Optical Clearing and Light Sheet Microscopy Imaging of Amphioxus
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34381783
PubMed Central
PMC8350520
DOI
10.3389/fcell.2021.702986
Knihovny.cz E-zdroje
- Klíčová slova
- acetylated tubulin, amphioxus, clearing technique, light sheet microscopy, melanopsin, photoreceptor, whole mount immunohistochemistry,
- Publikační typ
- časopisecké články MeSH
Cephalochordates (amphioxi or lancelets) are representatives of the most basally divergent group of the chordate phylum. Studies of amphioxus development and anatomy hence provide a key insight into vertebrate evolution. More widespread use of amphioxus in the evo-devo field would be greatly facilitated by expanding the methodological toolbox available in this model system. For example, evo-devo research on amphioxus requires deep understanding of animal anatomy. Although conventional confocal microscopy can visualize transparent amphioxus embryos and early larvae, the imaging of later developmental stages is problematic because of the size and opaqueness of the animal. Here, we show that light sheet microscopy combined with tissue clearing methods enables exploration of large amphioxus specimens while keeping the surface and the internal structures intact. We took advantage of the phenomenon of autofluorescence of amphioxus larva to highlight anatomical details. In order to investigate molecular markers at the single-cell level, we performed antibody-based immunodetection of melanopsin and acetylated-α-tubulin to label rhabdomeric photoreceptors and the neuronal scaffold. Our approach that combines light sheet microscopy with the clearing protocol, autofluorescence properties of amphioxus, and antibody immunodetection allows visualizing anatomical structures and even individual cells in the 3D space of the entire animal body.
Zobrazit více v PubMed
Amat F., Höckendorf B., Wan Y., Lemon W. C., McDole K., Keller P. J. (2015). Efficient processing and analysis of large-scale light-sheet microscopy data. Nat. Protoc. 10 1679–1696. 10.1038/nprot.2015.111 PubMed DOI
Bishop J. J., Vandergon T. L., Green D. B., Doeller J. E., Kraus D. W. (1998). A High-Affinity Hemoglobin Is Expressed in the Notochord of Amphioxus, Branchiostoma californiense. Biol. Bull. 195 255–259. 10.2307/1543136 PubMed DOI
Bomati E. K., Manning G., Deheyn D. D. (2009). Amphioxus encodes the largest known family of green fluorescent proteins, which have diversified into distinct functional classes. BMC Evol. Biol. 9:77. 10.1186/1471-2148-9-77 PubMed DOI PMC
Bozzo M., Pergner J., Kozmik Z., Kozmikova I. (2017). Novel polyclonal antibodies as a useful tool for expression studies in amphioxus embryos. Int. J. Dev. Biol. 61 793–800. 10.1387/ijdb.170259ik PubMed DOI
Castro A., Becerra M., Manso M. J., Anadón R. (2015). Neuronal organization of the brain in the adult amphioxus (Branchiostoma lanceolatum): a study with acetylated tubulin immunohistochemistry. J. Comp. Neurol. 523 2211–2232. 10.1002/cne.23785 PubMed DOI
Conklin E. G. (1932). The embryology of amphioxus. J. Morphol. 54 69–151. 10.1002/jmor.1050540103 DOI
Deheyn D. D., Kubokawa K., Mccarthy J. K., Murakami A., Porrachia M., Rouse G. W., et al. (2007). Endogenous green fluorescent protein (GFP) in amphioxus. Biol. Bull. 213 95–100. 10.2307/25066625 PubMed DOI
Delsuc F., Brinkmann H., Chourrout D., Philippe H. (2006). Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439 965–968. 10.1038/nature04336 PubMed DOI
Ekhart D., Korf H. W., Wicht H. (2003). Cytoarchitecture, topography, and descending supraspinal projections in the anterior central nervous system of Branchiostoma lanceolatum. J. Comp. Neurol. 466 319–330. 10.1002/cne.10803 PubMed DOI
Fu Q., Martin B. L., Matus D. Q., Gao L. (2016). Imaging multicellular specimens with real-time optimized tiling light-sheet selective plane illumination microscopy. Nat. Commun. 7:11088. 10.1038/ncomms11088 PubMed DOI PMC
Hatschek B. (1881). Studien über Entwicklung des Amphioxus. Ann Arbor: University of Michigan Library.
Huisken J., Stainier D. Y. R. (2009). Selective plane illumination microscopy techniques in developmental biology. Development 136 1963–1975. 10.1242/dev.022426 PubMed DOI PMC
Kaji T., Aizawa S., Uemura M., Yasui K. (2001). Establishment of left-right asymmetric innervation in the lancelet oral region. J. Comp. Neurol. 435 394–405. 10.1002/cne.1039 PubMed DOI
Kaji T., Reimer J. D., Morov A. R., Kuratani S., Yasui K. (2016). Amphioxus mouth after dorso-ventral inversion. Zool. Lett. 2:2. 10.1186/s40851-016-0038-3 PubMed DOI PMC
Kaji T., Shimizu K., Artinger K. B., Yasui K. (2009). Dynamic modification of oral innervation during metamorphosis in branchiostoma belcheri, the oriental lancelet. Biol. Bull. 217 151–160. 10.1086/BBLv217n2p151 PubMed DOI
Keller P. J., Stelzer E. H. (2008). Quantitative in vivo imaging of entire embryos with Digital Scanned Laser Light Sheet Fluorescence Microscopy. Curr. Opin. Neurobiol. 18 624–632. 10.1016/j.conb.2009.03.008 PubMed DOI
Koyanagi M., Kubokawa K., Tsukamoto H., Shichida Y., Terakita A. (2005). Cephalochordate melanopsin: evolutionary linkage between invertebrate visual cells and vertebrate photosensitive retinal ganglion cells. Curr. Biol. 15 1065–1069. 10.1016/j.cub.2005.04.063 PubMed DOI
Kromm D., Thumberger T., Wittbrodt J. (2016). An Eye On Light-Sheet Microscopy. Netherlands: Elsevier Ltd, 10.1016/bs.mcb.2016.01.001 PubMed DOI
Lacalli T. C. (2000). Cell morphology in amphioxus nerve cord may reflect the time course of cell differentiation. Int. J. Dev. Biol. 44 903–906. PubMed
Lacalli T. C. (2003). Ventral neurons in the anterior nerve cord of amphioxus larvae. II. Further data on the pacemaker circuit. J. Morphol. 257 212–218. 10.1002/jmor.10133 PubMed DOI
Lacalli T. C., Gilmour T. H. J., Kelly S. J. (1999). The oral nerve plexus in amphioxus larvae: function, cell types and phylogenetic significance. Proc. R. Soc. B Biol. Sci. 266 1461–1470. 10.1098/rspb.1999.0801 DOI
Lacalli T. C., Holland N. D., West J. E. (1994). Landmarks in the anterior central nervous system of amphioxus larvae. Philos. Trans. R. Soc. B Biol. Sci. 344 165–185. 10.1098/rstb.1994.0059 DOI
Masson A., Escande P., Frongia C., Clouvel G., Ducommun B., Lorenzo C. (2015). High-resolution in-depth imaging of optically cleared thick samples using an adaptive SPIM. Sci. Rep. 5:16898. 10.1038/srep16898 PubMed DOI PMC
Nie J., Liu S., Yu T., Li Y., Ping J., Wan P., et al. (2020). Fast, 3D Isotropic Imaging of Whole Mouse Brain Using Multiangle-Resolved Subvoxel SPIM. Adv. Sci. 7:1901891. 10.1002/advs.201901891 PubMed DOI PMC
Pergner J., Kozmik Z. (2017). Amphioxus photoreceptors - Insights into the evolution of vertebrate opsins, vision and circadian rhythmicity. Int. J. Dev. Biol. 61 665–681. 10.1387/ijdb.170230zk PubMed DOI
Pergner J., Vavrova A., Kozmikova I., Kozmik Z. (2020). Molecular Fingerprint of Amphioxus Frontal Eye Illuminates the Evolution of Homologous Cell Types in the Chordate Retina. Front. Cell Dev. Biol. 8:705. 10.3389/fcell.2020.00705 PubMed DOI PMC
Plus R. (1992). A review of in vivo studies of porphyrins and unexpected fluorescences. An interpretation of the results. Med. Hypotheses 37 49–57. 10.1016/0306-9877(92)90014-4 PubMed DOI
Ruiz M. S., Anadon R. (1991). Some considerations on the fine structure of rhabdomeric photoreceptors in the amphioxus, Branchiostoma lanceolatum (cephalochordata). J. Hirnforsch. 32 159–164. PubMed
Stokes M. D., Holland N. D. (1995). Embryos and Larvae of a Lancelet, Branchiostoma floridae, from Hatching through Metamorphosis: growth in the Laboratory and External Morphology. Acta Zool. 76 105–120. 10.1111/j.1463-6395.1995.tb00986.x DOI
Susaki E. A., Tainaka K., Perrin D., Yukinaga H., Kuno A., Ueda H. R. (2015). Advanced CUBIC protocols for whole-brain and whole-body clearing and imaging. Nat. Protoc. 10 1709–1727. 10.1038/nprot.2015.085 PubMed DOI
Vopalensky P., Pergner J., Liegertova M., Benito-Gutierrez E., Arendt D., Kozmik Z. (2012). Molecular analysis of the amphioxus frontal eye unravels the evolutionary origin of the retina and pigment cells of the vertebrate eye. Proc. Natl. Acad. Sci. U. S. A. 109 15383–15388. 10.1073/pnas.1207580109 PubMed DOI PMC
Wicht H., Lacalli T. C. (2005). The nervous system of amphioxus: structure, development, and evolutionary significance. Can. J. Zool. 83 122–150. 10.1139/z04-163 PubMed DOI
Willey A. (1891). The later larval development of amphioxus. J. Cell Sci. 32 183–234. 10.1038/044202a0 DOI
Willey A. (1894). Amphioxus And The Ancestry Of The Vertebrates. New York and London: Macmillan and Co, 10.1038/051433a0 DOI
Yasui K., Kaji T. (2008). The lancelet and ammocoete mouths. Zoolog. Sci. 25 1012–1019. 10.2108/zsj.25.1012 PubMed DOI
Yasui K., Kaji T., Morov A. R., Yonemura S. (2014). Development of oral and branchial muscles in lancelet larvae of Branchiostoma japonicum. J. Morphol. 275 465–477. 10.1002/jmor.20228 PubMed DOI
Yue J. X., Holland N. D., Holland L. Z., Deheyn D. D. (2016). The evolution of genes encoding for green fluorescent proteins: insights from cephalochordates (amphioxus). Sci. Rep. 6:28350. 10.1038/srep28350 PubMed DOI PMC