Translational Genetic Modelling of 3D Craniofacial Dysmorphology: Elaborating the Facial Phenotype of Neurodevelopmental Disorders Through the "Prism" of Schizophrenia
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
Wellcome Trust - United Kingdom
PubMed
29201594
PubMed Central
PMC5694503
DOI
10.1007/s40473-017-0136-3
PII: 136
Knihovny.cz E-zdroje
- Klíčová slova
- 3D facial imaging, Asymmetry, Craniofacial dysmorphology, Geometric morphometrics, Mouse models, Neurodevelopmental disorders, Schizophrenia,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
PURPOSE OF REVIEW: In the context of human developmental conditions, we review the conceptualisation of schizophrenia as a neurodevelopmental disorder, the status of craniofacial dysmorphology as a clinically accessible index of brain dysmorphogenesis, the ability of genetically modified mouse models of craniofacial dysmorphology to inform on the underlying dysmorphogenic process and how geometric morphometric techniques in mutant mice can extend quantitative analysis. RECENT FINDINGS: Mutant mice with disruption of neuregulin-1, a gene associated meta-analytically with risk for schizophrenia, constitute proof-of-concept studies of murine facial dysmorphology in a manner analogous to clinical studies in schizophrenia. Geometric morphometric techniques informed on the topography of facial dysmorphology and identified asymmetry therein. SUMMARY: Targeted disruption in mice of genes involved in individual components of developmental processes and analysis of resultant facial dysmorphology using geometric morphometrics can inform on mechanisms of dysmorphogenesis at levels of incisiveness not possible in human subjects.
Institute of Mathematics and Statistics Masaryk University Brno Czech Republic
Institute of Normal and Pathological Physiology Slovak Academy of Sciences Bratislava Slovakia
School of Mathematics and Statistics University of Glasgow Glasgow G12 8QQ UK
Zobrazit více v PubMed
Bishop DV. Which neurodevelopmental disorders get researched and why? PLoS One. 2010;5:e15112. doi: 10.1371/journal.pone.0015112. PubMed DOI PMC
Waddington JL, Hennessy RJ, O'Tuathaigh CMP, Owoeye O, Russell V. Schizophrenia and the lifetime trajectory of psychotic illness: developmental neuroscience and pathobiology, redux. In: Brown AS, Patterson PH, editors. The origins of schizophrenia. New York: Columbia University Press; 2012.
D'Souza D, Karmiloff-Smith A. Why a developmental perspective is critical for understanding human cognition. Behav Brain Sci. 2016;39:e122. doi: 10.1017/S0140525X15001569. PubMed DOI
Thapar A, Cooper M, Rutter M. Neurodevelopmental disorders. Lancet Psychiatry. 2017;4:339–346. doi: 10.1016/S2215-0366(16)30376-5. PubMed DOI
Demyer W, Zeman W, Palmer CG. The face predicts the brain: diagnostic significance of median facial anomalies for holoprosencephaly (arhinencephaly) Pediatrics. 1964;34:256–263. PubMed
Hammond P, Suttie M. Large-scale objective phenotyping of 3D facial morphology. Hum Mutat. 2012;33:817–825. doi: 10.1002/humu.22054. PubMed DOI PMC
Marcucio RS, Young NM, Hu D, Hallgrimsson B. Mechanisms that underlie co-variation of the brain and face. Genesis. 2011;49:177–189. doi: 10.1002/dvg.20710. PubMed DOI PMC
Marcucio R, Hallgrimsson B, Young NM. Facial morphogenesis: physical and molecular interactions between the brain and the face. Curr Top Dev Biol. 2015;115:299–320. doi: 10.1016/bs.ctdb.2015.09.001. PubMed DOI PMC
Sanchez-Lara PA. Clinical and genomic approaches for the diagnosis of craniofacial disorders. Curr Top Dev Biol. 2015;115:543–559. doi: 10.1016/bs.ctdb.2015.09.004. PubMed DOI
Deutsch CK, Farkas LG. In: Quantitative methods of dysmorphology diagnosis. 2. Frarkas LG, editor. New York: Raven Press; 1994.
Hallgrimsson B, Percival CJ, Green R, Young NM, Mio W, Marcucio R. Morphometrics, 3D imaging, and craniofacial development. Curr Top Dev Biol. 2015;115:561–597. doi: 10.1016/bs.ctdb.2015.09.003. PubMed DOI PMC
Katina S, McNeil K, Ayoub A, Guilfoyle B, Khambay B, Siebert P, et al. The definitions of three-dimensional landmarks on the human face: an interdisciplinary view. J Anat. 2016;228:355–365. doi: 10.1111/joa.12407. PubMed DOI PMC
Dryden IL, Mardia KV. Statistical shape analysis, with applications in R. 2. Chichester: John Wiley and Sons; 2016.
Sukno FM, Waddington JL, Whelan PF. 3-D facial landmark localization with asymmetry patterns and shape regression from incomplete local features. IEEE Trans Cybern. 2015;45:1717–1730. doi: 10.1109/TCYB.2014.2359056. PubMed DOI
Prasad S, Katina S, Hennessy RJ, Murphy KC, Bowman AW, Waddington JL. Craniofacial dysmorphology in 22q11.2 deletion syndrome by 3D laser surface imaging and geometric morphometrics: illuminating the developmental relationship to risk for psychosis. Am J Med Genet A. 2015;167A:529–536. doi: 10.1002/ajmg.a.36893. PubMed DOI PMC
Liu KJ. Animal models of craniofacial anomalies. Dev Biol. 2016;415:169–170. doi: 10.1016/j.ydbio.2016.06.008. PubMed DOI
Palmer K, Fairfield H, Borgeia S, Curtain M, Hassan MG, Dionne L, et al. Discovery and characterization of spontaneous mouse models of craniofacial dysmorphology. Dev Biol. 2016;415:216–227. doi: 10.1016/j.ydbio.2015.07.023. PubMed DOI PMC
Van Otterloo E, Williams T, Artinger KB. The old and new face of craniofacial research: how animal models inform human craniofacial genetic and clinical data. Dev Biol. 2016;415:171–187. doi: 10.1016/j.ydbio.2016.01.017. PubMed DOI PMC
O’Leary-Moore SK, Parnell SE, Lipinski RJ, Sulik KK. Magnetic resonance-based imaging in animal models of fetal alcohol spectrum disorder. Neuropsychol Rev. 2011;21:167–185. doi: 10.1007/s11065-011-9164-z. PubMed DOI PMC
Pletnikov MV, Waddington JL, editors. Modeling the psychopathological dimensions of schizophrenia: from molecules to behavior. Amsterdam: Elsevier; 2016.
Weinberger DR. Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry. 1987;44:660–669. doi: 10.1001/archpsyc.1987.01800190080012. PubMed DOI
Murray RM, Lewis SW. Is schizophrenia a neurodevelopmental disorder? Br Med J. 1987;295:681–682. doi: 10.1136/bmj.295.6600.681. PubMed DOI PMC
Waddington JL. Schizophrenia: developmental neuroscience and pathobiology. Lancet. 1993;341:531–536. doi: 10.1016/0140-6736(93)90288-R. PubMed DOI
Dutt A, Tseng HH, Fonville L, Drakesmith M, Su L, Evans J, et al. Exploring neural dysfunction in 'clinical high risk' for psychosis: a quantitative review of fMRI studies. J Psychiatr Res. 2015;61:122–134. doi: 10.1016/j.jpsychires.2014.08.018. PubMed DOI
Fusar-Poli P, Meyer-Lindenberg A. Forty years of structural imaging in psychosis: promises and truth. Acta Psychiatr Scand. 2016;134:207–224. doi: 10.1111/acps.12619. PubMed DOI
Waddington JL, Brown AS, Lane A, Schaefer CA, Goetz RR, Bresnahan M, et al. Congenital anomalies and early functional impairments in a prospective birth cohort: risk of schizophrenia-spectrum disorder in adulthood. Br J Psychiatry. 2008;192:264–267. doi: 10.1192/bjp.bp.107.035535. PubMed DOI
Waddington JL, Lane A, Scully P, Meagher D, Quinn J, Larkin C, et al. Early cerebro-craniofacial dysmorphogenesis in schizophrenia: a lifetime trajectory model from neurodevelopmental basis to 'neuroprogressive' process. J Psychiatr Res. 1999;33:477–489. doi: 10.1016/S0022-3956(99)00024-2. PubMed DOI
Curtis CE, Iacono WG, Beiser M. Relationship between nailfold plexus visibility and clinical, neuropsychological, and brain structural measures in schizophrenia. Biol Psychiatry. 1999;46:102–109. doi: 10.1016/S0006-3223(98)00363-1. PubMed DOI
Weinberg SM, Jenkins EA, Marazita ML, Maher BS. Minor physical anomalies in schizophrenia: a meta-analysis. Schizophr Res. 2007;89:72–85. doi: 10.1016/j.schres.2006.09.002. PubMed DOI PMC
Xu T, Chan RC, Compton MT. Minor physical anomalies in patients with schizophrenia, unaffected first-degree relatives, and healthy controls: a meta-analysis. PLoS One. 2011;6:e24129. doi: 10.1371/journal.pone.0024129. PubMed DOI PMC
Golembo-Smith S, Walder DJ, Daly MP, Mittal VA, Kline E, Reeves G, et al. The presentation of dermatoglyphic abnormalities in schizophrenia: a meta-analytic review. Schizophr Res. 2012;142:1–11. doi: 10.1016/j.schres.2012.10.002. PubMed DOI PMC
Lane A, Kinsella A, Murphy P, Byrne M, Keenan J, Colgan K, et al. The anthropometric assessment of dysmorphic features in schizophrenia as an index of its developmental origins. Psychol Med. 1997;27:1155–1164. doi: 10.1017/S0033291797005503. PubMed DOI
Deutsch CK, Levy DL, Price SF, Bodkin JA, Boling L, Coleman MJ, et al. Quantitative measures of craniofacial dysmorphology in a family study of schizophrenia and bipolar illness. Schizophr Bull. 2015;41:1309–1316. doi: 10.1093/schbul/sbv014. PubMed DOI PMC
Hennessy RJ, Lane A, Kinsella A, Larkin C, O'Callaghan E, Waddington JL. 3D morphometrics of craniofacial dysmorphology reveals sex-specific asymmetries in schizophrenia. Schizophr Res. 2004;67:261–268. doi: 10.1016/j.schres.2003.08.003. PubMed DOI
Hennessy RJ, Kinsella A, Waddington JL. 3D laser surface scanning and geometric morphometric analysis of craniofacial shape as an index of cerebro-craniofacial morphogenesis: initial application to sexual dimorphism. Biol Psychiatry. 2002;51:507–514. doi: 10.1016/S0006-3223(01)01327-0. PubMed DOI
Hennessy RJ, McLearie S, Kinsella A, Waddington JL. Facial surface analysis by 3D laser scanning and geometric morphometrics in relation to sexual dimorphism in cerebral–craniofacial morphogenesis and cognitive function. J Anat. 2005;207:283–295. doi: 10.1111/j.1469-7580.2005.00444.x. PubMed DOI PMC
Hennessy RJ, Baldwin PA, Browne DJ, Kinsella A, Waddington JL. Three-dimensional laser surface imaging and geometric morphometrics resolve frontonasal dysmorphology in schizophrenia. Biol Psychiatry. 2007;61:1187–1194. doi: 10.1016/j.biopsych.2006.08.045. PubMed DOI
Hennessy RJ, Baldwin PA, Browne DJ, Kinsella A, Waddington JL. Frontonasal dysmorphology in bipolar disorder by 3D laser surface imaging and geometric morphometrics: comparisons with schizophrenia. Schizophr Res. 2010;122:63–71. doi: 10.1016/j.schres.2010.05.001. PubMed DOI PMC
Schneider M, Debbané M, Bassett AS, Chow EW, Fung WL, van den Bree M, et al. Psychiatric disorders from childhood to adulthood in 22q11.2 deletion syndrome: results from the International Consortium on Brain and Behavior in 22q11.2 Deletion Syndrome. Am J Psychiatry. 2014;171:627–639. doi: 10.1176/appi.ajp.2013.13070864. PubMed DOI PMC
Allen NC, Bagade S, McQueen MB, Ioannidis JP, Kavvoura FK, Khoury MJ, et al. Systematic meta-analyses and field synopsis of genetic association studies in schizophrenia: the SzGene database. Nat Genet. 2008;40:827–834. doi: 10.1038/ng.171. PubMed DOI
Schizophrenia Working Group of the Psychiatric Genomics Consortium Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–427. doi: 10.1038/nature13595. PubMed DOI PMC
Mei L, Nave KA. Neuregulin-ERBB signaling in the nervous system and neuropsychiatric diseases. Neuron. 2014;83:27–49. doi: 10.1016/j.neuron.2014.06.007. PubMed DOI PMC
Mostaid MS, Lloyd D, Liberg B, Sundram S, Pereira A, Pantelis C, et al. Neuregulin-1 and schizophrenia in the genome-wide association study era. Neurosci Biobehav Rev. 2016;68:387–409. doi: 10.1016/j.neubiorev.2016.06.001. PubMed DOI
Mostaid MS, Mancuso SG, Liu C, Sundram S, Pantelis C, Everall IP, et al. Meta-analysis reveals associations between genetic variation in the 5′ and 3′ regions of neuregulin-1 and schizophrenia. Transl Psychiatry. 2017;7:e1004. doi: 10.1038/tp.2016.279. PubMed DOI PMC
O'Tuathaigh CM, Waddington JL. Closing the translational gap between mutant mouse models and the clinical reality of psychotic illness. Neurosci Biobehav Rev. 2015;58:19–35. doi: 10.1016/j.neubiorev.2015.01.016. PubMed DOI
O'Tuathaigh CM, Fumagalli F, Desbonnet L, Perez-Branguli F, Moloney G, Loftus S, et al. Epistatic and independent effects on schizophrenia-related phenotypes following co-disruption of the risk factors Neuregulin-1 × DISC1. Schizophr Bull. 2017;43:214–225. doi: 10.1093/schbul/sbw120. PubMed DOI PMC
O'Tuathaigh CM, Harte M, O'Leary C, O'Sullivan GJ, Blau C, Lai D, et al. Schizophrenia-related endophenotypes in heterozygous neuregulin-1 'knockout' mice. Eur J Neurosci. 2010;31:349–358. doi: 10.1111/j.1460-9568.2009.07069.x. PubMed DOI
Buckley PF, Dean D, Bookstein FL, Han S, Yerukhimovich M, Min KJ, et al. A three-dimensional morphometric study of craniofacial shape in schizophrenia. Am J Psychiatry. 2005;162:606–608. doi: 10.1176/appi.ajp.162.3.606. PubMed DOI
R Development Core Team . R: a language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2012.
Mardia KV, Bookstein FL, Moreton IJ. Statistical assessment of bilateral symmetry of shapes. Biometrika. 2000;87:285–300. doi: 10.1093/biomet/87.2.285. DOI
Trainor PA. Specification and patterning of neural crest cells during craniofacial development. Brain Behav Evol. 2005;66:266–280. doi: 10.1159/000088130. PubMed DOI
Meyer D, Birchmeier C. Multiple essential functions of neuregulin in development. Nature. 1995;378:386–390. doi: 10.1038/378386a0. PubMed DOI
Wang KY, Chang FH, Chiang CP, Chen KC, Kuo MY. Temporal and spatial expression of erbB4 in ectodermal and mesenchymal cells during primary palatogenesis in noncleft and cleft strains of mice. J Oral Pathol Med. 1998;27:141–146. doi: 10.1111/j.1600-0714.1998.tb01930.x. PubMed DOI
Hammond P, Forster-Gibson C, Chudley AE, Allanson JE, Hutton TJ, Farrell SA, et al. Face-brain asymmetry in autism spectrum disorders. Mol Psychiatry. 2008;13:614–623. doi: 10.1038/mp.2008.18. PubMed DOI
Claes P, Walters M, Shriver MD, Puts D, Gibson G, Clement J, et al. Sexual dimorphism in multiple aspects of 3D facial symmetry and asymmetry defined by spatially dense geometric morphometrics. J Anat. 2012;221:97–114. doi: 10.1111/j.1469-7580.2012.01528.x. PubMed DOI PMC
Wang TT, Wessels L, Hussain G, Merten S. Discriminative thresholds in facial asymmetry: a review of the literature. Aesthet Surg J. 2017;37:375–385. doi: 10.1093/asj/sjw271. PubMed DOI
Crow TJ, Chance SA, Priddle TH, Radua J, James AC. Laterality interacts with sex across the schizophrenia/bipolarity continuum: an interpretation of meta-analyses of structural MRI. Psychiatry Res. 2013;210:1232–1244. doi: 10.1016/j.psychres.2013.07.043. PubMed DOI
Duboc V, Dufourcq P, Blader P, Roussigné M. Asymmetry of the brain: development and implications. Annu Rev Genet. 2015;49:647–672. doi: 10.1146/annurev-genet-112414-055322. PubMed DOI
Maga AM. Postnatal development of the craniofacial skeleton in male C57BL/6J mice. J Am Assoc Lab Anim Sci. 2016;55:131–136. PubMed PMC
Barbeito-Andrés J, Bernal V, Gonzalez PN. Morphological asymmetries of mouse brain assessed by geometric morphometric analysis of MRI data. Magn Reson Imaging. 2016;34:980–989. doi: 10.1016/j.mri.2016.04.006. PubMed DOI
Wang W, Jian Y, Cai B, Wang M, Chen M, Huang H. All-trans retinoic acid-induced craniofacial malformation model: a prenatal and postnatal morphological analysis. Cleft Palate Craniofac J. 2017;54:391–399. doi: 10.1597/15-271. PubMed DOI
McDowell G, Rajadurai S, Levin M. From cytoskeletal dynamics to organ asymmetry: a nonlinear, regulative pathway underlies left-right patterning. Philos Trans R Soc Lond B Biol Sci. 2016;371:20150409. 10.1098/rstb.2015.0409 PubMed PMC
Houston DW. Vertebrate axial patterning: from egg to asymmetry. Adv Exp Med Biol. 2017;953:209–306. doi: 10.1007/978-3-319-46095-6_6. PubMed DOI PMC
Shiratori H, Hamada H. TGFβ signaling in establishing left-right asymmetry. Semin Cell Dev Biol. 2014;32:80–84. doi: 10.1016/j.semcdb.2014.03.029. PubMed DOI
Sampath K, Robertson EJ. Keeping a lid on nodal: transcriptional and translational repression of nodal signalling. Open Biol. 2016;6:150200. doi: 10.1098/rsob.150200. PubMed DOI PMC
Signore IA, Palma K, Concha ML. Nodal signalling and asymmetry of the nervous system. Philos Trans R Soc Lond B Biol Sci. 2016;371:20150401. 10.1098/rstb.2015.0401 PubMed PMC
Kalkman HO. Altered growth factor signaling pathways as the basis of aberrant stem cell maturation in schizophrenia. Pharmacol Ther. 2009;121:115–122. doi: 10.1016/j.pharmthera.2008.11.002. PubMed DOI
Early embryogenesis in CHDFIDD mouse model reveals facial clefts and altered cranial neurogenesis
Functional data analysis and visualisation of three-dimensional surface shape