Molecular Fingerprint of Amphioxus Frontal Eye Illuminates the Evolution of Homologous Cell Types in the Chordate Retina
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32850825
PubMed Central
PMC7417673
DOI
10.3389/fcell.2020.00705
Knihovny.cz E-zdroje
- Klíčová slova
- Notch signaling, chordates, eye evolution, gene expression, interneurons, light detection, photoreceptors, vision,
- Publikační typ
- časopisecké články MeSH
The evolution of the vertebrate eye remains so far unresolved. Amphioxus frontal eye pigment cells and photoreceptors were proposed to be homologous to vertebrate photoreceptors and retinal pigmented epithelium, based on ultrastructural morphology and gene expression analysis in B. floridae. Here, we present comparative molecular data using two additional amphioxus species, a closely related B. lanceolatum, and the most divergent A. lucayanum. Taking advantage of a unique set of specific antibodies we characterized photoreceptors and putative interneurons of the frontal eye and investigated its neuronal circuitry. Our results corroborate generally conserved molecular fingerprint among cephalochordate species. Furthermore, we performed pharmacological perturbations and found that the Notch signaling pathway, a key regulator of retina development in vertebrates, is required for correct ratios among frontal eye cell types. In summary, our study provides a valuable insight into cell-type relationships in chordate visual organs and strengthens the previously proposed homology between amphioxus frontal eye and vertebrate eyes.
Zobrazit více v PubMed
Albuixech-Crespo B., Lopez-Blanch L., Burguera D., Maeso I., Sanchez-Arrones L., Moreno-Bravo J. A., et al. (2017). Molecular regionalization of the developing amphioxus neural tube challenges major partitions of the vertebrate brain. PLoS Biol. 15:e2001573. 10.1371/journal.pbio.2001573 PubMed DOI PMC
Andrews E. A. (1893). An undescribed acraniate: asymmetron lucayanum. Stud. Biol. Lab. Johns Hopkins Univ. 5 213–247.
Bassett E. A., Wallace V. A. (2012). Cell fate determination in the vertebrate retina. Trends Neurosci. 35 565–573. 10.1016/j.tins.2012.05.004 PubMed DOI
Benton M., Donoghue P., Asher R., Hedges S., Kumar S. (2009). “Calibrating and constraining molecular clocks,” in The Timetree of Life, eds Kumar S., Hedges S. B. (Oxford: OUP Oxford; ).
Bertrand S., Escriva H. (2011). Evolutionary crossroads in developmental biology: amphioxus. Development 138 4819–4830. 10.1242/dev.066720 PubMed DOI
Bozzo M., Pergner J., Kozmik Z., Kozmikova I. (2017). Novel polyclonal antibodies as a useful tool for expression studies in amphioxus embryos. Int. J. Dev. Biol. 61 793–800. 10.1387/ijdb.170259ik PubMed DOI
Brombin A., Grossier J. P., Heuze A., Radev Z., Bourrat F., Joly J. S., et al. (2011). Genome-wide analysis of the POU genes in medaka, focusing on expression in the optic tectum. Dev. Dyn. 240 2354–2363. 10.1002/dvdy.22727 PubMed DOI
Ciranna L. (2006). Serotonin as a modulator of glutamate- and GABA-mediated neurotransmission: implications in physiological functions and in pathology. Curr. Neuropharmacol. 4 101–114. PubMed PMC
Dorsky R. I., Chang W. S., Rapaport D. H., Harris W. A. (1997). Regulation of neuronal diversity in the Xenopus retina by Delta signalling. Nature 385 67–70. 10.1038/385067a0 PubMed DOI
Elshatory Y., Everhart D., Deng M., Xie X., Barlow R. B., Gan L. (2007). Islet-1 controls the differentiation of retinal bipolar and cholinergic amacrine cells. J. Neurosci. 27 12707–12720. 10.1523/JNEUROSCI.3951-07.2007 PubMed DOI PMC
Erskine L., Herrera E. (2014). Connecting the retina to the brain. ASN Neuro 6:1759091414562107. 10.1177/1759091414562107 PubMed DOI PMC
Fuentes M., Benito E., Bertrand S., Paris M., Mignardot A., Godoy L., et al. (2007). Insights into spawning behavior and development of the European amphioxus (Branchiostoma lanceolatum). J. Exp. Zool. B Mol. Dev. Evol. 308 484–493. 10.1002/jez.b.21179 PubMed DOI
Glardon S., Holland L. Z., Gehring W. J., Holland N. D. (1998). Isolation and developmental expression of the amphioxus Pax-6 gene (AmphiPax-6): insights into eye and photoreceptor evolution. Development 125 2701–2710. PubMed
Hirakow R., Kajita N. (1994). Electron microscopic study of the development of amphioxus, Branchiostoma belcheri tsingtauense: the neurula and larva. Kaibogaku Zasshi 69 1–13. PubMed
Holland L. Z., Albalat R., Azumi K., Benito-Gutierrez E., Blow M. J., Bronner-Fraser M., et al. (2008). The amphioxus genome illuminates vertebrate origins and cephalochordate biology. Genome Res. 18 1100–1111. 10.1101/gr.073676.107 PubMed DOI PMC
Holland L. Z., Holland N. D. (1992). Early Development in the Lancelet (= Amphioxus) Branchiostoma floridae from sperm entry through pronuclear fusion: presence of vegetal pole plasm and lack of conspicuous ooplasmic segregation. Biol. Bull. 182 77–96. 10.2307/1542182 PubMed DOI
Holland L. Z., Yu J. K. (2004). Cephalochordate (amphioxus) embryos: procurement, culture, and basic methods. Methods Cell Biol. 74 195–215. 10.1016/s0091-679x(04)74009-1 PubMed DOI
Holland N. D., Holland L. Z. (2010). Laboratory spawning and development of the Bahama lancelet, Asymmetron lucayanum (cephalochordata): fertilization through feeding larvae. Biol. Bull. 219 132–141. 10.1086/BBLv219n2p132 PubMed DOI
Holland N. D., Holland L. Z., Heimberg A. (2015). Hybrids between the Florida amphioxus (Branchiostoma floridae) and the Bahamas lancelet (Asymmetron lucayanum): developmental morphology and chromosome counts. Biol. Bull. 228 13–24. 10.1086/BBLv228n1p13 PubMed DOI
Huang S., Chen Z., Yan X., Yu T., Huang G., Yan Q., et al. (2014). Decelerated genome evolution in modern vertebrates revealed by analysis of multiple lancelet genomes. Nat. Commun. 5:5896. PubMed PMC
Igawa T., Nozawa M., Suzuki D. G., Reimer J. D., Morov A. R., Wang Y., et al. (2017). Evolutionary history of the extant amphioxus lineage with shallow-branching diversification. Sci. Rep. 7:1157. 10.1038/s41598-017-00786-5 PubMed DOI PMC
Jadhav A. P., Mason H. A., Cepko C. L. (2006). Notch 1 inhibits photoreceptor production in the developing mammalian retina. Development 133 913–923. 10.1242/dev.02245 PubMed DOI
Klimova L., Kozmik Z. (2014). Stage-dependent requirement of neuroretinal Pax6 for lens and retina development. Development 141 1292–1302. 10.1242/dev.098822 PubMed DOI
Kolb H. (2011). “Neurotransmitters in the retina by Helga Kolb,” in Webvision: The Organization of the Retina and Visual System [Internet], eds Kolb H., Fernandez E., Nelson R. (Salt Lake City, UT: University of Utah Health Sciences Center; ). PubMed
Kon T., Nohara M., Yamanoue Y., Fujiwara Y., Nishida M., Nishikawa T. (2007). Phylogenetic position of a whale-fall lancelet (Cephalochordata) inferred from whole mitochondrial genome sequences. BMC Evol. Biol. 7:127. 10.1186/1471-2148-7-127 PubMed DOI PMC
Koyanagi M., Kubokawa K., Tsukamoto H., Shichida Y., Terakita A. (2005). Cephalochordate melanopsin: evolutionary linkage between invertebrate visual cells and vertebrate photosensitive retinal ganglion cells. Curr. Biol. 15 1065–1069. 10.1016/j.cub.2005.04.063 PubMed DOI
Lacalli T. C. (1996). Frontal eye circuitry, rostral sensory pathways and brain organization in amphioxus larvae: evidence from 3D reconstructions. Philos. Trans. R. Soc. B Biol. Sci. 351 243–263. 10.1098/rstb.1996.0022 DOI
Lacalli T. C. (2018). Amphioxus, motion detection, and the evolutionary origin of the vertebrate retinotectal map. Evodevo. 9:6. 10.1186/s13227-018-0093-2 PubMed DOI PMC
Lacalli T. C., Holland N. D., West J. E. (1994). Landmarks in the Anterior Central Nervous System of Amphioxus Larvae. Philos. Trans. R. Soc. B Biol. Sci. 344 165–185. 10.1098/rstb.1994.0059 DOI
Lamb T. D. (2013). Evolution of phototransduction, vertebrate photoreceptors and retina. Prog. Retin. Eye Res. 36 52–119. 10.1016/j.preteyeres.2013.06.001 PubMed DOI
Lamb T. D., Collin S. P., Pugh E. N., Jr. (2007). Evolution of the vertebrate eye: opsins, photoreceptors, retina and eye cup. Nat. Rev. Neurosci. 8 960–976. 10.1038/nrn2283 PubMed DOI PMC
Langeland J. A., Holland L. Z., Chastain R. A., Holland N. D. (2006). An amphioxus LIM-homeobox gene, AmphiLim1/5, expressed early in the invaginating organizer region and later in differentiating cells of the kidney and central nervous system. Int. J. Biol. Sci. 2 110–116. 10.7150/ijbs.2.110 PubMed DOI PMC
Liu W., Khare S. L., Liang X., Peters M. A., Liu X., Cepko C. L., et al. (2000). All Brn3 genes can promote retinal ganglion cell differentiation in the chick. Development 127 3237–3247. PubMed
Marletaz F., Firbas P. N., Maeso I., Tena J. J., Bogdanovic O., Perry M., et al. (2018). Amphioxus functional genomics and the origins of vertebrate gene regulation. Nature 564 64–70. 10.1038/s41586-018-0734-6 PubMed DOI PMC
Marquardt T., Ashery-Padan R., Andrejewski N., Scardigli R., Guillemot F., Gruss P. (2001). Pax6 is required for the multipotent state of retinal progenitor cells. Cell 105 43–55. 10.1016/s0092-8674(01)00295-1 PubMed DOI
Masson J. (2019). Serotonin in retina. Biochimie 161 51–55. 10.1016/j.biochi.2018.11.006 PubMed DOI
McEvilly R. J., Erkman L., Luo L., Sawchenko P. E., Ryan A. F., Rosenfeld M. G. (1996). Requirement for Brn-3.0 in differentiation and survival of sensory and motor neurons. Nature 384 574–577. 10.1038/384574a0 PubMed DOI
Nelson B. R., Hartman B. H., Georgi S. A., Lan M. S., Reh T. A. (2007). Transient inactivation of Notch signaling synchronizes differentiation of neural progenitor cells. Dev. Biol. 304 479–498. 10.1016/j.ydbio.2007.01.001 PubMed DOI PMC
Nohara M., Nishida M., Miya M., Nishikawa T. (2005). Evolution of the mitochondrial genome in Cephalochordata as inferred from complete nucleotide sequences from two Epigonichthys species. J. Mol. Evol. 60 526–537. 10.1007/s00239-004-0238-x PubMed DOI
Pantzartzi C. N., Pergner J., Kozmik Z. (2018). The role of transposable elements in functional evolution of amphioxus genome: the case of opsin gene family. Sci. Rep. 8:2506. 10.1038/s41598-018-20683-9 PubMed DOI PMC
Pergner J., Kozmik Z. (2017). Amphioxus photoreceptors - insights into the evolution of vertebrate opsins, vision and circadian rhythmicity. Int. J. Dev. Biol. 61 665–681. 10.1387/ijdb.170230zk PubMed DOI
Poche R. A., Kwan K. M., Raven M. A., Furuta Y., Reese B. E., Behringer R. R. (2007). Lim1 is essential for the correct laminar positioning of retinal horizontal cells. J. Neurosci. 27 14099–14107. 10.1523/JNEUROSCI.4046-07.2007 PubMed DOI PMC
Poss S. G., Boschung H. T. (1996). Lancelets (cephalochordata: branchiostomattdae): how many species are valid? Israel J. Zool. 42 S13–S66. 10.1080/00212210.1996.10688872 DOI
Putnam N. H., Butts T., Ferrier D. E., Furlong R. F., Hellsten U., Kawashima T., et al. (2008). The amphioxus genome and the evolution of the chordate karyotype. Nature 453 1064–1071. 10.1038/nature06967 PubMed DOI
Quina L. A., Pak W., Lanier J., Banwait P., Gratwick K., Liu Y., et al. (2005). Brn3a-expressing retinal ganglion cells project specifically to thalamocortical and collicular visual pathways. J. Neurosci. 25 11595–11604. 10.1523/JNEUROSCI.2837-05.2005 PubMed DOI PMC
Ruiz S., Anadon R. (1991). The fine structure of lamellate cells in the brain of amphioxus (Branchiostoma lanceolatum, Cephalochordata). Cell Tissue Res. 263 597–600. 10.1007/bf00327295 PubMed DOI
Stokes M. D., Holland N. D. (1995). Ciliary Hovering in Larval Lancelets (=Amphioxus). Biol. Bull. 188 231–233. 10.2307/1542300 PubMed DOI
Suzuki D. G., Murakami Y., Escriva H., Wada H. (2015). A comparative examination of neural circuit and brain patterning between the lamprey and amphioxus reveals the evolutionary origin of the vertebrate visual center. J. Comp. Neurol. 523 251–261. 10.1002/cne.23679 PubMed DOI
Swaroop A., Kim D., Forrest D. (2010). Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina. Nat. Rev. Neurosci. 11 563–576. 10.1038/nrn2880 PubMed DOI PMC
Thaler J. P., Lee S. K., Jurata L. W., Gill G. N., Pfaff S. L. (2002). LIM factor Lhx3 contributes to the specification of motor neuron and interneuron identity through cell-type-specific protein-protein interactions. Cell 110 237–249. 10.1016/s0092-8674(02)00823-1 PubMed DOI
Vopalensky P., Pergner J., Liegertova M., Benito-Gutierrez E., Arendt D., Kozmik Z. (2012). Molecular analysis of the amphioxus frontal eye unravels the evolutionary origin of the retina and pigment cells of the vertebrate eye. Proc. Natl. Acad. Sci. U.S.A. 109 15383–15388. 10.1073/pnas.1207580109 PubMed DOI PMC
Wang Y., Zhang P. J., Yasui K., Saiga H. (2002). Expression of Bblhx3, a LIM-homeobox gene, in the development of amphioxus Branchiostoma belcheri tsingtauense. Mech. Dev. 117 315–319. 10.1016/s0925-4773(02)00197-1 PubMed DOI
Williams N. A., Holland P. W. H. (1996). Old head on young shoulders. Nature 383:490 10.1038/383490a0 DOI
Yue J. X., Kozmikova I., Ono H., Nossa C. W., Kozmik Z., Putnam N. H., et al. (2016). Conserved noncoding elements in the most distant genera of cephalochordates: the goldilocks principle. Genome Biol. Evol. 8 2387–2405. 10.1093/gbe/evw158 PubMed DOI PMC
Yue J. X., Yu J. K., Putnam N. H., Holland L. Z. (2014). The transcriptome of an amphioxus, Asymmetron lucayanum, from the Bahamas: a window into chordate evolution. Genome Biol. Evol. 6 2681–2696. 10.1093/gbe/evu212 PubMed DOI PMC
Zieger E., Lacalli T. C., Pestarino M., Schubert M., Candiani S. (2017). The origin of dopaminergic systems in chordate brains: insights from amphioxus. Int. J. Dev. Biol. 61 749–761. 10.1387/ijdb.170153sc PubMed DOI
Ancestral role of Pax6 in chordate brain regionalization
Optical Clearing and Light Sheet Microscopy Imaging of Amphioxus