Conserved enhancer logic controls the notochord expression of vertebrate Brachyury

. 2023 Apr 20 ; () : . [epub] 20230420

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic

Typ dokumentu preprinty, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37131681

Grantová podpora
R01 HG003988 NHGRI NIH HHS - United States
R01 DE028599 NIDCR NIH HHS - United States
R01 DE024745 NIDCR NIH HHS - United States
R01 HL162304 NHLBI NIH HHS - United States
R01 DK129350 NIDDK NIH HHS - United States
T32 GM141742 NIGMS NIH HHS - United States
DP2 HG010013 NHGRI NIH HHS - United States
F31 HL167580 NHLBI NIH HHS - United States

The cell type-specific expression of key transcription factors is central to development. Brachyury/T/TBXT is a major transcription factor for gastrulation, tailbud patterning, and notochord formation; however, how its expression is controlled in the mammalian notochord has remained elusive. Here, we identify the complement of notochord-specific enhancers in the mammalian Brachyury/T/TBXT gene. Using transgenic assays in zebrafish, axolotl, and mouse, we discover three Brachyury-controlling notochord enhancers T3, C, and I in human, mouse, and marsupial genomes. Acting as Brachyury-responsive, auto-regulatory shadow enhancers, deletion of all three enhancers in mouse abolishes Brachyury/T expression selectively in the notochord, causing specific trunk and neural tube defects without gastrulation or tailbud defects. Sequence and functional conservation of Brachyury-driving notochord enhancers with the brachyury/tbxtb loci from diverse lineages of fishes dates their origin to the last common ancestor of jawed vertebrates. Our data define the enhancers for Brachyury/T/TBXTB notochord expression as ancient mechanism in axis development.

Biological Sciences Graduate Program University of California San Diego La Jolla CA USA

Cluster of Excellence Physics of Life Technische Universität Dresden Dresden Germany

Comparative Biochemistry Program University of California Berkeley CA 94720 USA

Department for BioMedical Research University of Bern Bern Switzerland

Department of Anatomy University of California San Francisco San Francisco CA USA

Department of Cardiology Berne University Hospital Berne Switzerland

Department of Integrative Biology and Ecology Evolution and Behavior Program Michigan State University East Lansing MI USA

Department of Medicine Health Sciences University of California San Diego La Jolla CA USA

Department of Molecular Biology Biological Sciences University of California San Diego La Jolla CA USA

Department of Orofacial Sciences University of California San Francisco San Francisco CA USA

Environmental Genomics and Systems Biology Division Lawrence Berkeley National Laboratory Berkeley CA USA

Institute for Human Genetics University of California San Francisco San Francisco CA USA

Institute of Molecular Genetics of the ASCR v v i Prague Czech Republic

Institute of Molecular Life Sciences University of Zurich Zurich Switzerland

Max Planck Institute for Molecular Cell Biology and Genetics Dresden Germany

Program in Craniofacial Biology University of California San Francisco San Francisco CA USA

School of Natural Sciences University of California Merced Merced CA USA

Section of Developmental Biology Department of Pediatrics University of Colorado Anschutz Medical Campus Aurora CO USA

Technische Universität Dresden CRTD Center for Regenerative Therapies Dresden Dresden Germany

US Department of Energy Joint Genome Institute Lawrence Berkeley National Laboratory Berkeley CA USA

Aktualizováno

PubMed

Zobrazit více v PubMed

Amacher S. L., Draper B. W., Summers B. R. and Kimmel C. B. (2002). The zebrafish T-box genes no tail and spadetail are required for development of trunk and tail mesoderm and medial floor plate. Development 3311–3323. PubMed

Amemiya C. T., Alfoldi J., Lee A. P., Fan S., Philippe H., MacCallum I., Braasch I., Manousaki T., Schneider I., Rohner N., et al. (2013). The African coelacanth genome provides insights into tetrapod evolution. Nat. 2013 4967445 496, 311–316. PubMed PMC

Antosova B., Smolikova J., Klimova L., Lachova J., Bendova M., Kozmikova I., Machon O. and Kozmik Z. (2016). The Gene Regulatory Network of Lens Induction Is Wired through Meis-Dependent Shadow Enhancers of Pax6. PLOS Genet. 12, e1006441. PubMed PMC

Armstrong J. B. and Malacinski G. M. (1989). Developmental biology of the axolotl. 320.

Arnold S. J., Stappert J., Bauer A., Kispert A., Herrmann B. G. and Kemler R. (2000). Brachyury is a target gene of the Wnt/β-catenin signaling pathway. Mech. Dev. 91, 249–258. PubMed

Bagnat M. and Gray R. S. (2020). Development of a straight vertebrate body axis. Development 147,. PubMed PMC

Beisaw A., Tsaytler P., Koch F., Schmitz S. U., Melissari M., Senft A. D., Wittler L., Pennimpede T., Macura K., Herrmann B. G., et al. (2018). BRACHYURY directs histone acetylation to target loci during mesoderm development. EMBO Rep. 19, 118. PubMed PMC

Bhadra A. K. and Casey A. T. (2006). Familial chordoma. A report of two cases. J Bone Jt. Surg Br 88, 634–636. PubMed

Braasch I., Gehrke A. R., Smith J. J., Kawasaki K., Manousaki T., Pasquier J., Amores A., Desvignes T., Batzel P., Catchen J., et al. (2016). The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat. Genet. 48, 427–437. PubMed PMC

Bradley Shaffer H., Minx P., Warren D. E., Shedlock A. M., Thomson R. C., Valenzuela N., Abramyan J., Amemiya C. T., Badenhorst D., Biggar K. K., et al. (2013). The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biol. 14,. PubMed PMC

Brink S. C. van den, Alemany A., Batenburg V. van, Moris N., Blotenburg M., Vivié J., Baillie-Johnson P., Nichols J., Sonnen K. F., Arias A. M., et al. (2020). Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids. Nat. 2020 1–5. PubMed

Cannavò E., Khoueiry P., Garfield D. A., Geeleher P., Zichner T., Gustafson E. H., Ciglar L., Korbel J. O. and Furlong E. E. M. (2015). Shadow Enhancers Are Pervasive Features of Developmental Regulatory Networks. Curr. Biol. PubMed PMC

Choi K. S., Cohn M. J. and Harfe B. D. (2008). Identification of nucleus pulposus precursor cells and notochordal remnants in the mouse: implications for disk degeneration and chordoma formation. Dev Dyn 237, 3953–3958. PubMed PMC

Christiaen L., Wagner E., Shi W. and Levine M. (2009). Electroporation of Transgenic DNAs in the Sea Squirt Ciona. Cold Spring Harb. Protoc. 2009, pdb.prot5345. PubMed

Clements D., Taylor H. C., Herrmann B. G. and Stott D. (1996). Distinct regulatory control of the Brachyury gene in axial and non-axial mesoderm suggests separation of mesoderm lineages early in mouse gastrulation. Mech. Dev. 56, 139–149. PubMed

Corallo D., Trapani V. and Bonaldo P. (2015). The notochord: structure and functions. Cell. Mol. Life Sci. 72, 2989–3008. PubMed PMC

Corbo J. C., Levine M. and Zeller R. W. (1997). Characterization of a notochord-specific enhancer from the Brachyury promoter region of the ascidian, Ciona intestinalis. Development 124, 589–602. PubMed

D’Agati G., Cabello E. M., Frontzek K., Rushing E. J., Klemm R., Robinson M. D., White R. M., Mosimann C. and Burger A. (2019). Active receptor tyrosine kinases, but not Brachyury, are sufficient to trigger chordoma in zebrafish. Dis. Model. Mech. 12,. PubMed PMC

Dobrovolskaia-Zavadskaia N. (1927). Sur la mortification spontanee de la chez la souris nouveau-nee et sur l’existence d’un caractere (facteur) hereditaire, non-viable. Crit Rev Soc Biol 97, 114–116.

Faial T., Bernardo A. S., Mendjan S., Diamanti E., Ortmann D., Gentsch G. E., Mascetti V. L., Trotter M. W. B., Smith J. C., Pedersen R. A., et al. (2015). Brachyury and SMAD signalling collaboratively orchestrate distinct mesoderm and endoderm gene regulatory networks in differentiating human embryonic stem cells. Development 142, 2121. PubMed PMC

Farley E. K., Olson K. M., Zhang W., Brandt A. J., Rokhsar D. S. and Levine M. S. (2015). Suboptimization of developmental enhancers. Science 350, 325–8. PubMed PMC

Farley E. K., Olson K. M., Zhang W., Rokhsar D. S. and Levine M. S. (2016). Syntax compensates for poor binding sites to encode tissue specificity of developmental enhancers. Proc. Natl. Acad. Sci. U. S. A. 113, 6508–13. PubMed PMC

Felker A. and Mosimann C. (2016). Contemporary zebrafish transgenesis with Tol2 and application for Cre/lox recombination experiments. Methods Cell Biol. 135, 219–44. PubMed

Gluecksohn-Schoenheimer S. (1938). THE DEVELOPMENT OF TWO TAILLESS MUTANTS IN THE HOUSE MOUSE. Genetics 23, 573–584. PubMed PMC

Gluecksohn-Schoenheimer S. (1944). The Development of Normal and Homozygous Brachy (T/T) Mouse Embryos in the Extraembryonic Coelom of the Chick. Proc. Natl. Acad. Sci. 30, 134–140. PubMed PMC

Goodstadt L., Heger A., Webber C. and Ponting C. P. (2007). An analysis of the gene complement of a marsupial, Monodelphis domestica: evolution of lineage-specific genes and giant chromosomes. Genome Res. 17, 969–981. PubMed PMC

Grant C. E., Bailey T. L. and Noble W. S. (2011). FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017. PubMed PMC

Halpern M. E., Ho R. K., Walker C. and Kimmel C. B. (1993). Induction of muscle pioneers and floor plate is distinguished by the zebrafish no tail mutation. Cell 75, 99–111. PubMed

Harafuji N., Keys D. N. and Levine M. (2002). Genome-wide identification of tissue-specific enhancers in the Ciona tadpole. Proc. Natl. Acad. Sci. U. S. A. 99, 6802–6805. PubMed PMC

Harvey S. A. A., Tümpel S., Dubrulle J., Schier A. F. F., Smith J. C. C., Tumpel S., Dubrulle J., Schier A. F. F. and Smith J. C. C. (2010). no tail integrates two modes of mesoderm induction. Development 137, 1127–1135. PubMed PMC

Heaton J. M. and Turner D. R. (1985). Reflections on notochordal differentiation arising from a study of chordomas. Histopathology 9, 543–550. PubMed

Henrique D., Abranches E., Verrier L. and Storey K. G. (2015). Neuromesodermal progenitors and the making of the spinal cord. Development 142, 2864–2875. PubMed PMC

Herrmann B. G. (1995). The mouse Brachyury (T) gene. Semin. Dev. Biol. 6, 385–394.

Hippenmeyer S., Youn Y. H., Moon H. M., Miyamichi K., Zong H., Wynshaw-Boris A. and Luo L. (2010). Genetic Mosaic Dissection of Lis1 and Ndel1 in Neuronal Migration. Neuron 68, 695. PubMed PMC

Holland P. W., Koschorz B., Holland L. Z. and Herrmann B. G. (1995). Conservation of Brachyury (T) genes in amphioxus and vertebrates: developmental and evolutionary implications. Development 121, 4283–4291. PubMed

Hong J. W., Hendrix D. A. and Levine M. S. (2008). Shadow enhancers as a source of evolutionary novelty. Science (80-. ). 321, 1314. PubMed PMC

Hsu W., Mohyeldin A., Shah S. R., ap Rhys C. M., Johnson L. F., Sedora-Roman N. I., Kosztowski T. A., Awad O. A., McCarthy E. F., Loeb D. M., et al. (2011). Generation of chordoma cell line JHC7 and the identification of Brachyury as a novel molecular target. J Neurosurg 115, 760–769. PubMed PMC

Hu Y., Mintz A., Shah S. R. R., Quinones-Hinojosa A. and Hsu W. (2014). The FGFR/MEK/ERK/brachyury pathway is critical for chordoma cell growth and survival. Carcinogenesis 35, 1491–1499. PubMed PMC

Inoue J., Yasuoka Y., Takahashi H. and Satoh N. (2017). The chordate ancestor possessed a single copy of the Brachyury gene for notochord acquisition. Zool. Lett. 3, 1–7. PubMed PMC

Irimia M., Tena J. J., Alexis M. S., Fernandez-Miñan A., Maeso I., Bogdanović O., De La Calle-Mustienes E., Roy S. W., Gómez-Skarmeta J. L. and Fraser H. B. (2012). Extensive conservation of ancient microsynteny across metazoans due to cis-regulatory constraints. Genome Res. 22, 2356–2367. PubMed PMC

Jenickova I., Kasparek P., Petrezselyova S., Elias J., Prochazka J., Kopkanova J., Navratil M., Barinka C. and Sedlacek R. (2021). Efficient allele conversion in mouse zygotes and primary cells based on electroporation of Cre protein. Methods 191, 87–94. PubMed

Katoh K., Asimenos G. and Toh H. (2009). Multiple alignment of DNA sequences with MAFFT. Methods Mol. Biol. 537, 39–64. PubMed

Kemmler C. L., Moran H. R., Murray B. F., Scoresby A., Klem J. R., Eckert R. L., Lepovsky E., Bertho S., Nieuwenhuize S., Burger S., et al. (2023). Next-generation plasmids for transgenesis in zebrafish and beyond. Development 150,. PubMed PMC

Khattak S., Murawala P., Andreas H., Kappert V., Schuez M., Sandoval-Guzmán T., Crawford K. and Tanaka E. M. (2014). Optimized axolotl (Ambystoma mexicanum) husbandry, breeding, metamorphosis, transgenesis and tamoxifen-mediated recombination. Nat. Protoc. 9, 529–540. PubMed

Koch F., Scholze M., Wittler L., Schifferl D., Sudheer S., Grote P., Timmermann B., Macura K. and Herrmann B. G. (2017). Antagonistic Activities of Sox2 and Brachyury Control the Fate Choice of Neuro-Mesodermal Progenitors. Dev. Cell. PubMed

Kumar S., Stecher G., Suleski M. and Blair Hedges S. (2017). TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. Mol. Biol. Evol. 34, 1812–1819. PubMed

Kvon E. Z., Zhu Y., Kelman G., Novak C. S., Plajzer-Frick I., Kato M., Garvin T. H., Pham Q., Harrington A. N., Hunter R. D., et al. (2020). Comprehensive In Vivo Interrogation Reveals Phenotypic Impact of Human Enhancer Variants. Cell 180, 1262. PubMed PMC

Kvon E. Z., Waymack R., Elabd M. G., Wunderlich Z., Gad M. and Wunderlich Z. (2021). Enhancer redundancy in development and disease. 22,. PubMed PMC

Kwan K. M., Fujimoto E., Grabher C., Mangum B. D., Hardy M. E., Campbell D. S., Parant J. M., Yost H. J., Kanki J. P. and Chien C. Bin (2007). The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 236, 3088–3099. PubMed

Latinkić B. V., Umbhauer M., Neal K. A., Lerchner W., Smith J. C. and Cunliffe V. (1997). The Xenopus Brachyury promoter is activated by FGF and low concentrations ofactivinandsuppressed by high concentrationsof activin and by paired-type homeodomain proteins. Genes Dev. 11, 3265–3276. PubMed PMC

Letelier J., De La Calle-Mustienes E., Pieretti J., Naranjo S., Maeso I., Nakamura T., Pascual-Anaya J., Shubin N. H., Schneider I., Martinez-Morales J. R., et al. (2018). A conserved Shh cis-regulatory module highlights a common developmental origin of unpaired and paired fins. Nat. Genet. 50, 504–509. PubMed PMC

Lópezlópez-Anguita N., Gassaloglu S. I., Stö Tzel M., Bolondi A., Conkar D., Typou M., Renébuschow R., Veenvliet J. V and Bulut-Karslioglu A. (2022). Hypoxia induces an early primitive streak signature, enhancing spontaneous elongation and lineage representation in gastruloids. Development 149,. PubMed PMC

Martin B. L. and Kimelman D. (2008). Regulation of Canonical Wnt Signaling by Brachyury Is Essential for Posterior Mesoderm Formation. Dev. Cell 15, 121–133. PubMed PMC

Martin B. L. and Kimelman D. (2010). Brachyury establishes the embryonic mesodermal progenitor niche. Genes Dev. 24, 2778–83. PubMed PMC

Mašek J., Machoň O., Kořínek V., Taketo M. M. and Kozmik Z. (2016). Tcf7l1 protects the anterior neural fold from adopting the neural crest fate. Development 143, 2206–2216. PubMed

Mikkelsen T. S., Wakefield M. J., Aken B., Amemiya C. T., Chang J. L., Duke S., Garber M., Gentles A. J., Goodstadt L., Heger A., et al. (2007). Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 447, 167–77. PubMed

Moris N., Anlas K., van den Brink S. C., Alemany A., Schröder J., Ghimire S., Balayo T., van Oudenaarden A. and Martinez Arias A. (2020). An in vitro model of early anteroposterior organization during human development. Nature 1–6. PubMed

Mosimann C. (2022). Multisite Gateway Calculations: Excel spreadsheet. protocols.io.

Mosimann C., Kaufman C. K., Li P., Pugach E. K., Tamplin O. J. and Zon L. I. (2011). Ubiquitous transgene expression and Cre-based recombination driven by the ubiquitin promoter in zebrafish. Development 138, 169–177. PubMed PMC

Nakamichi R. and Asahara H. (2020). The transcription factors regulating intervertebral disc development. JOR Spine 3, e1081. PubMed PMC

Nei M., Xu P. and Glazko G. (2001). Estimation of divergence times from multiprotein sequences for a few mammalian species and several distantly related organisms. Proc. Natl. Acad. Sci. 98, 2497–2502. PubMed PMC

Nelson A. C., Pillay N., Henderson S., Presneau N. N., Tirabosco R., Halai D., Berisha F., Flicek P., Stemple D. L., Stern C. D., et al. (2012). An integrated functional genomics approach identifies the regulatory network directed by brachyury (T) in chordoma. J. Pathol. 228, 274–285. PubMed PMC

Nibu Y., Jose-Edwards D. S., Di Gregorio A., Jos??- Edwards D. S. and Di Gregorio A. (2013). From notochord formation to hereditary chordoma: The many roles of brachyury. PubMed PMC

Nowoshilow S., Schloissnig S., Fei J. F., Dahl A., Pang A. W. C., Pippel M., Winkler S., Hastie A. R., Young G., Roscito J. G., et al. (2018). The axolotl genome and the evolution of key tissue formation regulators. Nat. 2018 5547690 554, 50–55. PubMed

Osterwalder M., Barozzi I., Tissières V., Fukuda-Yuzawa Y., Mannion B. J., Afzal S. Y., Lee E. A., Zhu Y., Plajzer-Frick I., Pickle C. S., et al. (2018). Enhancer redundancy provides phenotypic robustness in mammalian development. Nature 554, 239–243. PubMed PMC

Osterwalder M., Tran S., Hunter R. D., Meky E. M., von Maydell K., Harrington A. N., Godoy J., Novak C. S., Plajzer-Frick I., Zhu Y., et al. (2022). Characterization of Mammalian In Vivo Enhancers Using Mouse Transgenesis and CRISPR Genome Editing. Methods Mol. Biol. 2403, 147–186. PubMed

Passamaneck Y. J., Katikala L., Perrone L., Dunn M. P., Oda-Ishii I. and Di Gregorio A. (2009). Direct activation of a notochord cis-regulatory module by Brachyury and FoxA in the ascidian Ciona intestinalis. Development 136, 3679–3689. PubMed PMC

Peck S. H., McKee K. K., Tobias J. W., Malhotra N. R., Harfe B. D. and Smith L. J. (2017). Whole Transcriptome Analysis of Notochord-Derived Cells during Embryonic Formation of the Nucleus Pulposus. Sci. Reports 2017 71 7, 1–14. PubMed PMC

Pennimpede T., Proske J., König A., Vidigal J. A., Morkel M., Bramsen J. B., Herrmann B. G. and Wittler L. (2012). In vivo knockdown of Brachyury results in skeletal defects and urorectal malformations resembling caudal regression syndrome. Dev. Biol. 372, 55–67. PubMed

Pippucci T., Savoia A., Perrotta S., Pujol-Moix N., Noris P., Castegnaro G., Pecci A., Gnan C., Punzo F., Marconi C., et al. (2011). Mutations in the 5’ UTR of ANKRD26, the ankirin repeat domain 26 gene, cause an autosomal-dominant form of inherited thrombocytopenia, THC2. Am. J. Hum. Genet. 88 1, 115–120. PubMed PMC

Presneau N., Shalaby A., Ye H., Pillay N., Halai D., Idowu B., Tirabosco R., Whitwell D., Jacques T. S., Kindblom L.-G. G., et al. (2011). Role of the transcription factor T (brachyury) in the pathogenesis of sporadic chordoma: a genetic and functional-based study. J Pathol 223, 327–335. PubMed

Prummel K. D., Hess C., Nieuwenhuize S., Parker H. J., Rogers K. W., Kozmikova I., Racioppi C., Brombacher E. C., Czarkwiani A., Knapp D., et al. (2019). A conserved regulatory program initiates lateral plate mesoderm emergence across chordates. Nat. Commun. 10, 3857. PubMed PMC

Rennebeck G. M., Lader E., Chen Q., Bohm R. a, Cai Z. S., Faust C., Magnuson T., Pease L. R. and Artzt K. (1995). Is there a Brachyury the Second? Analysis of a transgenic mutation involved in notochord maintenance in mice. Dev. Biol. 172, 206–217. PubMed

Rennebeck G., Lader E., Fujimoto A., Lei E. P. and Artzt K. (1998). Mouse Brachyury the second (T2) is a gene next to classical T and a candidate gene for tct. Genetics 150, 1125–1131. PubMed PMC

Richardson S. M., Ludwinski F. E., Gnanalingham K. K., Atkinson R. A., Freemont A. J. and Hoyland J. A. (2017). Notochordal and nucleus pulposus marker expression is maintained by sub-populations of adult human nucleus pulposus cells through aging and degeneration. Sci. Reports 2017 71 7, 1–11. PubMed PMC

Risbud M. V, Schaer T. P. and Shapiro I. M. (2010). Toward an understanding of the role of notochordal cells in the adult intervertebral disc: from discord to accord. Dev. Dyn. 239, 2141–8. PubMed PMC

Rito T., Libby A. R. G., Demuth M. and Briscoe J. (2023). Notochord and axial progenitor generation by timely BMP and NODAL inhibition during vertebrate trunk formation. bioRxiv 2023.02.27.530267.

Rivera-Pérez J. A. and Magnuson T. (2005). Primitive streak formation in mice is preceded by localized activation of Brachyury and Wnt3. Dev. Biol. 288, 363–371. PubMed

Sangoi A. R., Karamchandani J., Lane B., Higgins J. P., Rouse R. V, Brooks J. D. and McKenney J. K. (2011). Specificity of brachyury in the distinction of chordoma from clear cell renal cell carcinoma and germ cell tumors: a study of 305 cases. Mod Pathol 24, 425–429. PubMed

Satoh N., Tagawa K. and Takahashi H. (2012). How was the notochord born? 14, 56–75. PubMed

Schifferl D., Scholze-Wittler M., Wittler L., Veenvliet J. V., Koch F. and Herrmann B. G. (2021). A 37 kb region upstream of Brachyury comprising a notochord enhancer is essential for notochord and tail development. Development. PubMed PMC

Schulte-Merker S., van Eeden F. J., Halpern M. E., Kimmel C. B. and Nüsslein-Volhard C. (1994). no tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene. Development 120, 1009–15. PubMed

Schwaner M. J., Hsieh S. T., Swalla B. J. and McGowan C. P. (2021). An Introduction to an Evolutionary Tail: EvoDevo, Structure, and Function of Post-Anal Appendages. Integr. Comp. Biol. 61, 352–357. PubMed

Sebé-Pedrós A., Ariza-Cosano A., Weirauch M. T., Leininger S., Yang A., Torruella G., Adamski M., Adamska M., Hughes T. R., Gómez-Skarmeta J. L., et al. (2013). Early eèolution of the T-box transcription factor family. Proc. Natl. Acad. Sci. U. S. A. 110, 16050–16055. PubMed PMC

Sharifnia T., Wawer M. J., Chen T., Huang Q.-Y., Weir B. A., Sizemore A., Lawlor M. A., Goodale A., Cowley G. S., Vazquez F., et al. (2019). Small-molecule targeting of brachyury transcription factor addiction in chordoma. Nat. Med. 1. PubMed PMC

Smith J. C., Price B. M. J. J., Green J. B. A. A., Weigel D. and Herrmann B. G. (1991). Expression of a xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell 67, 79–87. PubMed

Song B. P., Ragsac M. F., Tellez K., Jindal G. A., Grudzien J. L., Le S. H. and Farley E. K. (2023). Diverse logics and grammar encode notochord enhancers. Cell Rep. 42,. PubMed PMC

Stemple D. L. (2005). Structure and function of the notochord: an essential organ for chordate development. Development 132, 2503–12. PubMed

Stosiek P., Kasper M. and Karsten U. (1988). Expression of cytokeratin and vimentin in nucleus pulposus cells. Differentiation 39, 78–81. PubMed

Takei H. and Powell S. Z. (2010). Novel immunohistochemical markers in the diagnosis of nonglial tumors of nervous system. Adv Anat Pathol 17, 150–153. PubMed

Takezaki N. (2018). Global Rate Variation in Bony Vertebrates. Genome Biol. Evol. 10, 1803–1815. PubMed PMC

Tang X., Jing L. and Chen J. (2012). Changes in the Molecular Phenotype of Nucleus Pulposus Cells with Intervertebral Disc Aging. PLoS One 7, 52020. PubMed PMC

Tarpey P. S., Behjati S., Young M. D., Martincorena I., Alexandrov L. B., Farndon S. J., Guzzo C., Hardy C., Latimer C., Butler A. P., et al. (2017). The driver landscape of sporadic chordoma. Nat. Commun. 8, 1–6. PubMed PMC

Tasic B., Hippenmeyer S., Wang C., Gamboa M., Zong H., Chen-Tsai Y. and Luo L. (2011). Site-specific integrase-mediated transgenesis in mice via pronuclear injection. Proc. Natl. Acad. Sci. U. S. A. 108, 7902–7. PubMed PMC

Thompson A. W., Hawkins M. B., Parey E., Wcisel D. J., Ota T., Kawasaki K., Funk E., Losilla M., Fitch O. E., Pan Q., et al. (2021). The bowfin genome illuminates the developmental evolution of ray-finned fishes . Nat. Genet. 2021 1–12. PubMed PMC

Tosic J., Kim G.-J., Pavlovic M., Schröder C. M., Mersiowsky S.-L., Barg M., Hofherr A., Probst S., Köttgen M., Hein L., et al. (2019). Eomes and Brachyury control pluripotency exit and germ-layer segregation by changing the chromatin state. Nat. Cell Biol. 21, 1518–1531. PubMed

Veenvliet J. V., Bolondi A., Kretzmer H., Haut L., Scholze-Wittler M., Schifferl D., Koch F., Guignard L., Kumar A. S., Pustet M., et al. (2020). Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites. Science (80-. ). 370,. PubMed

Vujovic S., Henderson S., Presneau N., Odell E., Jacques T. S., Tirabosco R., Boshoff C. and Flanagan A. M. (2006). Brachyury, a crucial regulator of notochordal development, is a novel biomarker for chordomas. J Pathol 209, 157–165. PubMed

Wang F., Zhang C., Shi R., Xie Z.-Y., Chen L., Wang K., Wang Y.-T., Xie X.-H. and Wu X. T. (2018). The embryonic and evolutionary boundaries between notochord and cartilage: A new look at nucleus pulposus-specific markers. Osteoarthr. Cartil. PubMed

Xu P.-F., Houssin N., Ferri-Lagneau K. F., Thisse B. and Thisse C. (2014). Construction of a vertebrate embryo from two opposing morphogen gradients. Science 344, 87–9. PubMed

Xu P. F., Borges R. M., Fillatre J., de Oliveira-Melo M., Cheng T., Thisse B. and Thisse C. (2021). Construction of a mammalian embryo model from stem cells organized by a morphogen signalling centre. Nat. Commun. 12,. PubMed PMC

Yakkioui Y., van Overbeeke J. J., Santegoeds R., van Engeland M. and Temel Y. (2014). The origin of chordoma. Biochim. Biophys. Acta. PubMed

Yanagisawa K. O. (1990). Does the T gene determine the anteroposterior axis of a mouse embryo? Japanese J. Genet. 65, 287–297. PubMed

Yang X. R., Ng D., Alcorta D. A., Liebsch N. J., Sheridan E., Li S., Goldstein A. M., Parry D. M. and Kelley M. J. (2009). T (brachyury) gene duplication confers major susceptibility to familial chordoma. Nat Genet 41, 1176–1178. PubMed PMC

Zhu J., Kwan K. M. and Mackem S. (2016). Putative oncogene Brachyury (T) is essential to specify cell fate but dispensable for notochord progenitor proliferation and EMT. Proc. Natl. Acad. Sci. U. S. A. 1601252113-. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...