A conserved regulatory program initiates lateral plate mesoderm emergence across chordates
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem, audiovizuální média
Grantová podpora
R01 HL108643
NHLBI NIH HHS - United States
PubMed
31451684
PubMed Central
PMC6710290
DOI
10.1038/s41467-019-11561-7
PII: 10.1038/s41467-019-11561-7
Knihovny.cz E-zdroje
- MeSH
- dánio pruhované MeSH
- embryo nesavčí MeSH
- embryonální indukce genetika MeSH
- gastrulace genetika MeSH
- intravitální mikroskopie MeSH
- mezoderm embryologie MeSH
- proteiny dánia pruhovaného genetika MeSH
- vývojová regulace genové exprese * MeSH
- zesilovače transkripce * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- audiovizuální média MeSH
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- proteiny dánia pruhovaného MeSH
Cardiovascular lineages develop together with kidney, smooth muscle, and limb connective tissue progenitors from the lateral plate mesoderm (LPM). How the LPM initially emerges and how its downstream fates are molecularly interconnected remain unknown. Here, we isolate a pan-LPM enhancer in the zebrafish-specific draculin (drl) gene that provides specific LPM reporter activity from early gastrulation. In toto live imaging and lineage tracing of drl-based reporters captures the dynamic LPM emergence as lineage-restricted mesendoderm field. The drl pan-LPM enhancer responds to the transcription factors EomesoderminA, FoxH1, and MixL1 that combined with Smad activity drive LPM emergence. We uncover specific activity of zebrafish-derived drl reporters in LPM-corresponding territories of several chordates including chicken, axolotl, lamprey, Ciona, and amphioxus, revealing a universal upstream LPM program. Altogether, our work provides a mechanistic framework for LPM emergence as defined progenitor field, possibly representing an ancient mesodermal cell state that predates the primordial vertebrate embryo.
Center for Developmental Genetics Department of Biology New York University New York NY 10003 USA
Department of Anatomy and Cell Biology Kansas University Medical Center Kansas City KS 66160 USA
Friedrich Miescher Laboratory of the Max Planck Society Tübingen 72076 Germany
Institute of Molecular Genetics of the ASCR Prague 142 20 Czech Republic
Institute of Molecular Life Sciences University of Zurich Zürich 8057 Switzerland
Max Planck Institute of Molecular Cell Biology and Genetics Dresden 01307 Germany
Morgridge Institute for Research Madison WI 53715 USA
Stowers Institute for Medical Research Kansas City MO 64110 USA
TUD CRTD Center for Regenerative Therapies Dresden Dresden 01307 Germany
Zobrazit více v PubMed
Gurdon, J. B. Organization of the Early Vertebrate Embryo 51–59 (Springer, Boston, MA US, 1995).
Takasato M, Little MH. The origin of the mammalian kidney: implications for recreating the kidney in vitro. Development. 2015;142:1937–1947. doi: 10.1242/dev.104802. PubMed DOI
Chal J, Pourquié O. Making muscle: skeletal myogenesis in vivo and in vitro. Development. 2017;144:2104–2122. doi: 10.1242/dev.151035. PubMed DOI
Lane MC, Smith WC. The origins of primitive blood in Xenopus: implications for axial patterning. Development. 1999;126:423–434. PubMed
Davidson AJ, Zon LI. The ‘definitive’ (and ‘primitive’) guide to zebrafish hematopoiesis. Oncogene. 2004;23:7233–7246. doi: 10.1038/sj.onc.1207943. PubMed DOI
Yabe T, Hoshijima K, Yamamoto T, Takada S. Quadruple zebrafish mutant reveals different roles of Mesp genes in somite segmentation between mouse and zebrafish. Development. 2016;143:2842–2852. doi: 10.1242/dev.133173. PubMed DOI PMC
Kusakabe R, Kuratani S. Evolutionary perspectives from development of mesodermal components in the lamprey. Dev. Dyn. 2007;236:2410–2420. doi: 10.1002/dvdy.21177. PubMed DOI
Pascual-Anaya J, et al. The evolutionary origins of chordate hematopoiesis and vertebrate endothelia. Dev. Biol. 2013;375:182–192. doi: 10.1016/j.ydbio.2012.11.015. PubMed DOI
Onimaru K, Shoguchi E, Kuratani S, Tanaka M. Development and evolution of the lateral plate mesoderm: comparative analysis of amphioxus and lamprey with implications for the acquisition of paired fins. Dev. Biol. 2011;359:124–136. doi: 10.1016/j.ydbio.2011.08.003. PubMed DOI
Kaplan N, Razy-Krajka F, Christiaen L. Regulation and evolution of cardiopharyngeal cell identity and behavior: insights from simple chordates. Curr. Opin. Genet. Dev. 2015;32:119–128. doi: 10.1016/j.gde.2015.02.008. PubMed DOI PMC
Becker D, Eid R, Schughart K. The limb/LPM enhancer of the murine Hoxb6 gene: reporter gene analysis in transgenic embryos and studies of DNA-protein interactions. Pharm. Acta Helv. 1996;71:29–35. doi: 10.1016/0031-6865(95)00049-6. PubMed DOI
Rojas A, et al. Gata4 expression in lateral mesoderm is downstream of BMP4 and is activated directly by Forkhead and GATA transcription factors through a distal enhancer element. Development. 2005;132:3405–3417. doi: 10.1242/dev.01913. PubMed DOI
Chandler KJ, Chandler RL, Mortlock DP. Identification of an ancient Bmp4 mesoderm enhancer located 46 kb from the promoter. Dev. Biol. 2009;327:590–602. doi: 10.1016/j.ydbio.2008.12.033. PubMed DOI PMC
Mosimann C, et al. Chamber identity programs drive early functional partitioning of the heart. Nat. Commun. 2015;6:8146. doi: 10.1038/ncomms9146. PubMed DOI PMC
Gays D, et al. An exclusive cellular and molecular network governs intestinal smooth muscle cell differentiation in vertebrates. Development. 2017;144:464–478. doi: 10.1242/dev.133926. PubMed DOI
Felker A, et al. Continuous addition of progenitors forms the cardiac ventricle in zebrafish. Nat. Commun. 2018;9:2001. doi: 10.1038/s41467-018-04402-6. PubMed DOI PMC
Pimtong W, Datta M, Ulrich AM, Rhodes J, Zon LI. Drl.3 governs primitive hematopoiesis in zebrafish. Sci. Rep. 2015;4:5791. doi: 10.1038/srep05791. PubMed DOI PMC
Sumanas S, Zhang B, Dai R, Lin S. 15-Zinc finger protein Bloody Fingers is required for zebrafish morphogenetic movements during neurulation. Dev. Biol. 2005;283:85–96. doi: 10.1016/j.ydbio.2005.04.007. PubMed DOI
Alexander J, Rothenberg M, Henry GL, Stainier DY. Casanova plays an early and essential role in endoderm formation in zebrafish. Dev. Biol. 1999;215:343–357. doi: 10.1006/dbio.1999.9441. PubMed DOI
Herbomel P, Thisse B, Thisse C. Ontogeny and behaviour of early macrophages in the zebrafish embryo. Development. 1999;126:3735–3745. PubMed
Emerson RO, Thomas JH. Adaptive evolution in zinc finger transcription factors. PLoS Genet. 2009;5:e1000325. doi: 10.1371/journal.pgen.1000325. PubMed DOI PMC
Kaufman CK, et al. A zebrafish melanoma model reveals emergence of neural crest identity during melanoma initiation. Science. 2016;351:aad2197. doi: 10.1126/science.aad2197. PubMed DOI PMC
Langdon YG, Mullins MC. Maternal and zygotic control of zebrafish dorsoventral axial patterning. Annu Rev. Genet. 2011;45:357–377. doi: 10.1146/annurev-genet-110410-132517. PubMed DOI
Hild M, et al. The smad5 mutation somitabun blocks Bmp2b signaling during early dorsoventral patterning of the zebrafish embryo. Development. 1999;126:2149–2159. PubMed
Gritsman K, et al. The EGF-CFC protein one-eyed pinhead is essential for nodal signaling. Cell. 1999;97:121–132. doi: 10.1016/S0092-8674(00)80720-5. PubMed DOI
Nelson AC, et al. In vivo regulation of the zebrafish endoderm progenitor niche by T-Box transcription factors. Cell Rep. 2017;19:2782–2795. doi: 10.1016/j.celrep.2017.06.011. PubMed DOI PMC
Nelson AC, et al. Global identification of Smad2 and Eomesodermin targets in zebrafish identifies a conserved transcriptional network in mesendoderm and a novel role for Eomesodermin in repression of ectodermal gene expression. BMC Biol. 2014;12:81. doi: 10.1186/s12915-014-0081-5. PubMed DOI PMC
Dubrulle J, et al. Response to Nodal morphogen gradient is determined by the kinetics of target gene induction. Elife. 2015;4:e05042. doi: 10.7554/eLife.05042. PubMed DOI PMC
Slagle CE, Aoki T, Burdine RD. Nodal-dependent mesendoderm specification requires the combinatorial activities of FoxH1 and Eomesodermin. PLoS Genet. 2011;7:e1002072. doi: 10.1371/journal.pgen.1002072. PubMed DOI PMC
Charney RM, et al. Foxh1 occupies cis -regulatory modules prior to dynamic transcription factor interactions controlling the mesendoderm gene program. Dev. Cell. 2017;40:595–607. doi: 10.1016/j.devcel.2017.02.017. PubMed DOI PMC
Chen X, Rubock MJ, Whitman M. A transcriptional partner for MAD proteins in TGF-β signalling. Nature. 1996;383:691–696. doi: 10.1038/383691a0. PubMed DOI
Germain S, Howell M, Esslemont GM, Hill CS. Homeodomain and winged-helix transcription factors recruit activated Smads to distinct promoter elements via a common Smad interaction motif. Genes Dev. 2000;14:435–451. PubMed PMC
Bruce AEE, et al. The maternally expressed zebrafish T-box gene eomesodermin regulates organizer formation. Development. 2003;130:5503–5517. doi: 10.1242/dev.00763. PubMed DOI
Kunwar PS, et al. Mixer/Bon and FoxH1/Sur have overlapping and divergent roles in Nodal signaling and mesendoderm induction. Development. 2003;130:5589–5599. doi: 10.1242/dev.00803. PubMed DOI
Bjornson CRR, et al. Eomesodermin is a localized maternal determinant required for endoderm induction in Zebrafish. Dev. Cell. 2005;9:523–533. doi: 10.1016/j.devcel.2005.08.010. PubMed DOI
Poulain, M. & Lepage, T. Mezzo, a paired-like homeobox protein is an immediate target of Nodal signalling and regulates endoderm specification in zebrafish. Development129, 4901–4914 (2002). PubMed
Diogo R, et al. A new heart for a new head in vertebrate cardiopharyngeal evolution. Nature. 2015;520:466–473. doi: 10.1038/nature14435. PubMed DOI PMC
Kozmik Z, et al. Characterization of amphioxus Amphivent, an evolutionarily conserved marker for chordate ventral mesoderm. Genesis. 2001;29:172–179. doi: 10.1002/gene.1021. PubMed DOI
Holland ND, Venkatesh TV, Holland LZ, Jacobs DK, Bodmer R. AmphiNk2-tin, an amphioxus homeobox gene expressed in myocardial progenitors: insights into evolution of the vertebrate heart. Dev. Biol. 2003;255:128–137. doi: 10.1016/S0012-1606(02)00050-7. PubMed DOI
Holland ND. Formation of the initial kidney and mouth opening in larval amphioxus studied with serial blockface scanning electron microscopy (SBSEM) EvoDevo. 2018;9:16. doi: 10.1186/s13227-018-0104-3. PubMed DOI PMC
Arnold SJ, Hofmann UK, Bikoff EK, Robertson EJ. Pivotal roles for eomesodermin during axis formation, epithelium-to-mesenchyme transition and endoderm specification in the mouse. Development. 2008;135:501–511. doi: 10.1242/dev.014357. PubMed DOI PMC
Zhang H, Fraser ST, Papazoglu C, Hoatlin ME, Baron MH. Transcriptional activation by the Mixl1 homeodomain protein in differentiating mouse embryonic stem cells. Stem Cells. 2009;27:2884–2895. doi: 10.1634/stemcells.2008-0456. PubMed DOI PMC
Mead PE, Brivanlou IH, Kelley CM, Zon LI. BMP-4-responsive regulation of dorsal–ventral patterning by the homeobox protein Mix.1. Nature. 1996;382:357–360. doi: 10.1038/382357a0. PubMed DOI
Takasato M, et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney. Nat. Cell Biol. 2014;16:118–126. doi: 10.1038/ncb2894. PubMed DOI
Costello I, et al. The T-box transcription factor Eomesodermin acts upstream of Mesp1 to specify cardiac mesoderm during mouse gastrulation. Nat. Cell Biol. 2011;13:1084–1091. doi: 10.1038/ncb2304. PubMed DOI PMC
Pfeiffer MJ, et al. Cardiogenic programming of human pluripotent stem cells by dose-controlled activation of EOMES. Nat. Commun. 2018;9:440. doi: 10.1038/s41467-017-02812-6. PubMed DOI PMC
Ormestad M, Astorga J, Carlsson P. Differences in the embryonic expression patterns of mouse Foxf1 and -2 match their distinct mutant phenotypes. Dev. Dyn. 2004;229:328–333. doi: 10.1002/dvdy.10426. PubMed DOI
Martin JF, Olson EN. Identification of a prx1 limb enhancer. Genesis. 2000;26:225–229. doi: 10.1002/(SICI)1526-968X(200004)26:4<225::AID-GENE10>3.0.CO;2-F. PubMed DOI
Reichenbach B, et al. Endoderm-derived Sonic hedgehog and mesoderm Hand2 expression are required for enteric nervous system development in zebrafish. Dev. Biol. 2008;318:52–64. doi: 10.1016/j.ydbio.2008.02.061. PubMed DOI PMC
De Los Angeles A, Daley GQ. Stem cells: reprogramming in situ. Nature. 2013;502:309–310. doi: 10.1038/nature12559. PubMed DOI
Song K, et al. Heart repair by reprogramming non-myocytes with cardiac transcription factors. Nature. 2012;485:599–604. doi: 10.1038/nature11139. PubMed DOI PMC
Lee JH, Protze SI, Laksman Z, Backx PH, Keller GM. Human pluripotent stem cell-derived atrial and ventricular cardiomyocytes develop from distinct mesoderm populations. Cell Stem Cell. 2017;21:179–194. doi: 10.1016/j.stem.2017.07.003. PubMed DOI
Mendjan S, et al. NANOG and CDX2 pattern distinct subtypes of human mesoderm during exit from pluripotency. Cell Stem Cell. 2014;15:310–325. doi: 10.1016/j.stem.2014.06.006. PubMed DOI
Takeuchi JK, Bruneau BG. Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature. 2009;459:708–711. doi: 10.1038/nature08039. PubMed DOI PMC
Murry CE, Keller G. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell. 2008;132:661–680. doi: 10.1016/j.cell.2008.02.008. PubMed DOI
Zhang G, et al. Comparative genomics reveals insights into avian genome evolution and adaptation. Science. 2014;346:1311–1320. doi: 10.1126/science.1251385. PubMed DOI PMC
Henry GL, Melton DA. Mixer, a homeobox gene required for endoderm development. Science. 1998;281:91–96. doi: 10.1126/science.281.5373.91. PubMed DOI
Kikuchi Y, et al. The zebrafish bonnie and clyde gene encodes a Mix family homeodomain protein that regulates the generation of endodermal precursors. Genes Dev. 2000;14:1279–1289. PubMed PMC
Technau U, Scholz CB. Origin and evolution of endoderm and mesoderm. Int. J. Dev. Biol. 2003;47:531–539. PubMed
McEwen GK, et al. Early evolution of conserved regulatory sequences associated with development in vertebrates. PLoS Genet. 2009;5:e1000762. doi: 10.1371/journal.pgen.1000762. PubMed DOI PMC
Parker HJ, Piccinelli P, Sauka-Spengler T, Bronner M, Elgar G. Ancient Pbx-Hox signatures define hundreds of vertebrate developmental enhancers. BMC Genomics. 2011;12:637. doi: 10.1186/1471-2164-12-637. PubMed DOI PMC
Stolfi A, Christiaen L. Genetic and genomic toolbox of the chordate Ciona intestinalis. Genetics. 2012;192:55–66. doi: 10.1534/genetics.112.140590. PubMed DOI PMC
Schindelin J, et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 2012;9:676–682. doi: 10.1038/nmeth.2019. PubMed DOI PMC
Schmid B, et al. High-speed panoramic light-sheet microscopy reveals global endodermal cell dynamics. Nat. Commun. 2013;4:2207. doi: 10.1038/ncomms3207. PubMed DOI PMC
Khattak S, et al. Optimized axolotl (Ambystoma mexicanum) husbandry, breeding, metamorphosis, transgenesis and tamoxifen-mediated recombination. Nat. Protoc. 2014;9:529–540. doi: 10.1038/nprot.2014.040. PubMed DOI
Bordzilovsakya, N. P., Dettlaf, T. A., Duhon, S. T. & Malacinski, G. M. in Developmental Biology of the Axolotl (eds Armstrong, J. B. & Malacinski, G. M.) 201–219 (Oxford University Press, Oxford, 1989).
Parker HJ, Bronner ME, Krumlauf R. A Hox regulatory network of hindbrain segmentation is conserved to the base of vertebrates. Nature. 2014;514:490–493. doi: 10.1038/nature13723. PubMed DOI PMC
Kuraku S, Takio Y, Sugahara F, Takechi M, Kuratani S. Evolution of oropharyngeal patterning mechanisms involving Dlx and endothelins in vertebrates. Dev. Biol. 2010;341:315–323. doi: 10.1016/j.ydbio.2010.02.013. PubMed DOI
Davidson B, Shi W, Levine M. Uncoupling heart cell specification and migration in the simple chordate Ciona intestinalis. Development. 2005;132:4811–4818. doi: 10.1242/dev.02051. PubMed DOI
Racioppi C, et al. Fibroblast growth factor signalling controls nervous system patterning and pigment cell formation in Ciona intestinalis. Nat. Commun. 2014;5:4830. doi: 10.1038/ncomms5830. PubMed DOI PMC
Kozmikova I, Kozmik Z. Gene regulation in amphioxus: An insight from transgenic studies in amphioxus and vertebrates. Mar. Genomics. 2015;24:159–166. doi: 10.1016/j.margen.2015.06.003. PubMed DOI
Fuentes M, et al. Insights into spawning behavior and development of the european amphioxus (Branchiostoma lanceolatum) J. Exp. Zool. B Mol. Dev. Evol. 2007;308B:484–493. doi: 10.1002/jez.b.21179. PubMed DOI