2011.10.034. PubMed DOI

Wayne R.K. Molecular evolution of the dog family. Trends Genet. 1993;9:218–224. doi: 10.1016/0168-9525(93)90122-X. PubMed DOI

Aarestrup F.M. Comparative ribotyping of Staphylococcus intermedius isolated from members of the Canoidea gives possible evidence for host-specificity and co-evolution of bacteria and hosts. Int. J. Syst. Evol. Microbiol. 2001;51:1343–1347. doi: 10.1099/00207713-51-4-1343. PubMed DOI

Pantůček R., Sedláček I., Petráš P., Koukalová D., Švec P., Štětina V., Vancanneyt M., Chrastinová L., Vokurková J., Růžičková V., et al. Staphylococcus simiae sp. nov., isolated from South American squirrel monkeys. Int. J. Syst. Evol. Microbiol. 2005;55:1953–1958. doi: 10.1099/ijs.0.63590-0. PubMed DOI

Suzuki H., Lefebure T., Bitar P.P., Stanhope M.J. Comparative genomic analysis of the genus Staphylococcus including Staphylococcus aureus and its newly described sister species Staphylococcus simiae. BMC Genom. 2012;13:3. doi: 10.1186/1471-2164-13-38. PubMed DOI PMC

Tong S.Y., Schaumburg F., Ellington M.J., Corander J., Pichon B., Leendertz F., Bentley S.D., Parkhill J., Holt D.C., Peters G., et al. Novel staphylococcal species that form part of a Staphylococcus aureus-related complex: the non-pigmented Staphylococcus argenteus sp. nov. and the non-human primate-associated Staphylococcus schweitzeri sp. nov. Int. J. Syst. Evol. Microbiol. 2015;65:15–22. doi: 10.1099/ijs.0.062752-0. PubMed DOI PMC

Fitzgerald J.R. The Staphylococcus intermedius group of bacterial pathogens: species re-classification, pathogenesis and the emergence of methicillin resistance. Vet. Derm. 2009;20:490–495. doi: 10.1111/j.1365-3164.2009.00828.x. PubMed DOI

Canver M.C., Tekle T., Compton S.T., Callan K., Burd E.M., Zimmer B.L., Bemis D.A., Carroll K.C., Westblade L.F. Performance of five commercial identification platforms for identification of Staphylococcus delphini. J. Clin. Microbiol. 2019;57:e00721-19. doi: 10.1128/JCM.00721-19. PubMed DOI PMC

Chua K.Y., Stinear T.P., Howden B.P. Functional genomics of Staphylococcus aureus. Brief Funct. Genom. 2013;12:305–315. doi: 10.1093/bfgp/elt006. PubMed DOI

Ingmer H., Gerlach D., Wolz C. Temperate phages of Staphylococcus aureus. Microbiol. Spectr. 2019:7. doi: 10.1128/microbiolspec.GPP3-0058-2018. PubMed DOI PMC

Maslanova I., Stribna S., Doskar J., Pantucek R. Efficient plasmid transduction to Staphylococcus aureus strains insensitive to the lytic action of transducing phage. FEMS Microbiol. Lett. 2016;363:fnw211. doi: 10.1093/femsle/fnw211. PubMed DOI

Pires Dos Santos T., Damborg P., Moodley A., Guardabassi L. Systematic review on global epidemiology of methicillin-resistant Staphylococcus pseudintermedius: Inference of population structure from multilocus sequence typing data. Front. Microbiol. 2016;7:1599. doi: 10.3389/fmicb.2016.01599. PubMed DOI PMC

Novick R.P., Christie G.E., Penades J.R. The phage-related chromosomal islands of Gram-positive bacteria. Nat. Rev. Microbiol. 2010;8:541–551. doi: 10.1038/nrmicro2393. PubMed DOI PMC

Fillol-Salom A., Martinez-Rubio R., Abdulrahman R.F., Chen J., Davies R., Penades J.R. Phage-inducible chromosomal islands are ubiquitous within the bacterial universe. ISME J. 2018;12:2114–2128. doi: 10.1038/s41396-018-0156-3. PubMed DOI PMC

Becker K., Keller B., von Eiff C., Bruck M., Lubritz G., Etienne J., Peters G. Enterotoxigenic potential of Staphylococcus intermedius. Appl. Env. Microbiol. 2001;67:5551–5557. doi: 10.1128/AEM.67.12.5551-5557.2001. PubMed DOI PMC

Hendricks A., Schuberth H.-J., Schueler K., Lloyd D.H. Frequency of superantigen-producing Staphylococcus intermedius isolates from canine pyoderma and proliferation-inducing potential of superantigens in dogs. Res. Vet. Sci. 2002;73:273–277. doi: 10.1016/S0034-5288(02)00107-8. PubMed DOI

Iyori K., Hisatsune J., Kawakami T., Shibata S., Murayama N., Ide K., Nagata M., Fukata T., Iwasaki T., Oshima K., et al. Identification of a novel Staphylococcus pseudintermedius exfoliative toxin gene and its prevalence in isolates from canines with pyoderma and healthy dogs. FEMS Microbiol. Lett. 2010;312:169–175. doi: 10.1111/j.1574-6968.2010.02113.x. PubMed DOI

Futagawa-Saito K., Makino S., Sunaga F., Kato Y., Sakurai-Komada N., Ba-Thein W., Fukuyasu T. Identification of first exfoliative toxin in Staphylococcus pseudintermedius. FEMS Microbiol. Lett. 2009;301:176–180. doi: 10.1111/j.1574-6968.2009.01823.x. PubMed DOI

Nishifuji K., Sugai M., Amagai M. Staphylococcal exfoliative toxins: “Molecular scissors” of bacteria that attack the cutaneous defense barrier in mammals. J. Derm. Sci. 2008;49:21–31. doi: 10.1016/j.jdermsci.2007.05.007. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...