Ancestral role of Pax6 in chordate brain regionalization
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39119036
PubMed Central
PMC11306081
DOI
10.3389/fcell.2024.1431337
PII: 1431337
Knihovny.cz E-zdroje
- Klíčová slova
- amphioxus, brain, chordates, evolution, eye, genome editing, pax6,
- Publikační typ
- časopisecké články MeSH
The Pax6 gene is essential for eye and brain development across various animal species. Here, we investigate the function of Pax6 in the development of the anterior central nervous system (CNS) of the invertebrate chordate amphioxus using CRISPR/Cas9-induced genome editing. Specifically, we examined Pax6 mutants featuring a 6 bp deletion encompassing two invariant amino acids in the conserved paired domain, hypothesized to impair Pax6 DNA-binding capacity and gene regulatory functions. Although this mutation did not result in gross morphological changes in amphioxus larvae, it demonstrated a reduced ability to activate Pax6-responsive reporter gene, suggesting a hypomorphic effect. Expression analysis in mutant larvae revealed changes in gene expression within the anterior CNS, supporting the conserved role of Pax6 gene in brain regionalization across chordates. Additionally, our findings lend support to the hypothesis of a zona limitans intrathalamica (ZLI)-like region in amphioxus, suggesting evolutionary continuity in brain patterning mechanisms. ZLI region, found in both hemichordates and vertebrates, functions as a key signaling center and serves as a restrictive boundary between major thalamic regions.
Zobrazit více v PubMed
Albuixech-Crespo B., López-Blanch L., Burguera D., Maeso I., Sánchez-Arrones L., Moreno-Bravo J. A., et al. (2017). Molecular regionalization of the developing amphioxus neural tube challenges major partitions of the vertebrate brain. PLoS Biol. 15 (4), e2001573. 10.1371/journal.pbio.2001573 PubMed DOI PMC
Arendt D. (2003). Evolution of eyes and photoreceptor cell types. Int. J. Dev. Biol. 47 (7-8), 563–571. PubMed
Arendt D., Musser J. M., Baker C. V. H., Bergman A., Cepko C., Erwin D. H., et al. (2016). The origin and evolution of cell types. Nat. Rev. Genet. 17 (12), 744–757. 10.1038/nrg.2016.127 PubMed DOI
Bachy I., Vernier P., Retaux S. (2001). The LIM-homeodomain gene family in the developing Xenopus brain: conservation and divergences with the mouse related to the evolution of the forebrain. J. Neurosci. 21 (19), 7620–7629. 10.1523/JNEUROSCI.21-19-07620.2001 PubMed DOI PMC
Berson D. M., Dunn F. A., Takao M. (2002). Phototransduction by retinal ganglion cells that set the circadian clock. Science 295 (5557), 1070–1073. 10.1126/science.1067262 PubMed DOI
Bopp D., Burri M., Baumgartner S., Frigerio G., Noll M. (1986). Conservation of a large protein domain in the segmentation gene paired and in functionally related genes of Drosophila. Cell. 47 (6), 1033–1040. 10.1016/0092-8674(86)90818-4 PubMed DOI
Bozzo M., Pergner J., Kozmik Z., Kozmikova I. (2017). Novel polyclonal antibodies as a useful tool for expression studies in amphioxus embryos. Int. J. Dev. Biol. 61 (10-11-12), 793–800. 10.1387/ijdb.170259ik PubMed DOI
Callaerts P., Halder G., Gehring W. (1997). PAX6 in development and evolution. Annu. Rev. Neurosci. 20, 483–532. 10.1146/annurev.neuro.20.1.483 PubMed DOI
Carney R. S., Cocas L. A., Hirata T., Mansfield K., Corbin J. G. (2009). Differential regulation of telencephalic pallial-subpallial boundary patterning by Pax6 and Gsh2. Cereb. Cortex 19 (4), 745–759. 10.1093/cercor/bhn123 PubMed DOI PMC
Carriere C., Plaza S., Martin P., Quatannens B., Bailly M., Stehelin D., et al. (1993). Characterization of quail Pax-6 (Pax-QNR) proteins expressed in the neuroretina. Mol. Cell. Biol. 13 (12), 7257–7266. 10.1128/mcb.13.12.7257 PubMed DOI PMC
Carvalho J. E., Lahaye F., Schubert M. (2017). Keeping amphioxus in the laboratory: an update on available husbandry methods. Int. J. Dev. Biol. 61 (10-11-12), 773–783. 10.1387/ijdb.170192ms PubMed DOI
Cvekl A., Callaerts P. (2017). PAX6: 25th anniversary and more to learn. Exp. Eye Res. 156, 10–21. 10.1016/j.exer.2016.04.017 PubMed DOI
Czerny T., Halder G., Kloter U., Souabni A., Gehring W. J., Busslinger M. (1999). Twin of eyeless, a second Pax-6 gene of Drosophila, acts upstream of eyeless in the control of eye development. Mol. Cell. 3 (3), 297–307. 10.1016/s1097-2765(00)80457-8 PubMed DOI
Del Giacco L., Sordino P., Pistocchi A., Andreakis N., Tarallo R., Di Benedetto B., et al. (2006). Differential regulation of the zebrafish orthopedia1 gene during fate determination of diencephalic neurons. BMC Dev. Biol. 6 (1), 50. 10.1186/1471-213X-6-50 PubMed DOI PMC
Fernandes A. M., Beddows E., Filippi A., Driever W. (2013). Orthopedia transcription factor otpa and otpb paralogous genes function during dopaminergic and neuroendocrine cell specification in larval zebrafish. PLoS One 8 (9), e75002. 10.1371/journal.pone.0075002 PubMed DOI PMC
Gehring W. J., Ikeo K. (1999). Pax 6: mastering eye morphogenesis and eye evolution. Trends Genet. 15 (9), 371–377. 10.1016/s0168-9525(99)01776-x PubMed DOI
Glardon S., Holland L. Z., Gehring W. J., Holland N. D. (1998). Isolation and developmental expression of the amphioxus Pax-6 gene (AmphiPax-6): insights into eye and photoreceptor evolution. Development 125 (14), 2701–2710. 10.1242/dev.125.14.2701 PubMed DOI
Glasgow E., Karavanov A. A., Dawid I. B. (1997). Neuronal and neuroendocrine expression oflim3,a LIM class homeobox gene, is altered in mutant zebrafish with axial signaling defects. Dev. Biol. 192 (2), 405–419. 10.1006/dbio.1997.8761 PubMed DOI
Gotz M., Huttner W. B. (2005). The cell biology of neurogenesis. Nat. Rev. Mol. Cell. Biol. 6 (10), 777–788. 10.1038/nrm1739 PubMed DOI
Goulding M. D., Lumsden A., Gruss P. (1993). Signals from the notochord and floor plate regulate the region-specific expression of two Pax genes in the developing spinal cord. Development 117 (3), 1001–1016. 10.1242/dev.117.3.1001 PubMed DOI
Grindley J. C., Davidson D. R., Hill R. E. (1995). The role of Pax-6 in eye and nasal development. Development 121 (5), 1433–1442. 10.1242/dev.121.5.1433 PubMed DOI
Grindley J. C., Hargett L. K., Hill R. E., Ross A., Hogan B. L. M. (1997). Disruption of PAX6 function in mice homozygous for the Pax6Sey-1Neu mutation produces abnormalities in the early development and regionalization of the diencephalon. Mech. Dev. 64 (1), 111–126. 10.1016/S0925-4773(97)00055-5 PubMed DOI
Halluin C., Madelaine R., Naye F., Peers B., Roussigné M., Blader P. (2016). Habenular neurogenesis in zebrafish is regulated by a hedgehog, Pax6 proneural gene cascade. PLoS One 11 (7), e0158210. 10.1371/journal.pone.0158210 PubMed DOI PMC
Hattar S., Liao H. W., Takao M., Berson D. M., Yau K. W. (2002). Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295 (5557), 1065–1070. 10.1126/science.1069609 PubMed DOI PMC
Haubst N., Berger J., Radjendirane V., Graw J., Favor J., Saunders G. F., et al. (2004). Molecular dissection of Pax6 function: the specific roles of the paired domain and homeodomain in brain development. Development 131 (24), 6131–6140. 10.1242/dev.01524 PubMed DOI
Hill R. E., Favor J., Hogan B. L., Ton C. C., Saunders G. F., Hanson I. M., et al. (1991). Mouse small eye results from mutations in a paired-like homeobox-containing gene. Nature 354 (6354), 522–525. 10.1038/354522a0 PubMed DOI
Hirsch N., Harris W. A. (1997). Xenopus Pax-6 and retinal development. J. Neurobiol. 32 (1), 45–61. 10.1002/(sici)1097-4695(199701)32:1<45::aid-neu5>3.0.co;2-e PubMed DOI
Hogan B. L., Hirst E. M., Horsburgh G., Hetherington C. M. (1988). Small eye (Sey): a mouse model for the genetic analysis of craniofacial abnormalities. Development 103 (Suppl. l), 115–119. 10.1242/dev.103.Supplement.115 PubMed DOI
Hogan B. L., Horsburgh G., Cohen J., Hetherington C. M., Fisher G., Lyon M. F. (1986). Small eyes (Sey): a homozygous lethal mutation on chromosome 2 which affects the differentiation of both lens and nasal placodes in the mouse. J. Embryol. Exp. Morphol. 97, 95–110. 10.1242/dev.97.1.95 PubMed DOI
Holland L. Z. (2009). Chordate roots of the vertebrate nervous system: expanding the molecular toolkit. Nat. Rev. Neurosci. 10 (10), 736–746. 10.1038/nrn2703 PubMed DOI
Holland L. Z. (2020). “"chapter 4 - invertebrate origins of vertebrate nervous systems,” in Evolutionary neuroscience. Editor Kaas J. H. (London: Academic Press; ), 51–73.
Holland L. Z., Carvalho J. E., Escriva H., Laudet V., Schubert M., Shimeld S. M., et al. (2013). Evolution of bilaterian central nervous systems: a single origin? Evodevo 4 (1), 27. 10.1186/2041-9139-4-27 PubMed DOI PMC
Hu G., Li G., Wang H., Wang Y. (2017). Hedgehog participates in the establishment of left-right asymmetry during amphioxus development by controlling Cerberus expression. Development 144 (24), 4694–4703. 10.1242/dev.157172 PubMed DOI
Huang S. (2012). The molecular and mathematical basis of Waddington's epigenetic landscape: a framework for post-Darwinian biology? Bioessays 34 (2), 149–157. 10.1002/bies.201100031 PubMed DOI
Hwang W. Y., Fu Y., Reyon D., Maeder M. L., Tsai S. Q., Sander J. D., et al. (2013). Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat. Biotechnol. 31 (3), 227–229. 10.1038/nbt.2501 PubMed DOI PMC
Jao L. E., Wente S. R., Chen W. (2013). Efficient multiplex biallelic zebrafish genome editing using a CRISPR nuclease system. Proc. Natl. Acad. Sci. U. S. A. 110 (34), 13904–13909. 10.1073/pnas.1308335110 PubMed DOI PMC
Klimova L., Antosova B., Kuzelova A., Strnad H., Kozmik Z. (2015). Onecut1 and Onecut2 transcription factors operate downstream of Pax6 to regulate horizontal cell development. Dev. Biol. 402 (1), 48–60. 10.1016/j.ydbio.2015.02.023 PubMed DOI
Klimova L., Kozmik Z. (2014). Stage-dependent requirement of neuroretinal Pax6 for lens and retina development. Development 141 (6), 1292–1302. 10.1242/dev.098822 PubMed DOI
Kobayashi M., Toyama R., Takeda H., Dawid I. B., Kawakami K. (1998). Overexpression of the forebrain-specific homeobox gene six3 induces rostral forebrain enlargement in zebrafish. Development 125 (15), 2973–2982. 10.1242/dev.125.15.2973 PubMed DOI
Kozmik Z. (2005). Pax genes in eye development and evolution. Curr. Opin. Genet. Dev. 15 (4), 430–438. 10.1016/j.gde.2005.05.001 PubMed DOI
Kozmik Z., Daube M., Frei E., Norman B., Kos L., Dishaw L. J., et al. (2003). Role of Pax genes in eye evolution: a cnidarian PaxB gene uniting Pax2 and Pax6 functions. Dev. Cell. 5 (5), 773–785. 10.1016/s1534-5807(03)00325-3 PubMed DOI
Kozmikova I., Candiani S., Fabian P., Gurska D., Kozmik Z. (2013). Essential role of Bmp signaling and its positive feedback loop in the early cell fate evolution of chordates. Dev. Biol. 382 (2), 538–554. 10.1016/j.ydbio.2013.07.021 PubMed DOI
Kozmikova I., Kozmik Z. (2020). Wnt/β-catenin signaling is an evolutionarily conserved determinant of chordate dorsal organizer. Elife 9, e56817. 10.7554/eLife.56817 PubMed DOI PMC
Lacalli T. (2022). An evolutionary perspective on chordate brain organization and function: insights from amphioxus, and the problem of sentience. Philos. Trans. R. Soc. Lond B Biol. Sci. 377 (1844), 20200520. 10.1098/rstb.2020.0520 PubMed DOI PMC
Lacalli T. C., Holland N., West J. (1994). Landmarks in the anterior central nervous system of amphioxus larvae. Philosophical Trans. R. Soc. Lond. Ser. B Biol. Sci. 344 (1308), 165–185. 10.1098/rstb.1994.0059 DOI
Liu W., Khare S. L., Liang X., Peters M. A., Liu X., Cepko C. L., et al. (2000). All Brn3 genes can promote retinal ganglion cell differentiation in the chick. Development 127 (15), 3237–3247. 10.1242/dev.127.15.3237 PubMed DOI
Manuel M., Price D. J. (2005). Role of Pax6 in forebrain regionalization. Brain Res. Bull. 66 (4), 387–393. 10.1016/j.brainresbull.2005.02.006 PubMed DOI
Mastick G. S., Davis N. M., Andrews G. L., Easter Jr S. S. (1997). Pax-6 functions in boundary formation and axon guidance in the embryonic mouse forebrain. Development 124 (10), 1985–1997. 10.1242/dev.124.10.1985 PubMed DOI
Matsunaga E., Araki I., Nakamura H. (2000). Pax6 defines the di-mesencephalic boundary by repressing En1 and Pax2. Development 127 (11), 2357–2365. 10.1242/dev.127.11.2357 PubMed DOI
M Caballero I., Manuel M., Molinek M., Quintana-Urzainqui I., Mi D., Shimogori T., et al. (2014). Cell-autonomous repression of Shh by transcription factor Pax6 regulates diencephalic patterning by controlling the central diencephalic organizer. Cell. Rep. 8, 1405–1418. 10.1016/j.celrep.2014.07.051 PubMed DOI PMC
McLean C. Y., Reno P. L., Pollen A. A., Bassan A. I., Capellini T. D., Guenther C., et al. (2011). Human-specific loss of regulatory DNA and the evolution of human-specific traits. Nature 471 (7337), 216–219. 10.1038/nature09774 PubMed DOI PMC
Nakayama T., Fisher M., Nakajima K., Odeleye A. O., Zimmerman K. B., Fish M. B., et al. (2015). Xenopus pax6 mutants affect eye development and other organ systems, and have phenotypic similarities to human aniridia patients. Dev. Biol. 408 (2), 328–344. 10.1016/j.ydbio.2015.02.012 PubMed DOI PMC
Pan Q., Lu K., Luo J., Jiang Y., Xia B., Chen L., et al. (2023a). Japanese medaka Olpax6.1 mutant as a potential model for spondylo-ocular syndrome. Funct. Integr. Genomics 23 (2), 168. 10.1007/s10142-023-01090-4 PubMed DOI
Pan Q., Luo J., Jiang Y., Wang Z., Lu K., Chen T. (2023b). Medaka (Oryzias latipes) Olpax6.2 acquires maternal inheritance and germ cells expression, but functionally degenerate in the eye. Gene 872, 147439. 10.1016/j.gene.2023.147439 PubMed DOI
Pani A. M., Mullarkey E. E., Aronowicz J., Assimacopoulos S., Grove E. A., Lowe C. J. (2012). Ancient deuterostome origins of vertebrate brain signalling centres. Nature 483 (7389), 289–294. 10.1038/nature10838 PubMed DOI PMC
Pergner J., Kozmik Z. (2017). Amphioxus photoreceptors - insights into the evolution of vertebrate opsins, vision and circadian rhythmicity. Int. J. Dev. Biol. 61 (10-11-12), 665–681. 10.1387/ijdb.170230zk PubMed DOI
Pergner J., Vavrova A., Kozmikova I., Kozmik Z. (2020). Molecular fingerprint of amphioxus frontal eye illuminates the evolution of homologous cell types in the chordate retina. Front. Cell. Dev. Biol. 8, 705. 10.3389/fcell.2020.00705 PubMed DOI PMC
Pratt T., Vitalis T., Warren N., Edgar J. M., Mason J. O., Price D. J. (2000). A role for Pax6 in the normal development of dorsal thalamus and its cortical connections. Development 127 (23), 5167–5178. 10.1242/dev.127.23.5167 PubMed DOI
Quiring R., Walldorf U., Kloter U., Gehring W. J. (1994). Homology of the eyeless gene of Drosophila to the Small eye gene in mice and Aniridia in humans. Science 265 (5173), 785–789. 10.1126/science.7914031 PubMed DOI
Schmahl W., Knoedlseder M., Favor J., Davidson D. (1993). Defects of neuronal migration and the pathogenesis of cortical malformations are associated with Small eye (Sey) in the mouse, a point mutation at the Pax-6-locus. Acta Neuropathol. 86 (2), 126–135. 10.1007/bf00334879 PubMed DOI
Scholpp S., Foucher I., Staudt N., Peukert D., Lumsden A., Houart C. (2007). Otx1l, Otx2 and Irx1b establish and position the ZLI in the diencephalon. Development 134 (17), 3167–3176. 10.1242/dev.001461 PubMed DOI PMC
Schubert M., Holland L. Z., Panopoulou G. D., Lehrach H., Holland N. D. (2000). Characterization of amphioxus AmphiWnt8: insights into the evolution of patterning of the embryonic dorsoventral axis. Evol. Dev. 2 (2), 85–92. 10.1046/j.1525-142x.2000.00047.x PubMed DOI
Schwaninger M., Blume R., Oetjen E., Lux G., Knepel W. (1993). Inhibition of cAMP-responsive element-mediated gene transcription by cyclosporin A and FK506 after membrane depolarization. J. Biol. Chem. 268 (31), 23111–23115. 10.1016/s0021-9258(19)49433-7 PubMed DOI
Simpson T. I., Price D. J. (2002). Pax6; a pleiotropic player in development. Bioessays 24 (11), 1041–1051. 10.1002/bies.10174 PubMed DOI
Somorjai I. M. L., Marti-Solans J., Diaz-Gracia M., Nishida H., Imai K. S., Escriva H., et al. (2018). Wnt evolution and function shuffling in liberal and conservative chordate genomes. Genome Biol. 19 (1), 98. 10.1186/s13059-018-1468-3 PubMed DOI PMC
Spradling A. C., Stern D., Beaton A., Rhem E. J., Laverty T., Mozden N., et al. (1999). The Berkeley Drosophila Genome Project gene disruption project: single P-element insertions mutating 25% of vital Drosophila genes. Genetics 153 (1), 135–177. 10.1093/genetics/153.1.135 PubMed DOI PMC
St Johnston D. (2002). The art and design of genetic screens: Drosophila melanogaster . Nat. Rev. Genet. 3 (3), 176–188. 10.1038/nrg751 PubMed DOI
Stoykova A., Gotz M., Gruss P., Price J. (1997). Pax6-dependent regulation of adhesive patterning, R-cadherin expression and boundary formation in developing forebrain. Development 124 (19), 3765–3777. 10.1242/dev.124.19.3765 PubMed DOI
Su L., Shi C., Huang X., Wang Y., Li G. (2020). Application of CRISPR/Cas9 nuclease in amphioxus genome editing. Genes. (Basel) 11 (11), 1311. 10.3390/genes11111311 PubMed DOI PMC
Swanhart L., Takahashi N., Jackson R., Gibson G., Watkins S., Dawid I., et al. (2010). Characterization of an lhx1a transgenic reporter in zebrafish. Int. J. Dev. Biol. 54 (4), 731–736. 10.1387/ijdb.092969ls PubMed DOI PMC
Tautz D. (1998). Evolutionary biology. Debatable homologies. Nature 395 (6697), 17, 19–19. 10.1038/25604 PubMed DOI
Tosches M. A., Arendt D. (2013). The bilaterian forebrain: an evolutionary chimaera. Curr. Opin. Neurobiol. 23 (6), 1080–1089. 10.1016/j.conb.2013.09.005 PubMed DOI
van Heyningen V., Williamson K. A. (2002). PAX6 in sensory development. Hum. Mol. Genet. 11 (10), 1161–1167. 10.1093/hmg/11.10.1161 PubMed DOI
von Salvini-Plawen L., Mayr E. (1977). On the evolution of photorecptors and eyes. USA: Plenum Press.
Vopalensky P., Pergner J., Liegertova M., Benito-Gutierrez E., Arendt D., Kozmik Z. (2012). Molecular analysis of the amphioxus frontal eye unravels the evolutionary origin of the retina and pigment cells of the vertebrate eye. Proc. Natl. Acad. Sci. U. S. A. 109 (38), 15383–15388. 10.1073/pnas.1207580109 PubMed DOI PMC
Wagner G. P., Zhang J. (2011). The pleiotropic structure of the genotype-phenotype map: the evolvability of complex organisms. Nat. Rev. Genet. 12 (3), 204–213. 10.1038/nrg2949 PubMed DOI
Walther C., Gruss P. (1991). Pax-6, a murine paired box gene, is expressed in the developing CNS. Development 113 (4), 1435–1449. 10.1242/dev.113.4.1435 PubMed DOI
Wang W., Lufkin T. (2000). The murine Otp homeobox gene plays an essential role in the specification of neuronal cell lineages in the developing hypothalamus. Dev. Biol. 227 (2), 432–449. 10.1006/dbio.2000.9902 PubMed DOI
Warren N., Price D. J. (1997). Roles of Pax-6 in murine diencephalic development. Development 124 (8), 1573–1582. 10.1242/dev.124.8.1573 PubMed DOI
Wilkie A. O. (1994). The molecular basis of genetic dominance. J. Med. Genet. 31 (2), 89–98. 10.1136/jmg.31.2.89 PubMed DOI PMC
Wray G. A., Abouheif E. (1998). When is homology not homology? Curr. Opin. Genet. Dev. 8 (6), 675–680. 10.1016/s0959-437x(98)80036-1 PubMed DOI
Xu H. E., Rould M. A., Xu W., Epstein J. A., Maas R. L., Pabo C. O. (1999). Crystal structure of the human Pax6 paired domain-DNA complex reveals specific roles for the linker region and carboxy-terminal subdomain in DNA binding. Genes. Dev. 13 (10), 1263–1275. 10.1101/gad.13.10.1263 PubMed DOI PMC
Yong L. W., Kozmikova I., Yu J. K. (2019). Using amphioxus as a basal chordate model to study BMP signaling pathway. Methods Mol. Biol. 1891, 91–114. 10.1007/978-1-4939-8904-1_8 PubMed DOI