Conserved enhancer logic controls the notochord expression of vertebrate Brachyury
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu preprinty, časopisecké články
Grantová podpora
R01 HG003988
NHGRI NIH HHS - United States
R01 DE028599
NIDCR NIH HHS - United States
R01 DE024745
NIDCR NIH HHS - United States
R01 HL162304
NHLBI NIH HHS - United States
R01 DK129350
NIDDK NIH HHS - United States
T32 GM141742
NIGMS NIH HHS - United States
DP2 HG010013
NHGRI NIH HHS - United States
F31 HL167580
NHLBI NIH HHS - United States
PubMed
37131681
PubMed Central
PMC10153258
DOI
10.1101/2023.04.20.536761
PII: 2023.04.20.536761
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
The cell type-specific expression of key transcription factors is central to development. Brachyury/T/TBXT is a major transcription factor for gastrulation, tailbud patterning, and notochord formation; however, how its expression is controlled in the mammalian notochord has remained elusive. Here, we identify the complement of notochord-specific enhancers in the mammalian Brachyury/T/TBXT gene. Using transgenic assays in zebrafish, axolotl, and mouse, we discover three Brachyury-controlling notochord enhancers T3, C, and I in human, mouse, and marsupial genomes. Acting as Brachyury-responsive, auto-regulatory shadow enhancers, deletion of all three enhancers in mouse abolishes Brachyury/T expression selectively in the notochord, causing specific trunk and neural tube defects without gastrulation or tailbud defects. Sequence and functional conservation of Brachyury-driving notochord enhancers with the brachyury/tbxtb loci from diverse lineages of fishes dates their origin to the last common ancestor of jawed vertebrates. Our data define the enhancers for Brachyury/T/TBXTB notochord expression as ancient mechanism in axis development.
Biological Sciences Graduate Program University of California San Diego La Jolla CA USA
Cluster of Excellence Physics of Life Technische Universität Dresden Dresden Germany
Comparative Biochemistry Program University of California Berkeley CA 94720 USA
Department for BioMedical Research University of Bern Bern Switzerland
Department of Anatomy University of California San Francisco San Francisco CA USA
Department of Cardiology Berne University Hospital Berne Switzerland
Department of Medicine Health Sciences University of California San Diego La Jolla CA USA
Department of Orofacial Sciences University of California San Francisco San Francisco CA USA
Institute for Human Genetics University of California San Francisco San Francisco CA USA
Institute of Molecular Genetics of the ASCR v v i Prague Czech Republic
Institute of Molecular Life Sciences University of Zurich Zurich Switzerland
Max Planck Institute for Molecular Cell Biology and Genetics Dresden Germany
Program in Craniofacial Biology University of California San Francisco San Francisco CA USA
School of Natural Sciences University of California Merced Merced CA USA
Technische Universität Dresden CRTD Center for Regenerative Therapies Dresden Dresden Germany
US Department of Energy Joint Genome Institute Lawrence Berkeley National Laboratory Berkeley CA USA
Zobrazit více v PubMed
Amacher S. L., Draper B. W., Summers B. R. and Kimmel C. B. (2002). The zebrafish T-box genes no tail and spadetail are required for development of trunk and tail mesoderm and medial floor plate. Development 3311–3323. PubMed
Amemiya C. T., Alfoldi J., Lee A. P., Fan S., Philippe H., MacCallum I., Braasch I., Manousaki T., Schneider I., Rohner N., et al. (2013). The African coelacanth genome provides insights into tetrapod evolution. Nat. 2013 4967445 496, 311–316. PubMed PMC
Antosova B., Smolikova J., Klimova L., Lachova J., Bendova M., Kozmikova I., Machon O. and Kozmik Z. (2016). The Gene Regulatory Network of Lens Induction Is Wired through Meis-Dependent Shadow Enhancers of Pax6. PLOS Genet. 12, e1006441. PubMed PMC
Armstrong J. B. and Malacinski G. M. (1989). Developmental biology of the axolotl. 320.
Arnold S. J., Stappert J., Bauer A., Kispert A., Herrmann B. G. and Kemler R. (2000). Brachyury is a target gene of the Wnt/β-catenin signaling pathway. Mech. Dev. 91, 249–258. PubMed
Bagnat M. and Gray R. S. (2020). Development of a straight vertebrate body axis. Development 147,. PubMed PMC
Beisaw A., Tsaytler P., Koch F., Schmitz S. U., Melissari M., Senft A. D., Wittler L., Pennimpede T., Macura K., Herrmann B. G., et al. (2018). BRACHYURY directs histone acetylation to target loci during mesoderm development. EMBO Rep. 19, 118. PubMed PMC
Bhadra A. K. and Casey A. T. (2006). Familial chordoma. A report of two cases. J Bone Jt. Surg Br 88, 634–636. PubMed
Braasch I., Gehrke A. R., Smith J. J., Kawasaki K., Manousaki T., Pasquier J., Amores A., Desvignes T., Batzel P., Catchen J., et al. (2016). The spotted gar genome illuminates vertebrate evolution and facilitates human-teleost comparisons. Nat. Genet. 48, 427–437. PubMed PMC
Bradley Shaffer H., Minx P., Warren D. E., Shedlock A. M., Thomson R. C., Valenzuela N., Abramyan J., Amemiya C. T., Badenhorst D., Biggar K. K., et al. (2013). The western painted turtle genome, a model for the evolution of extreme physiological adaptations in a slowly evolving lineage. Genome Biol. 14,. PubMed PMC
Brink S. C. van den, Alemany A., Batenburg V. van, Moris N., Blotenburg M., Vivié J., Baillie-Johnson P., Nichols J., Sonnen K. F., Arias A. M., et al. (2020). Single-cell and spatial transcriptomics reveal somitogenesis in gastruloids. Nat. 2020 1–5. PubMed
Cannavò E., Khoueiry P., Garfield D. A., Geeleher P., Zichner T., Gustafson E. H., Ciglar L., Korbel J. O. and Furlong E. E. M. (2015). Shadow Enhancers Are Pervasive Features of Developmental Regulatory Networks. Curr. Biol. PubMed PMC
Choi K. S., Cohn M. J. and Harfe B. D. (2008). Identification of nucleus pulposus precursor cells and notochordal remnants in the mouse: implications for disk degeneration and chordoma formation. Dev Dyn 237, 3953–3958. PubMed PMC
Christiaen L., Wagner E., Shi W. and Levine M. (2009). Electroporation of Transgenic DNAs in the Sea Squirt Ciona. Cold Spring Harb. Protoc. 2009, pdb.prot5345. PubMed
Clements D., Taylor H. C., Herrmann B. G. and Stott D. (1996). Distinct regulatory control of the Brachyury gene in axial and non-axial mesoderm suggests separation of mesoderm lineages early in mouse gastrulation. Mech. Dev. 56, 139–149. PubMed
Corallo D., Trapani V. and Bonaldo P. (2015). The notochord: structure and functions. Cell. Mol. Life Sci. 72, 2989–3008. PubMed PMC
Corbo J. C., Levine M. and Zeller R. W. (1997). Characterization of a notochord-specific enhancer from the Brachyury promoter region of the ascidian, Ciona intestinalis. Development 124, 589–602. PubMed
D’Agati G., Cabello E. M., Frontzek K., Rushing E. J., Klemm R., Robinson M. D., White R. M., Mosimann C. and Burger A. (2019). Active receptor tyrosine kinases, but not Brachyury, are sufficient to trigger chordoma in zebrafish. Dis. Model. Mech. 12,. PubMed PMC
Dobrovolskaia-Zavadskaia N. (1927). Sur la mortification spontanee de la chez la souris nouveau-nee et sur l’existence d’un caractere (facteur) hereditaire, non-viable. Crit Rev Soc Biol 97, 114–116.
Faial T., Bernardo A. S., Mendjan S., Diamanti E., Ortmann D., Gentsch G. E., Mascetti V. L., Trotter M. W. B., Smith J. C., Pedersen R. A., et al. (2015). Brachyury and SMAD signalling collaboratively orchestrate distinct mesoderm and endoderm gene regulatory networks in differentiating human embryonic stem cells. Development 142, 2121. PubMed PMC
Farley E. K., Olson K. M., Zhang W., Brandt A. J., Rokhsar D. S. and Levine M. S. (2015). Suboptimization of developmental enhancers. Science 350, 325–8. PubMed PMC
Farley E. K., Olson K. M., Zhang W., Rokhsar D. S. and Levine M. S. (2016). Syntax compensates for poor binding sites to encode tissue specificity of developmental enhancers. Proc. Natl. Acad. Sci. U. S. A. 113, 6508–13. PubMed PMC
Felker A. and Mosimann C. (2016). Contemporary zebrafish transgenesis with Tol2 and application for Cre/lox recombination experiments. Methods Cell Biol. 135, 219–44. PubMed
Gluecksohn-Schoenheimer S. (1938). THE DEVELOPMENT OF TWO TAILLESS MUTANTS IN THE HOUSE MOUSE. Genetics 23, 573–584. PubMed PMC
Gluecksohn-Schoenheimer S. (1944). The Development of Normal and Homozygous Brachy (T/T) Mouse Embryos in the Extraembryonic Coelom of the Chick. Proc. Natl. Acad. Sci. 30, 134–140. PubMed PMC
Goodstadt L., Heger A., Webber C. and Ponting C. P. (2007). An analysis of the gene complement of a marsupial, Monodelphis domestica: evolution of lineage-specific genes and giant chromosomes. Genome Res. 17, 969–981. PubMed PMC
Grant C. E., Bailey T. L. and Noble W. S. (2011). FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017. PubMed PMC
Halpern M. E., Ho R. K., Walker C. and Kimmel C. B. (1993). Induction of muscle pioneers and floor plate is distinguished by the zebrafish no tail mutation. Cell 75, 99–111. PubMed
Harafuji N., Keys D. N. and Levine M. (2002). Genome-wide identification of tissue-specific enhancers in the Ciona tadpole. Proc. Natl. Acad. Sci. U. S. A. 99, 6802–6805. PubMed PMC
Harvey S. A. A., Tümpel S., Dubrulle J., Schier A. F. F., Smith J. C. C., Tumpel S., Dubrulle J., Schier A. F. F. and Smith J. C. C. (2010). no tail integrates two modes of mesoderm induction. Development 137, 1127–1135. PubMed PMC
Heaton J. M. and Turner D. R. (1985). Reflections on notochordal differentiation arising from a study of chordomas. Histopathology 9, 543–550. PubMed
Henrique D., Abranches E., Verrier L. and Storey K. G. (2015). Neuromesodermal progenitors and the making of the spinal cord. Development 142, 2864–2875. PubMed PMC
Herrmann B. G. (1995). The mouse Brachyury (T) gene. Semin. Dev. Biol. 6, 385–394.
Hippenmeyer S., Youn Y. H., Moon H. M., Miyamichi K., Zong H., Wynshaw-Boris A. and Luo L. (2010). Genetic Mosaic Dissection of Lis1 and Ndel1 in Neuronal Migration. Neuron 68, 695. PubMed PMC
Holland P. W., Koschorz B., Holland L. Z. and Herrmann B. G. (1995). Conservation of Brachyury (T) genes in amphioxus and vertebrates: developmental and evolutionary implications. Development 121, 4283–4291. PubMed
Hong J. W., Hendrix D. A. and Levine M. S. (2008). Shadow enhancers as a source of evolutionary novelty. Science (80-. ). 321, 1314. PubMed PMC
Hsu W., Mohyeldin A., Shah S. R., ap Rhys C. M., Johnson L. F., Sedora-Roman N. I., Kosztowski T. A., Awad O. A., McCarthy E. F., Loeb D. M., et al. (2011). Generation of chordoma cell line JHC7 and the identification of Brachyury as a novel molecular target. J Neurosurg 115, 760–769. PubMed PMC
Hu Y., Mintz A., Shah S. R. R., Quinones-Hinojosa A. and Hsu W. (2014). The FGFR/MEK/ERK/brachyury pathway is critical for chordoma cell growth and survival. Carcinogenesis 35, 1491–1499. PubMed PMC
Inoue J., Yasuoka Y., Takahashi H. and Satoh N. (2017). The chordate ancestor possessed a single copy of the Brachyury gene for notochord acquisition. Zool. Lett. 3, 1–7. PubMed PMC
Irimia M., Tena J. J., Alexis M. S., Fernandez-Miñan A., Maeso I., Bogdanović O., De La Calle-Mustienes E., Roy S. W., Gómez-Skarmeta J. L. and Fraser H. B. (2012). Extensive conservation of ancient microsynteny across metazoans due to cis-regulatory constraints. Genome Res. 22, 2356–2367. PubMed PMC
Jenickova I., Kasparek P., Petrezselyova S., Elias J., Prochazka J., Kopkanova J., Navratil M., Barinka C. and Sedlacek R. (2021). Efficient allele conversion in mouse zygotes and primary cells based on electroporation of Cre protein. Methods 191, 87–94. PubMed
Katoh K., Asimenos G. and Toh H. (2009). Multiple alignment of DNA sequences with MAFFT. Methods Mol. Biol. 537, 39–64. PubMed
Kemmler C. L., Moran H. R., Murray B. F., Scoresby A., Klem J. R., Eckert R. L., Lepovsky E., Bertho S., Nieuwenhuize S., Burger S., et al. (2023). Next-generation plasmids for transgenesis in zebrafish and beyond. Development 150,. PubMed PMC
Khattak S., Murawala P., Andreas H., Kappert V., Schuez M., Sandoval-Guzmán T., Crawford K. and Tanaka E. M. (2014). Optimized axolotl (Ambystoma mexicanum) husbandry, breeding, metamorphosis, transgenesis and tamoxifen-mediated recombination. Nat. Protoc. 9, 529–540. PubMed
Koch F., Scholze M., Wittler L., Schifferl D., Sudheer S., Grote P., Timmermann B., Macura K. and Herrmann B. G. (2017). Antagonistic Activities of Sox2 and Brachyury Control the Fate Choice of Neuro-Mesodermal Progenitors. Dev. Cell. PubMed
Kumar S., Stecher G., Suleski M. and Blair Hedges S. (2017). TimeTree: A Resource for Timelines, Timetrees, and Divergence Times. Mol. Biol. Evol. 34, 1812–1819. PubMed
Kvon E. Z., Zhu Y., Kelman G., Novak C. S., Plajzer-Frick I., Kato M., Garvin T. H., Pham Q., Harrington A. N., Hunter R. D., et al. (2020). Comprehensive In Vivo Interrogation Reveals Phenotypic Impact of Human Enhancer Variants. Cell 180, 1262. PubMed PMC
Kvon E. Z., Waymack R., Elabd M. G., Wunderlich Z., Gad M. and Wunderlich Z. (2021). Enhancer redundancy in development and disease. 22,. PubMed PMC
Kwan K. M., Fujimoto E., Grabher C., Mangum B. D., Hardy M. E., Campbell D. S., Parant J. M., Yost H. J., Kanki J. P. and Chien C. Bin (2007). The Tol2kit: a multisite gateway-based construction kit for Tol2 transposon transgenesis constructs. Dev Dyn 236, 3088–3099. PubMed
Latinkić B. V., Umbhauer M., Neal K. A., Lerchner W., Smith J. C. and Cunliffe V. (1997). The Xenopus Brachyury promoter is activated by FGF and low concentrations ofactivinandsuppressed by high concentrationsof activin and by paired-type homeodomain proteins. Genes Dev. 11, 3265–3276. PubMed PMC
Letelier J., De La Calle-Mustienes E., Pieretti J., Naranjo S., Maeso I., Nakamura T., Pascual-Anaya J., Shubin N. H., Schneider I., Martinez-Morales J. R., et al. (2018). A conserved Shh cis-regulatory module highlights a common developmental origin of unpaired and paired fins. Nat. Genet. 50, 504–509. PubMed PMC
Lópezlópez-Anguita N., Gassaloglu S. I., Stö Tzel M., Bolondi A., Conkar D., Typou M., Renébuschow R., Veenvliet J. V and Bulut-Karslioglu A. (2022). Hypoxia induces an early primitive streak signature, enhancing spontaneous elongation and lineage representation in gastruloids. Development 149,. PubMed PMC
Martin B. L. and Kimelman D. (2008). Regulation of Canonical Wnt Signaling by Brachyury Is Essential for Posterior Mesoderm Formation. Dev. Cell 15, 121–133. PubMed PMC
Martin B. L. and Kimelman D. (2010). Brachyury establishes the embryonic mesodermal progenitor niche. Genes Dev. 24, 2778–83. PubMed PMC
Mašek J., Machoň O., Kořínek V., Taketo M. M. and Kozmik Z. (2016). Tcf7l1 protects the anterior neural fold from adopting the neural crest fate. Development 143, 2206–2216. PubMed
Mikkelsen T. S., Wakefield M. J., Aken B., Amemiya C. T., Chang J. L., Duke S., Garber M., Gentles A. J., Goodstadt L., Heger A., et al. (2007). Genome of the marsupial Monodelphis domestica reveals innovation in non-coding sequences. Nature 447, 167–77. PubMed
Moris N., Anlas K., van den Brink S. C., Alemany A., Schröder J., Ghimire S., Balayo T., van Oudenaarden A. and Martinez Arias A. (2020). An in vitro model of early anteroposterior organization during human development. Nature 1–6. PubMed
Mosimann C. (2022). Multisite Gateway Calculations: Excel spreadsheet. protocols.io.
Mosimann C., Kaufman C. K., Li P., Pugach E. K., Tamplin O. J. and Zon L. I. (2011). Ubiquitous transgene expression and Cre-based recombination driven by the ubiquitin promoter in zebrafish. Development 138, 169–177. PubMed PMC
Nakamichi R. and Asahara H. (2020). The transcription factors regulating intervertebral disc development. JOR Spine 3, e1081. PubMed PMC
Nei M., Xu P. and Glazko G. (2001). Estimation of divergence times from multiprotein sequences for a few mammalian species and several distantly related organisms. Proc. Natl. Acad. Sci. 98, 2497–2502. PubMed PMC
Nelson A. C., Pillay N., Henderson S., Presneau N. N., Tirabosco R., Halai D., Berisha F., Flicek P., Stemple D. L., Stern C. D., et al. (2012). An integrated functional genomics approach identifies the regulatory network directed by brachyury (T) in chordoma. J. Pathol. 228, 274–285. PubMed PMC
Nibu Y., Jose-Edwards D. S., Di Gregorio A., Jos??- Edwards D. S. and Di Gregorio A. (2013). From notochord formation to hereditary chordoma: The many roles of brachyury. PubMed PMC
Nowoshilow S., Schloissnig S., Fei J. F., Dahl A., Pang A. W. C., Pippel M., Winkler S., Hastie A. R., Young G., Roscito J. G., et al. (2018). The axolotl genome and the evolution of key tissue formation regulators. Nat. 2018 5547690 554, 50–55. PubMed
Osterwalder M., Barozzi I., Tissières V., Fukuda-Yuzawa Y., Mannion B. J., Afzal S. Y., Lee E. A., Zhu Y., Plajzer-Frick I., Pickle C. S., et al. (2018). Enhancer redundancy provides phenotypic robustness in mammalian development. Nature 554, 239–243. PubMed PMC
Osterwalder M., Tran S., Hunter R. D., Meky E. M., von Maydell K., Harrington A. N., Godoy J., Novak C. S., Plajzer-Frick I., Zhu Y., et al. (2022). Characterization of Mammalian In Vivo Enhancers Using Mouse Transgenesis and CRISPR Genome Editing. Methods Mol. Biol. 2403, 147–186. PubMed
Passamaneck Y. J., Katikala L., Perrone L., Dunn M. P., Oda-Ishii I. and Di Gregorio A. (2009). Direct activation of a notochord cis-regulatory module by Brachyury and FoxA in the ascidian Ciona intestinalis. Development 136, 3679–3689. PubMed PMC
Peck S. H., McKee K. K., Tobias J. W., Malhotra N. R., Harfe B. D. and Smith L. J. (2017). Whole Transcriptome Analysis of Notochord-Derived Cells during Embryonic Formation of the Nucleus Pulposus. Sci. Reports 2017 71 7, 1–14. PubMed PMC
Pennimpede T., Proske J., König A., Vidigal J. A., Morkel M., Bramsen J. B., Herrmann B. G. and Wittler L. (2012). In vivo knockdown of Brachyury results in skeletal defects and urorectal malformations resembling caudal regression syndrome. Dev. Biol. 372, 55–67. PubMed
Pippucci T., Savoia A., Perrotta S., Pujol-Moix N., Noris P., Castegnaro G., Pecci A., Gnan C., Punzo F., Marconi C., et al. (2011). Mutations in the 5’ UTR of ANKRD26, the ankirin repeat domain 26 gene, cause an autosomal-dominant form of inherited thrombocytopenia, THC2. Am. J. Hum. Genet. 88 1, 115–120. PubMed PMC
Presneau N., Shalaby A., Ye H., Pillay N., Halai D., Idowu B., Tirabosco R., Whitwell D., Jacques T. S., Kindblom L.-G. G., et al. (2011). Role of the transcription factor T (brachyury) in the pathogenesis of sporadic chordoma: a genetic and functional-based study. J Pathol 223, 327–335. PubMed
Prummel K. D., Hess C., Nieuwenhuize S., Parker H. J., Rogers K. W., Kozmikova I., Racioppi C., Brombacher E. C., Czarkwiani A., Knapp D., et al. (2019). A conserved regulatory program initiates lateral plate mesoderm emergence across chordates. Nat. Commun. 10, 3857. PubMed PMC
Rennebeck G. M., Lader E., Chen Q., Bohm R. a, Cai Z. S., Faust C., Magnuson T., Pease L. R. and Artzt K. (1995). Is there a Brachyury the Second? Analysis of a transgenic mutation involved in notochord maintenance in mice. Dev. Biol. 172, 206–217. PubMed
Rennebeck G., Lader E., Fujimoto A., Lei E. P. and Artzt K. (1998). Mouse Brachyury the second (T2) is a gene next to classical T and a candidate gene for tct. Genetics 150, 1125–1131. PubMed PMC
Richardson S. M., Ludwinski F. E., Gnanalingham K. K., Atkinson R. A., Freemont A. J. and Hoyland J. A. (2017). Notochordal and nucleus pulposus marker expression is maintained by sub-populations of adult human nucleus pulposus cells through aging and degeneration. Sci. Reports 2017 71 7, 1–11. PubMed PMC
Risbud M. V, Schaer T. P. and Shapiro I. M. (2010). Toward an understanding of the role of notochordal cells in the adult intervertebral disc: from discord to accord. Dev. Dyn. 239, 2141–8. PubMed PMC
Rito T., Libby A. R. G., Demuth M. and Briscoe J. (2023). Notochord and axial progenitor generation by timely BMP and NODAL inhibition during vertebrate trunk formation. bioRxiv 2023.02.27.530267.
Rivera-Pérez J. A. and Magnuson T. (2005). Primitive streak formation in mice is preceded by localized activation of Brachyury and Wnt3. Dev. Biol. 288, 363–371. PubMed
Sangoi A. R., Karamchandani J., Lane B., Higgins J. P., Rouse R. V, Brooks J. D. and McKenney J. K. (2011). Specificity of brachyury in the distinction of chordoma from clear cell renal cell carcinoma and germ cell tumors: a study of 305 cases. Mod Pathol 24, 425–429. PubMed
Satoh N., Tagawa K. and Takahashi H. (2012). How was the notochord born? 14, 56–75. PubMed
Schifferl D., Scholze-Wittler M., Wittler L., Veenvliet J. V., Koch F. and Herrmann B. G. (2021). A 37 kb region upstream of Brachyury comprising a notochord enhancer is essential for notochord and tail development. Development. PubMed PMC
Schulte-Merker S., van Eeden F. J., Halpern M. E., Kimmel C. B. and Nüsslein-Volhard C. (1994). no tail (ntl) is the zebrafish homologue of the mouse T (Brachyury) gene. Development 120, 1009–15. PubMed
Schwaner M. J., Hsieh S. T., Swalla B. J. and McGowan C. P. (2021). An Introduction to an Evolutionary Tail: EvoDevo, Structure, and Function of Post-Anal Appendages. Integr. Comp. Biol. 61, 352–357. PubMed
Sebé-Pedrós A., Ariza-Cosano A., Weirauch M. T., Leininger S., Yang A., Torruella G., Adamski M., Adamska M., Hughes T. R., Gómez-Skarmeta J. L., et al. (2013). Early eèolution of the T-box transcription factor family. Proc. Natl. Acad. Sci. U. S. A. 110, 16050–16055. PubMed PMC
Sharifnia T., Wawer M. J., Chen T., Huang Q.-Y., Weir B. A., Sizemore A., Lawlor M. A., Goodale A., Cowley G. S., Vazquez F., et al. (2019). Small-molecule targeting of brachyury transcription factor addiction in chordoma. Nat. Med. 1. PubMed PMC
Smith J. C., Price B. M. J. J., Green J. B. A. A., Weigel D. and Herrmann B. G. (1991). Expression of a xenopus homolog of Brachyury (T) is an immediate-early response to mesoderm induction. Cell 67, 79–87. PubMed
Song B. P., Ragsac M. F., Tellez K., Jindal G. A., Grudzien J. L., Le S. H. and Farley E. K. (2023). Diverse logics and grammar encode notochord enhancers. Cell Rep. 42,. PubMed PMC
Stemple D. L. (2005). Structure and function of the notochord: an essential organ for chordate development. Development 132, 2503–12. PubMed
Stosiek P., Kasper M. and Karsten U. (1988). Expression of cytokeratin and vimentin in nucleus pulposus cells. Differentiation 39, 78–81. PubMed
Takei H. and Powell S. Z. (2010). Novel immunohistochemical markers in the diagnosis of nonglial tumors of nervous system. Adv Anat Pathol 17, 150–153. PubMed
Takezaki N. (2018). Global Rate Variation in Bony Vertebrates. Genome Biol. Evol. 10, 1803–1815. PubMed PMC
Tang X., Jing L. and Chen J. (2012). Changes in the Molecular Phenotype of Nucleus Pulposus Cells with Intervertebral Disc Aging. PLoS One 7, 52020. PubMed PMC
Tarpey P. S., Behjati S., Young M. D., Martincorena I., Alexandrov L. B., Farndon S. J., Guzzo C., Hardy C., Latimer C., Butler A. P., et al. (2017). The driver landscape of sporadic chordoma. Nat. Commun. 8, 1–6. PubMed PMC
Tasic B., Hippenmeyer S., Wang C., Gamboa M., Zong H., Chen-Tsai Y. and Luo L. (2011). Site-specific integrase-mediated transgenesis in mice via pronuclear injection. Proc. Natl. Acad. Sci. U. S. A. 108, 7902–7. PubMed PMC
Thompson A. W., Hawkins M. B., Parey E., Wcisel D. J., Ota T., Kawasaki K., Funk E., Losilla M., Fitch O. E., Pan Q., et al. (2021). The bowfin genome illuminates the developmental evolution of ray-finned fishes . Nat. Genet. 2021 1–12. PubMed PMC
Tosic J., Kim G.-J., Pavlovic M., Schröder C. M., Mersiowsky S.-L., Barg M., Hofherr A., Probst S., Köttgen M., Hein L., et al. (2019). Eomes and Brachyury control pluripotency exit and germ-layer segregation by changing the chromatin state. Nat. Cell Biol. 21, 1518–1531. PubMed
Veenvliet J. V., Bolondi A., Kretzmer H., Haut L., Scholze-Wittler M., Schifferl D., Koch F., Guignard L., Kumar A. S., Pustet M., et al. (2020). Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites. Science (80-. ). 370,. PubMed
Vujovic S., Henderson S., Presneau N., Odell E., Jacques T. S., Tirabosco R., Boshoff C. and Flanagan A. M. (2006). Brachyury, a crucial regulator of notochordal development, is a novel biomarker for chordomas. J Pathol 209, 157–165. PubMed
Wang F., Zhang C., Shi R., Xie Z.-Y., Chen L., Wang K., Wang Y.-T., Xie X.-H. and Wu X. T. (2018). The embryonic and evolutionary boundaries between notochord and cartilage: A new look at nucleus pulposus-specific markers. Osteoarthr. Cartil. PubMed
Xu P.-F., Houssin N., Ferri-Lagneau K. F., Thisse B. and Thisse C. (2014). Construction of a vertebrate embryo from two opposing morphogen gradients. Science 344, 87–9. PubMed
Xu P. F., Borges R. M., Fillatre J., de Oliveira-Melo M., Cheng T., Thisse B. and Thisse C. (2021). Construction of a mammalian embryo model from stem cells organized by a morphogen signalling centre. Nat. Commun. 12,. PubMed PMC
Yakkioui Y., van Overbeeke J. J., Santegoeds R., van Engeland M. and Temel Y. (2014). The origin of chordoma. Biochim. Biophys. Acta. PubMed
Yanagisawa K. O. (1990). Does the T gene determine the anteroposterior axis of a mouse embryo? Japanese J. Genet. 65, 287–297. PubMed
Yang X. R., Ng D., Alcorta D. A., Liebsch N. J., Sheridan E., Li S., Goldstein A. M., Parry D. M. and Kelley M. J. (2009). T (brachyury) gene duplication confers major susceptibility to familial chordoma. Nat Genet 41, 1176–1178. PubMed PMC
Zhu J., Kwan K. M. and Mackem S. (2016). Putative oncogene Brachyury (T) is essential to specify cell fate but dispensable for notochord progenitor proliferation and EMT. Proc. Natl. Acad. Sci. U. S. A. 1601252113-. PubMed PMC