Translational Genetic Modelling of 3D Craniofacial Dysmorphology: Elaborating the Facial Phenotype of Neurodevelopmental Disorders Through the "Prism" of Schizophrenia

. 2017 ; 4 (4) : 322-330. [epub] 20171109

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid29201594

Grantová podpora
Wellcome Trust - United Kingdom

PURPOSE OF REVIEW: In the context of human developmental conditions, we review the conceptualisation of schizophrenia as a neurodevelopmental disorder, the status of craniofacial dysmorphology as a clinically accessible index of brain dysmorphogenesis, the ability of genetically modified mouse models of craniofacial dysmorphology to inform on the underlying dysmorphogenic process and how geometric morphometric techniques in mutant mice can extend quantitative analysis. RECENT FINDINGS: Mutant mice with disruption of neuregulin-1, a gene associated meta-analytically with risk for schizophrenia, constitute proof-of-concept studies of murine facial dysmorphology in a manner analogous to clinical studies in schizophrenia. Geometric morphometric techniques informed on the topography of facial dysmorphology and identified asymmetry therein. SUMMARY: Targeted disruption in mice of genes involved in individual components of developmental processes and analysis of resultant facial dysmorphology using geometric morphometrics can inform on mechanisms of dysmorphogenesis at levels of incisiveness not possible in human subjects.

Zobrazit více v PubMed

Bishop DV. Which neurodevelopmental disorders get researched and why? PLoS One. 2010;5:e15112. doi: 10.1371/journal.pone.0015112. PubMed DOI PMC

Waddington JL, Hennessy RJ, O'Tuathaigh CMP, Owoeye O, Russell V. Schizophrenia and the lifetime trajectory of psychotic illness: developmental neuroscience and pathobiology, redux. In: Brown AS, Patterson PH, editors. The origins of schizophrenia. New York: Columbia University Press; 2012.

D'Souza D, Karmiloff-Smith A. Why a developmental perspective is critical for understanding human cognition. Behav Brain Sci. 2016;39:e122. doi: 10.1017/S0140525X15001569. PubMed DOI

Thapar A, Cooper M, Rutter M. Neurodevelopmental disorders. Lancet Psychiatry. 2017;4:339–346. doi: 10.1016/S2215-0366(16)30376-5. PubMed DOI

Demyer W, Zeman W, Palmer CG. The face predicts the brain: diagnostic significance of median facial anomalies for holoprosencephaly (arhinencephaly) Pediatrics. 1964;34:256–263. PubMed

Hammond P, Suttie M. Large-scale objective phenotyping of 3D facial morphology. Hum Mutat. 2012;33:817–825. doi: 10.1002/humu.22054. PubMed DOI PMC

Marcucio RS, Young NM, Hu D, Hallgrimsson B. Mechanisms that underlie co-variation of the brain and face. Genesis. 2011;49:177–189. doi: 10.1002/dvg.20710. PubMed DOI PMC

Marcucio R, Hallgrimsson B, Young NM. Facial morphogenesis: physical and molecular interactions between the brain and the face. Curr Top Dev Biol. 2015;115:299–320. doi: 10.1016/bs.ctdb.2015.09.001. PubMed DOI PMC

Sanchez-Lara PA. Clinical and genomic approaches for the diagnosis of craniofacial disorders. Curr Top Dev Biol. 2015;115:543–559. doi: 10.1016/bs.ctdb.2015.09.004. PubMed DOI

Deutsch CK, Farkas LG. In: Quantitative methods of dysmorphology diagnosis. 2. Frarkas LG, editor. New York: Raven Press; 1994.

Hallgrimsson B, Percival CJ, Green R, Young NM, Mio W, Marcucio R. Morphometrics, 3D imaging, and craniofacial development. Curr Top Dev Biol. 2015;115:561–597. doi: 10.1016/bs.ctdb.2015.09.003. PubMed DOI PMC

Katina S, McNeil K, Ayoub A, Guilfoyle B, Khambay B, Siebert P, et al. The definitions of three-dimensional landmarks on the human face: an interdisciplinary view. J Anat. 2016;228:355–365. doi: 10.1111/joa.12407. PubMed DOI PMC

Dryden IL, Mardia KV. Statistical shape analysis, with applications in R. 2. Chichester: John Wiley and Sons; 2016.

Sukno FM, Waddington JL, Whelan PF. 3-D facial landmark localization with asymmetry patterns and shape regression from incomplete local features. IEEE Trans Cybern. 2015;45:1717–1730. doi: 10.1109/TCYB.2014.2359056. PubMed DOI

Prasad S, Katina S, Hennessy RJ, Murphy KC, Bowman AW, Waddington JL. Craniofacial dysmorphology in 22q11.2 deletion syndrome by 3D laser surface imaging and geometric morphometrics: illuminating the developmental relationship to risk for psychosis. Am J Med Genet A. 2015;167A:529–536. doi: 10.1002/ajmg.a.36893. PubMed DOI PMC

Liu KJ. Animal models of craniofacial anomalies. Dev Biol. 2016;415:169–170. doi: 10.1016/j.ydbio.2016.06.008. PubMed DOI

Palmer K, Fairfield H, Borgeia S, Curtain M, Hassan MG, Dionne L, et al. Discovery and characterization of spontaneous mouse models of craniofacial dysmorphology. Dev Biol. 2016;415:216–227. doi: 10.1016/j.ydbio.2015.07.023. PubMed DOI PMC

Van Otterloo E, Williams T, Artinger KB. The old and new face of craniofacial research: how animal models inform human craniofacial genetic and clinical data. Dev Biol. 2016;415:171–187. doi: 10.1016/j.ydbio.2016.01.017. PubMed DOI PMC

O’Leary-Moore SK, Parnell SE, Lipinski RJ, Sulik KK. Magnetic resonance-based imaging in animal models of fetal alcohol spectrum disorder. Neuropsychol Rev. 2011;21:167–185. doi: 10.1007/s11065-011-9164-z. PubMed DOI PMC

Pletnikov MV, Waddington JL, editors. Modeling the psychopathological dimensions of schizophrenia: from molecules to behavior. Amsterdam: Elsevier; 2016.

Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry. 1987;44:660–669. doi: 10.1001/archpsyc.1987.01800190080012. PubMed DOI

Murray RM, Lewis SW. Is schizophrenia a neurodevelopmental disorder? Br Med J. 1987;295:681–682. doi: 10.1136/bmj.295.6600.681. PubMed DOI PMC

Waddington JL. Schizophrenia: developmental neuroscience and pathobiology. Lancet. 1993;341:531–536. doi: 10.1016/0140-6736(93)90288-R. PubMed DOI

Dutt A, Tseng HH, Fonville L, Drakesmith M, Su L, Evans J, et al. Exploring neural dysfunction in 'clinical high risk' for psychosis: a quantitative review of fMRI studies. J Psychiatr Res. 2015;61:122–134. doi: 10.1016/j.jpsychires.2014.08.018. PubMed DOI

Fusar-Poli P, Meyer-Lindenberg A. Forty years of structural imaging in psychosis: promises and truth. Acta Psychiatr Scand. 2016;134:207–224. doi: 10.1111/acps.12619. PubMed DOI

Waddington JL, Brown AS, Lane A, Schaefer CA, Goetz RR, Bresnahan M, et al. Congenital anomalies and early functional impairments in a prospective birth cohort: risk of schizophrenia-spectrum disorder in adulthood. Br J Psychiatry. 2008;192:264–267. doi: 10.1192/bjp.bp.107.035535. PubMed DOI

Waddington JL, Lane A, Scully P, Meagher D, Quinn J, Larkin C, et al. Early cerebro-craniofacial dysmorphogenesis in schizophrenia: a lifetime trajectory model from neurodevelopmental basis to 'neuroprogressive' process. J Psychiatr Res. 1999;33:477–489. doi: 10.1016/S0022-3956(99)00024-2. PubMed DOI

Curtis CE, Iacono WG, Beiser M. Relationship between nailfold plexus visibility and clinical, neuropsychological, and brain structural measures in schizophrenia. Biol Psychiatry. 1999;46:102–109. doi: 10.1016/S0006-3223(98)00363-1. PubMed DOI

Weinberg SM, Jenkins EA, Marazita ML, Maher BS. Minor physical anomalies in schizophrenia: a meta-analysis. Schizophr Res. 2007;89:72–85. doi: 10.1016/j.schres.2006.09.002. PubMed DOI PMC

Xu T, Chan RC, Compton MT. Minor physical anomalies in patients with schizophrenia, unaffected first-degree relatives, and healthy controls: a meta-analysis. PLoS One. 2011;6:e24129. doi: 10.1371/journal.pone.0024129. PubMed DOI PMC

Golembo-Smith S, Walder DJ, Daly MP, Mittal VA, Kline E, Reeves G, et al. The presentation of dermatoglyphic abnormalities in schizophrenia: a meta-analytic review. Schizophr Res. 2012;142:1–11. doi: 10.1016/j.schres.2012.10.002. PubMed DOI PMC

Lane A, Kinsella A, Murphy P, Byrne M, Keenan J, Colgan K, et al. The anthropometric assessment of dysmorphic features in schizophrenia as an index of its developmental origins. Psychol Med. 1997;27:1155–1164. doi: 10.1017/S0033291797005503. PubMed DOI

Deutsch CK, Levy DL, Price SF, Bodkin JA, Boling L, Coleman MJ, et al. Quantitative measures of craniofacial dysmorphology in a family study of schizophrenia and bipolar illness. Schizophr Bull. 2015;41:1309–1316. doi: 10.1093/schbul/sbv014. PubMed DOI PMC

Hennessy RJ, Lane A, Kinsella A, Larkin C, O'Callaghan E, Waddington JL. 3D morphometrics of craniofacial dysmorphology reveals sex-specific asymmetries in schizophrenia. Schizophr Res. 2004;67:261–268. doi: 10.1016/j.schres.2003.08.003. PubMed DOI

Hennessy RJ, Kinsella A, Waddington JL. 3D laser surface scanning and geometric morphometric analysis of craniofacial shape as an index of cerebro-craniofacial morphogenesis: initial application to sexual dimorphism. Biol Psychiatry. 2002;51:507–514. doi: 10.1016/S0006-3223(01)01327-0. PubMed DOI

Hennessy RJ, McLearie S, Kinsella A, Waddington JL. Facial surface analysis by 3D laser scanning and geometric morphometrics in relation to sexual dimorphism in cerebral–craniofacial morphogenesis and cognitive function. J Anat. 2005;207:283–295. doi: 10.1111/j.1469-7580.2005.00444.x. PubMed DOI PMC

Hennessy RJ, Baldwin PA, Browne DJ, Kinsella A, Waddington JL. Three-dimensional laser surface imaging and geometric morphometrics resolve frontonasal dysmorphology in schizophrenia. Biol Psychiatry. 2007;61:1187–1194. doi: 10.1016/j.biopsych.2006.08.045. PubMed DOI

Hennessy RJ, Baldwin PA, Browne DJ, Kinsella A, Waddington JL. Frontonasal dysmorphology in bipolar disorder by 3D laser surface imaging and geometric morphometrics: comparisons with schizophrenia. Schizophr Res. 2010;122:63–71. doi: 10.1016/j.schres.2010.05.001. PubMed DOI PMC

Schneider M, Debbané M, Bassett AS, Chow EW, Fung WL, van den Bree M, et al. Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: results from the International Consortium on Brain and Behavior in 22q11.2 Deletion Syndrome. Am J Psychiatry. 2014;171:627–639. doi: 10.1176/appi.ajp.2013.13070864. PubMed DOI PMC

Allen NC, Bagade S, McQueen MB, Ioannidis JP, Kavvoura FK, Khoury MJ, et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet. 2008;40:827–834. doi: 10.1038/ng.171. PubMed DOI

Schizophrenia Working Group of the Psychiatric Genomics Consortium Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–427. doi: 10.1038/nature13595. PubMed DOI PMC

Mei L, Nave KA. Neuregulin-ERBB signaling in the nervous system and neuropsychiatric diseases. Neuron. 2014;83:27–49. doi: 10.1016/j.neuron.2014.06.007. PubMed DOI PMC

Mostaid MS, Lloyd D, Liberg B, Sundram S, Pereira A, Pantelis C, et al. Neuregulin-1 and schizophrenia in the genome-wide association study era. Neurosci Biobehav Rev. 2016;68:387–409. doi: 10.1016/j.neubiorev.2016.06.001. PubMed DOI

Mostaid MS, Mancuso SG, Liu C, Sundram S, Pantelis C, Everall IP, et al. Meta-analysis reveals associations between genetic variation in the 5′ and 3′ regions of neuregulin-1 and schizophrenia. Transl Psychiatry. 2017;7:e1004. doi: 10.1038/tp.2016.279. PubMed DOI PMC

O'Tuathaigh CM, Waddington JL. Closing the translational gap between mutant mouse models and the clinical reality of psychotic illness. Neurosci Biobehav Rev. 2015;58:19–35. doi: 10.1016/j.neubiorev.2015.01.016. PubMed DOI

O'Tuathaigh CM, Fumagalli F, Desbonnet L, Perez-Branguli F, Moloney G, Loftus S, et al. Epistatic and independent effects on schizophrenia-related phenotypes following co-disruption of the risk factors Neuregulin-1 × DISC1. Schizophr Bull. 2017;43:214–225. doi: 10.1093/schbul/sbw120. PubMed DOI PMC

O'Tuathaigh CM, Harte M, O'Leary C, O'Sullivan GJ, Blau C, Lai D, et al. Schizophrenia-related endophenotypes in heterozygous neuregulin-1 'knockout' mice. Eur J Neurosci. 2010;31:349–358. doi: 10.1111/j.1460-9568.2009.07069.x. PubMed DOI

Buckley PF, Dean D, Bookstein FL, Han S, Yerukhimovich M, Min KJ, et al. A three-dimensional morphometric study of craniofacial shape in schizophrenia. Am J Psychiatry. 2005;162:606–608. doi: 10.1176/appi.ajp.162.3.606. PubMed DOI

R Development Core Team . R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2012.

Mardia KV, Bookstein FL, Moreton IJ. Statistical assessment of bilateral symmetry of shapes. Biometrika. 2000;87:285–300. doi: 10.1093/biomet/87.2.285. DOI

Trainor PA. Specification and patterning of neural crest cells during craniofacial development. Brain Behav Evol. 2005;66:266–280. doi: 10.1159/000088130. PubMed DOI

Meyer D, Birchmeier C. Multiple essential functions of neuregulin in development. Nature. 1995;378:386–390. doi: 10.1038/378386a0. PubMed DOI

Wang KY, Chang FH, Chiang CP, Chen KC, Kuo MY. Temporal and spatial expression of erbB4 in ectodermal and mesenchymal cells during primary palatogenesis in noncleft and cleft strains of mice. J Oral Pathol Med. 1998;27:141–146. doi: 10.1111/j.1600-0714.1998.tb01930.x. PubMed DOI

Hammond P, Forster-Gibson C, Chudley AE, Allanson JE, Hutton TJ, Farrell SA, et al. Face-brain asymmetry in autism spectrum disorders. Mol Psychiatry. 2008;13:614–623. doi: 10.1038/mp.2008.18. PubMed DOI

Claes P, Walters M, Shriver MD, Puts D, Gibson G, Clement J, et al. Sexual dimorphism in multiple aspects of 3D facial symmetry and asymmetry defined by spatially dense geometric morphometrics. J Anat. 2012;221:97–114. doi: 10.1111/j.1469-7580.2012.01528.x. PubMed DOI PMC

Wang TT, Wessels L, Hussain G, Merten S. Discriminative thresholds in facial asymmetry: a review of the literature. Aesthet Surg J. 2017;37:375–385. doi: 10.1093/asj/sjw271. PubMed DOI

Crow TJ, Chance SA, Priddle TH, Radua J, James AC. Laterality interacts with sex across the schizophrenia/bipolarity continuum: an interpretation of meta-analyses of structural MRI. Psychiatry Res. 2013;210:1232–1244. doi: 10.1016/j.psychres.2013.07.043. PubMed DOI

Duboc V, Dufourcq P, Blader P, Roussigné M. Asymmetry of the brain: development and implications. Annu Rev Genet. 2015;49:647–672. doi: 10.1146/annurev-genet-112414-055322. PubMed DOI

Maga AM. Postnatal development of the craniofacial skeleton in male C57BL/6J mice. J Am Assoc Lab Anim Sci. 2016;55:131–136. PubMed PMC

Barbeito-Andrés J, Bernal V, Gonzalez PN. Morphological asymmetries of mouse brain assessed by geometric morphometric analysis of MRI data. Magn Reson Imaging. 2016;34:980–989. doi: 10.1016/j.mri.2016.04.006. PubMed DOI

Wang W, Jian Y, Cai B, Wang M, Chen M, Huang H. All-trans retinoic acid-induced craniofacial malformation model: a prenatal and postnatal morphological analysis. Cleft Palate Craniofac J. 2017;54:391–399. doi: 10.1597/15-271. PubMed DOI

McDowell G, Rajadurai S, Levin M. From cytoskeletal dynamics to organ asymmetry: a nonlinear, regulative pathway underlies left-right patterning. Philos Trans R Soc Lond B Biol Sci. 2016;371:20150409. 10.1098/rstb.2015.0409 PubMed PMC

Houston DW. Vertebrate axial patterning: from egg to asymmetry. Adv Exp Med Biol. 2017;953:209–306. doi: 10.1007/978-3-319-46095-6_6. PubMed DOI PMC

Shiratori H, Hamada H. TGFβ signaling in establishing left-right asymmetry. Semin Cell Dev Biol. 2014;32:80–84. doi: 10.1016/j.semcdb.2014.03.029. PubMed DOI

Sampath K, Robertson EJ. Keeping a lid on nodal: transcriptional and translational repression of nodal signalling. Open Biol. 2016;6:150200. doi: 10.1098/rsob.150200. PubMed DOI PMC

Signore IA, Palma K, Concha ML. Nodal signalling and asymmetry of the nervous system. Philos Trans R Soc Lond B Biol Sci. 2016;371:20150401. 10.1098/rstb.2015.0401 PubMed PMC

Kalkman HO. Altered growth factor signaling pathways as the basis of aberrant stem cell maturation in schizophrenia. Pharmacol Ther. 2009;121:115–122. doi: 10.1016/j.pharmthera.2008.11.002. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...