Natural Products to Counteract the Epidemic of Cardiovascular and Metabolic Disorders
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
P 25971
Austrian Science Fund FWF - Austria
PubMed
27338339
PubMed Central
PMC4928700
DOI
10.3390/molecules21060807
Knihovny.cz E-zdroje
- Klíčová slova
- biguanides, cardiovascular disease, coffee, diabetes mellitus, dietary constituents, metabolic disorders, molecular targets, natural products, statins,
- MeSH
- biguanidy terapeutické užití MeSH
- biologické přípravky terapeutické užití MeSH
- kardiovaskulární nemoci farmakoterapie MeSH
- léčivé rostliny * MeSH
- lidé MeSH
- metabolické nemoci farmakoterapie MeSH
- objevování léků MeSH
- statiny terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- biguanidy MeSH
- biologické přípravky MeSH
- statiny MeSH
Natural products have always been exploited to promote health and served as a valuable source for the discovery of new drugs. In this review, the great potential of natural compounds and medicinal plants for the treatment or prevention of cardiovascular and metabolic disorders, global health problems with rising prevalence, is addressed. Special emphasis is laid on natural products for which efficacy and safety have already been proven and which are in clinical trials, as well as on plants used in traditional medicine. Potential benefits from certain dietary habits and dietary constituents, as well as common molecular targets of natural products, are also briefly discussed. A glimpse at the history of statins and biguanides, two prominent representatives of natural products (or their derivatives) in the fight against metabolic disease, is also included. The present review aims to serve as an "opening" of this special issue of Molecules, presenting key historical developments, recent advances, and future perspectives outlining the potential of natural products for prevention or therapy of cardiovascular and metabolic disease.
Zobrazit více v PubMed
Atanasov A.G., Waltenberger B., Pferschy-Wenzig E.M., Linder T., Wawrosch C., Uhrin P., Temml V., Wang L., Schwaiger S., Heiss E.H., et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015;33:1582–1614. doi: 10.1016/j.biotechadv.2015.08.001. PubMed DOI PMC
David B., Wolfender J.-L., Dias D.A. The pharmaceutical industry and natural products: Historical status and new trends. Phytochem. Rev. 2015;14:299–315. doi: 10.1007/s11101-014-9367-z. DOI
Amirkia V., Heinrich M. Natural products and drug discovery: A survey of stakeholders in industry and academia. Front. Pharmacol. 2015;6 doi: 10.3389/fphar.2015.00237. PubMed DOI PMC
Efferth T., Zacchino S., Georgiev M.I., Liu L., Wagner H., Panossian A. Nobel Prize for artemisinin brings phytotherapy into the spotlight. Phytomedicine. 2015;22:A1–A3. doi: 10.1016/j.phymed.2015.10.003. PubMed DOI
Hertweck C. Natural products as source of therapeutics against parasitic diseases. Angew. Chem. Int. Ed. Engl. 2015;54:14622–14624. doi: 10.1002/anie.201509828. PubMed DOI
Cardoso S.M., Pereira O.R., Seca A.M., Pinto D.C., Silva A.M. Seaweeds as preventive agents for cardiovascular diseases: From nutrients to functional foods. Mar. Drugs. 2015;13:6838–6865. doi: 10.3390/md13116838. PubMed DOI PMC
Cornish M.L., Critchley A.T., Mouritsen O.G. A role for dietary macroalgae in the amelioration of certain risk factors associated with cardiovascular disease. Phycologia. 2015;54:649–666. doi: 10.2216/15-77.1. DOI
Tierney M.S., Croft A.K., Hayes M. A review of antihypertensive and antioxidant activities in macroalgae. Bot. Mar. 2010;53:387–408. doi: 10.1515/bot.2010.044. DOI
Wijesekara I., Kim S.K. Angiotensin-I-converting enzyme (ACE) inhibitors from marine resources: Prospects in the pharmaceutical industry. Mar. Drugs. 2010;8:1080–1093. doi: 10.3390/md8041080. PubMed DOI PMC
Sperling L.S., Mechanick J.I., Neeland I.J., Herrick C.J., Després J.-P., Ndumele C.E., Vijayaraghavan K., Handelsman Y., Puckrein G.A., Araneta M.R.G., et al. The CardioMetabolic Health Alliance: Working toward a new care model for the metabolic syndrome. J. Am. Coll. Cardiol. 2015;66:1050–1067. doi: 10.1016/j.jacc.2015.06.1328. PubMed DOI
Huang T.H.-W., Teoh A.W., Lin B.-L., Lin D.S.-H., Roufogalis B. The role of herbal PPAR modulators in the treatment of cardiometabolic syndrome. Pharmacol. Res. 2009;60:195–206. doi: 10.1016/j.phrs.2009.03.020. PubMed DOI
Lusis A.J. Atherosclerosis. Nature. 2000;407:233–241. doi: 10.1038/35025203. PubMed DOI PMC
World Health Organization (WHO) Global Status Report on Noncommunicable Diseases 2014. WHO; Geneva, Switzerland: 2014.
World Health Organization (WHO) Global Report on Diabetes 2016. WHO; Geneva, Switzerland: 2016.
Shaw J.E., Sicree R.A., Zimmet P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 2010;87:4–14. doi: 10.1016/j.diabres.2009.10.007. PubMed DOI
Xiao J. Natural polyphenols and diabetes: Understanding their mechanism of action. Curr. Med. Chem. 2015;22:2–3. doi: 10.2174/0929867321666141012173816. PubMed DOI
Cefalu W.T., Ye J., Wang Z.Q. Efficacy of dietary supplementation with botanicals on carbohydrate metabolism in humans. Endocr. Metab. Immune Disord. Drug Targets. 2008;8:78–81. doi: 10.2174/187153008784534376. PubMed DOI
Dong H., Lu F.-E., Zhao L. Chinese herbal medicine in the treatment of nonalcoholic fatty liver disease. Chin. J. Integr. Med. 2012;18:152–160. doi: 10.1007/s11655-012-0993-2. PubMed DOI
Heber D. Herbs and atherosclerosis. Curr. Atheroscler. Rep. 2001;3:93–96. doi: 10.1007/s11883-001-0016-9. PubMed DOI
World Health Organization (WHO) Traditional Medicine Strategy 2014–2023. WHO; Geneva, Switzerland: 2013.
Mashour N.H., Lin G.I., Frishman W.H. Herbal medicine for the treatment of cardiovascular disease: Clinical considerations. Arch. Intern. Med. 1998;158:2225–2234. doi: 10.1001/archinte.158.20.2225. PubMed DOI
Pittler M.H., Ernst E. Horse chestnut seed extract for chronic venous insufficiency. Cochrane Database Syst. Rev. 2012;11:CD003230. doi: 10.1002/14651858.CD003230.pub4. PubMed DOI
Suter A., Bommer S., Rechner J. Treatment of patients with venous insufficiency with fresh plant horse chestnut seed extract: A review of 5 clinical studies. Adv. Ther. 2006;23:179–190. doi: 10.1007/BF02850359. PubMed DOI
Siebert U., Brach M., Sroczynski G., Berla K. Efficacy, routine effectiveness, and safety of horsechestnut seed extract in the treatment of chronic venous insufficiency. A meta-analysis of randomized controlled trials and large observational studies. Int. Angiol. 2002;21:305–315. PubMed
Rahman K., Lowe G.M. Garlic and cardiovascular disease: A critical review. J. Nutr. 2006;136:736S–740S. PubMed
Sobenin I.A., Nedosugova L.V., Filatova L.V., Balabolkin M.I., Gorchakova T.V., Orekhov A.N. Metabolic effects of time-released garlic powder tablets in type 2 diabetes mellitus: The results of double-blinded placebo-controlled study. Acta Diabetol. 2008;45:1–6. doi: 10.1007/s00592-007-0011-x. PubMed DOI
Al Disi S.S., Anwar M.A., Eid A.H. Anti-hypertensive herbs and their mechanism of action: Part I. Front. Pharmacol. 2016;6 doi: 10.3389/fphar.2015.00323. PubMed DOI PMC
Kwak J.S., Kim J.Y., Paek J.E., Lee Y.J., Kim H.R., Park D.S., Kwon O. Garlic powder intake and cardiovascular risk factors: A meta-analysis of randomized controlled clinical trials. Nutr. Res. Pract. 2014;8:644–654. doi: 10.4162/nrp.2014.8.6.644. PubMed DOI PMC
Stabler S.N., Tejani A.M., Huynh F., Fowkes C. Garlic for the prevention of cardiovascular morbidity and mortality in hypertensive patients. Cochrane Database Syst. Rev. 2012;8:CD007653. PubMed PMC
Zeng T., Guo F.F., Zhang C.L., Song F.Y., Zhao X.L., Xie K.Q. A meta-analysis of randomized, double-blind, placebo-controlled trials for the effects of garlic on serum lipid profiles. J. Sci. Food Agric. 2012;92:1892–1902. doi: 10.1002/jsfa.5557. PubMed DOI
Okyar A., Can A., Akev N., Baktir G., Sütlüpinar N. Effect of Aloe vera leaves on blood glucose level in type I and type II diabetic rat models. Phytother. Res. 2001;15:157–161. doi: 10.1002/ptr.719. PubMed DOI
Rajasekaran S., Ravi K., Sivagnanam K., Subramanian S. Beneficial effects of Aloe vera leaf gel extract on lipid profile status in rats with streptozotocin diabetes. Clin. Exp. Pharmacol. Physiol. 2006;33:232–237. doi: 10.1111/j.1440-1681.2006.04351.x. PubMed DOI
Alinejad-Mofrad S., Foadoddini M., Saadatjoo S.A., Shayesteh M. Improvement of glucose and lipid profile status with Aloe vera in pre-diabetic subjects: A randomized controlled-trial. J. Diabetes Metab. Disord. 2015;14 doi: 10.1186/s40200-015-0137-2. PubMed DOI PMC
Dick W.R., Fletcher E.A., Shah S.A. Reduction of fasting blood glucose and hemoglobin A1c using oral Aloe vera: A meta-analysis. J. Altern. Complement. Med. 2016 doi: 10.1089/acm.2015.0122. PubMed DOI
Devaraj S., Yimam M., Brownell L.A., Jialal I., Singh S., Jia Q. Effects of Aloe vera supplementation in subjects with prediabetes/metabolic syndrome. Metab. Syndr. Relat. Disord. 2013;11:35–40. doi: 10.1089/met.2012.0066. PubMed DOI
Hashim S., Jan A., Marwat K.B., Khan M.A. Phytochemistry and medicinal properties of Ammi visnaga (Apiacae) Pak. J. Bot. 2014;46:861–867.
Durate J., Vallejo I., Perez-Vizcaino F., Jimenez R., Zarzuelo A., Tamargo J. Effects of visnadine on rat isolated vascular smooth muscles. Planta Med. 1997;63:233–236. doi: 10.1055/s-2006-957660. PubMed DOI
Duarte J., Perez-Vizcaino F., Torres A.I., Zarzuelo A., Jimenez J., Tamargo J. Vasodilator effects of visnagin in isolated rat vascular smooth muscle. Eur. J. Pharmacol. 1995;286:115–122. doi: 10.1016/0014-2999(95)00418-K. PubMed DOI
Hao P.-P., Jiang F., Chen Y.-G., Yang J., Zhang K., Zhang M.-X., Zhang C., Zhao Y.-X., Zhang Y. Traditional Chinese medication for cardiovascular disease. Nat. Rev. Cardiol. 2015;12:115–122. doi: 10.1038/nrcardio.2014.177. PubMed DOI
Kim D.-W., Yokozawa T., Hattori M., Kadota S., Namba T. Effects of aqueous extracts of Apocynum venetum leaves on spontaneously hypertensive, renal hypertensive and NaCl-fed-hypertensive rats. J. Ethnopharmacol. 2000;72:53–59. doi: 10.1016/S0378-8741(00)00197-5. PubMed DOI
Xie W., Zhang X., Wang T., Hu J. Botany, traditional uses, phytochemistry and pharmacology of Apocynum venetum L. (Luobuma): A review. J. Ethnopharmacol. 2012;141:1–8. doi: 10.1016/j.jep.2012.02.003. PubMed DOI
Wang W., Liang X., Fu D., Tie R., Xing W., Ji L., Liu F., Zhang H., Li R. Apocynum venetum leaf attenuates myocardial ischemia/reperfusion injury by inhibiting oxidative stress. Am. J. Chin. Med. 2015;43:71–85. doi: 10.1142/S0192415X15500056. PubMed DOI
Aggarwal S., Shailendra G., Ribnicky D.M., Burk D., Karki N., Qingxia Wang M.S. An extract of Artemisia dracunculus L. stimulates insulin secretion from β cells, activates AMPK and suppresses inflammation. J. Ethnopharmacol. 2015;170:98–105. doi: 10.1016/j.jep.2015.05.003. PubMed DOI PMC
Watcho P., Stavniichuk R., Tane P., Shevalye H., Maksimchyk Y., Pacher P., Obrosova I.G. Evaluation of PMI-5011, an ethanolic extract of Artemisia dracunculus L., on peripheral neuropathy in streptozotocin-diabetic mice. Int. J. Mol. Med. 2011;27:299–307. PubMed PMC
Watcho P., Stavniichuk R., Ribnicky D.M., Raskin I., Obrosova I.G. High-fat diet-induced neuropathy of prediabetes and obesity: Effect of PMI-5011, an ethanolic extract of Artemisia dracunculus L. Mediat. Inflamm. 2010;2010 doi: 10.1155/2010/268547. PubMed DOI PMC
Hamza N., Berke B., Cheze C., Marais S., Lorrain S., Abdouelfath A., Lassalle R., Carles D., Gin H., Moore N. Effect of Centaurium erythraea Rafn, Artemisia herba-alba Asso and Trigonella foenum-graecum L. on liver fat accumulation in C57BL/6J mice with high-fat diet-induced type 2 diabetes. J. Ethnopharmacol. 2015;171:4–11. doi: 10.1016/j.jep.2015.05.027. PubMed DOI
Boudjelal A., Siracusa L., Henchiri C., Sarri M., Abderrahim B., Baali F., Ruberto G. Antidiabetic effects of aqueous infusions of Artemisia herba-alba and Ajuga iva in alloxan-induced diabetic rats. Planta Med. 2015;81:696–704. doi: 10.1055/s-0035-1546006. PubMed DOI
Hamza N., Berke B., Cheze C., Le Garrec R., Lassalle R., Agli A.N., Robinson P., Gin H., Moore N. Treatment of high fat diet induced type 2 diabetes in C57BL/6J mice by two medicinal plants used in traditional treatment of diabetes in the east of Algeria. J. Ethnopharmacol. 2011;133:931–933. doi: 10.1016/j.jep.2010.11.019. PubMed DOI
Al-Shamaony L., al-Khazraji S.M., Twaij H.A. Hypoglycaemic effect of Artemisia herba alba. II. Effect of a valuable extract on some blood parameters in diabetic animals. J. Ethnopharmacol. 1994;43:167–171. doi: 10.1016/0378-8741(94)90038-8. PubMed DOI
Hamza N., Berke B., Cheze C., Agli A.N., Robinson P., Gin H., Moore N. Prevention of type 2 diabetes induced by high fat diet in the C57BL/6J mouse by two medicinal plants used in traditional treatment of diabetes in the east of Algeria. J. Ethnopharmacol. 2010;128:513–518. doi: 10.1016/j.jep.2010.01.004. PubMed DOI
Kawano A., Nakamura H., Hata S.-I., Minakawa M., Miura Y., Yagasaki K. Hypoglycemic effect of aspalathin, a rooibos tea component from Aspalathus linearis, in type 2 diabetic model db/db mice. Phytomedicine. 2009;16:437–443. doi: 10.1016/j.phymed.2008.11.009. PubMed DOI
Son M.J., Minakawa M., Miura Y., Yagasaki K. Aspalathin improves hyperglycemia and glucose intolerance in obese diabetic ob/ob mice. Eur. J. Nutr. 2013;52:1607–1619. doi: 10.1007/s00394-012-0466-6. PubMed DOI
Mazibuko S.E., Joubert E., Johnson R., Louw J., Opoku A.R., Muller C.J. Aspalathin improves glucose and lipid metabolism in 3T3-L1 adipocytes exposed to palmitate. Mol. Nutr. Food Res. 2015;59:2199–2208. doi: 10.1002/mnfr.201500258. PubMed DOI
Ku S.K., Kwak S., Kim Y., Bae J.S. Aspalathin and nothofagin from rooibos (Aspalathus linearis) inhibits high glucose-induced inflammation in vitro and in vivo. Inflammation. 2015;38:445–455. doi: 10.1007/s10753-014-0049-1. PubMed DOI
Chen W., Lai Y., Wang L., Xia Y., Chen W., Zhao X., Yu M., Li Y., Zhang Y., Ye H. Astragalus polysaccharides repress myocardial lipotoxicity in a PPARalpha-dependent manner in vitro and in vivo in mice. J. Diabetes Complicat. 2015;29:164–175. doi: 10.1016/j.jdiacomp.2014.11.007. PubMed DOI
Kim J., Moon E., Kwon S. Effect of Astragalus membranaceus extract on diabetic nephropathy. Endocrinol. Diabetes Metab. Case Rep. 2014;2014 doi: 10.1530/EDM-14-0063. PubMed DOI PMC
Qin H., Liu P., Lin S. Effects of astragaloside IV on the SDF-1/CXCR4 expression in atherosclerosis of apoE−/− mice induced by hyperlipaemia. Evid. Based Complement. Altern. Med. 2015;2015 doi: 10.1155/2015/385154. PubMed DOI PMC
Zhao P., Wang Y., Zeng S., Lu J., Jiang T.-M., Li Y.-M. Protective effect of astragaloside IV on lipopolysaccharide-induced cardiac dysfunction via downregulation of inflammatory signaling in mice. Immunopharmacol. Immunotoxicol. 2015;37:428–433. doi: 10.3109/08923973.2015.1080266. PubMed DOI
Lu Y., Li S., Wu H., Bian Z., Xu J., Gu C., Chen X., Yang D. Beneficial effects of astragaloside IV against angiotensin II-induced mitochondrial dysfunction in rat vascular smooth muscle cells. Int. J. Mol. Med. 2015;36:1223–1232. doi: 10.3892/ijmm.2015.2345. PubMed DOI PMC
Bai Y., Lu P., Han C., Yu C., Chen M., He F., Yi D., Wu L. Hydroxysafflor yellow A (HSYA) from flowers of Carthamus tinctorius L. and its vasodilatation effects on pulmonary artery. Molecules. 2012;17:14918–14927. doi: 10.3390/molecules171214918. PubMed DOI PMC
Nie P.H., Zhang L., Zhang W.H., Rong W.F., Zhi J.M. The effects of hydroxysafflor yellow A on blood pressure and cardiac function. J. Ethnopharmacol. 2012;139:746–750. doi: 10.1016/j.jep.2011.11.054. PubMed DOI
Chen J., Deng J., Zhang Y., Yang J., He Y., Fu W., Xing P., Wan H.T. Lipid-lowering effects of Danhong injection on hyperlipidemia rats. J. Ethnopharmacol. 2014;154:437–442. doi: 10.1016/j.jep.2014.04.023. PubMed DOI
Li L., Dong P., Hou C., Cao F., Sun S., He F., Song Y., Li S., Bai Y., Zhu D. Hydroxysafflor yellow A (HSYA) attenuates hypoxic pulmonary arterial remodelling and reverses right ventricular hypertrophy in rats. J. Ethnopharmacol. 2016;186:224–233. doi: 10.1016/j.jep.2016.04.004. PubMed DOI
Maneesai P., Prasarttong P., Bunbupha S., Kukongviriyapan U., Kukongviriyapan V., Tangsucharit P., Prachaney P., Pakdeechote P. Synergistic antihypertensive effect of Carthamus tinctorius L. extract and captopril in l-NAME-induced hypertensive rats via restoration of eNOS and AT1R expression. Nutrients. 2016;8 doi: 10.3390/nu8030122. PubMed DOI PMC
Sefi M., Fetoui H., Lachkar N., Tahraoui A., Lyoussi B., Boudawara T., Zeghal N. Centaurium erythrea (Gentianaceae) leaf extract alleviates streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. J. Ethnopharmacol. 2011;135:243–250. doi: 10.1016/j.jep.2011.02.029. PubMed DOI
Stefkov G., Miova B., Dinevska-Kjovkarovska S., Stanoeva J.P., Stefova M., Petrusevska G., Kulevanova S. Chemical characterization of Centaurium erythrea L. and its effects on carbohydrate and lipid metabolism in experimental diabetes. J. Ethnopharmacol. 2014;152:71–77. doi: 10.1016/j.jep.2013.11.047. PubMed DOI
Eddouks M., Bidi A., El Bouhali B., Hajji L., Zeggwagh N.A. Antidiabetic plants improving insulin sensitivity. J. Pharm. Pharmacol. 2014;66:1197–1214. doi: 10.1111/jphp.12243. PubMed DOI
Yan Y.-M., Fang P., Yang M.-T., Li N., Lu Q., Cheng Y.-X. Anti-diabetic nephropathy compounds from Cinnamomum cassia. J. Ethnopharmacol. 2015;165:141–147. doi: 10.1016/j.jep.2015.01.049. PubMed DOI
Medagama A.B. The glycaemic outcomes of cinnamon, a review of the experimental evidence and clinical trials. Nutr. J. 2015;14 doi: 10.1186/s12937-015-0098-9. PubMed DOI PMC
Crawford P. Effectiveness of cinnamon for lowering hemoglobin A1C in patients with type 2 diabetes: A randomized, controlled trial. J. Am. Board Fam. Med. 2009;22:507–512. doi: 10.3122/jabfm.2009.05.080093. PubMed DOI
Mirfeizi M., Mehdizadeh Tourzani Z., Mirfeizi S.Z., Asghari Jafarabadi M., Rezvani H.R., Afzali M., Gholami M.J. Controlling diabetes mellitus type 2 with herbal medicines: A triple blind, randomized clinical trial of efficacy and safety. J. Diabetes. 2015 doi: 10.1111/1753-0407.12342. PubMed DOI
Ríos J.L., Francini F., Schinella G.R. Natural products for the treatment of type 2 diabetes mellitus. Planta Med. 2015;81:975–994. doi: 10.1055/s-0035-1546131. PubMed DOI
Whitfield P., Parry-Strong A., Walsh E., Weatherall M., Krebs J.D. The effect of a cinnamon-, chromium- and magnesium-formulated honey on glycaemic control, weight loss and lipid parameters in type 2 diabetes: An open-label cross-over randomised controlled trial. Eur. J. Nutr. 2016;55:1123–1131. doi: 10.1007/s00394-015-0926-x. PubMed DOI
Beejmohun V., Peytavy-Izard M., Mignon C., Muscente-Paque D., Deplanque X., Ripoll C., Chapal N. Acute effect of Ceylon cinnamon extract on postprandial glycemia: Alpha-amylase inhibition, starch tolerance test in rats, and randomized crossover clinical trial in healthy volunteers. BMC Complement. Altern. Med. 2014;14 doi: 10.1186/1472-6882-14-351. PubMed DOI PMC
Frishman W.H., Beravol P., Carosella C. Alternative and complementary medicine for preventing and treating cardiovascular disease. Dis. Mon. 2009;55:121–192. doi: 10.1016/j.disamonth.2008.12.002. PubMed DOI
Ojha S.K., Nandave M., Arora S., Mehra R.D., Joshi S., Narang R., Arya D.S. Effect of Commiphora mukul extract on cardiac dysfunction and ventricular function in isoproterenol-induced myocardial infarction. Indian J. Exp. Biol. 2008;46:646–652. PubMed
Yuan L., Tu D., Ye X., Wu J. Hypoglycemic and hypocholesterolemic effects of Coptis chinensis Franch inflorescence. Plant Foods Hum. Nutr. 2006;61:139–144. doi: 10.1007/s11130-006-0023-7. PubMed DOI
Dong H., Wang J.-H., Lu F.-E., Xu L.-J., Gong Y.-L., Zou X. Jiaotai Pill enhances insulin signaling through phosphatidylinositol 3-kinase pathway in skeletal muscle of diabetic rats. Chin. J. Integr. Med. 2013;19:668–674. doi: 10.1007/s11655-013-1560-1. PubMed DOI
Yang Z., Wang L., Zhang F., Li Z. Evaluating the antidiabetic effects of Chinese herbal medicine: Xiao-Ke-An in 3T3-L1 cells and KKAy mice using both conventional and holistic omics approaches. BMC Complement. Altern. Med. 2015;15 doi: 10.1186/s12906-015-0785-2. PubMed DOI PMC
Eidi M., Eidi A., Saeidi A., Molanaei S., Sadeghipour A., Bahar M., Bahar K. Effect of coriander seed (Coriandrum sativum L.) ethanol extract on insulin release from pancreatic beta cells in streptozotocin-induced diabetic rats. Phytother. Res. 2009;23:404–406. doi: 10.1002/ptr.2642. PubMed DOI
Dhanapakiam P., Joseph J.M., Ramaswamy V.K., Moorthi M., Kumar A.S. The cholesterol lowering properties of coriander seeds (Coriandrum sativum): Mechanism of action. J. Environ. Biol. 2008;29:53–56. PubMed
Sreelatha S., Inbavalli R. Antioxidant, antihyperglycemic, and antihyperlipidemic effects of Coriandrum sativum leaf and stem in alloxan-induced diabetic rats. J. Food Sci. 2012;77:T119–T123. doi: 10.1111/j.1750-3841.2012.02755.x. PubMed DOI
Aissaoui A., Zizi S., Israili Z.H., Lyoussi B. Hypoglycemic and hypolipidemic effects of Coriandrum sativum L. in Meriones shawi rats. J. Ethnopharmacol. 2011;137:652–661. doi: 10.1016/j.jep.2011.06.019. PubMed DOI
Chang W.-T., Dao J., Shao Z.-H. Hawthorn: Potential roles in cardiovascular disease. Am. J. Chin. Med. 2005;33:1–10. doi: 10.1142/S0192415X05002606. PubMed DOI
Chrysant S.G. The clinical significance and costs of herbs and food supplements used by complementary and alternative medicine for the treatment of cardiovascular diseases and hypertension. J. Hum. Hypertens. 2016;30:1–6. doi: 10.1038/jhh.2015.42. PubMed DOI
Asher G.N., Viera A.J., Weaver M.A., Dominik R., Caughey M., Hinderliter A.L. Effect of hawthorn standardized extract on flow mediated dilation in prehypertensive and mildly hypertensive adults: A randomized, controlled cross-over trial. BMC Complement. Altern. Med. 2012;12 doi: 10.1186/1472-6882-12-26. PubMed DOI PMC
Pittler M.H., Guo R., Ernst E. Hawthorn extract for treating chronic heart failure. Cochrane Database Syst. Rev. 2008;1:CD005312. PubMed PMC
Bundy R., Walker A.F., Middleton R.W., Wallis C., Simpson H.C.R. Artichoke leaf extract (Cynara scolymus) reduces plasma cholesterol in otherwise healthy hypercholesterolemic adults: A randomized, double blind placebo controlled trial. Phytomedicine. 2008;15:668–675. doi: 10.1016/j.phymed.2008.03.001. PubMed DOI
Ben Salem M., Affes H., Ksouda K., Dhouibi R., Sahnoun Z., Hammami S., Zeghal K.M. Pharmacological studies of artichoke leaf extract and their health benefits. Plant Foods Hum. Nutr. 2015;70:441–453. doi: 10.1007/s11130-015-0503-8. PubMed DOI
Maghrani M., Zeggwagh N.-A., Lemhadri A., El Amraoui M., Michel J.-B., Eddouks M. Study of the hypoglycaemic activity of Fraxinus excelsior and Silybum marianum in an animal model of type 1 diabetes mellitus. J. Ethnopharmacol. 2004;91:309–316. doi: 10.1016/j.jep.2004.01.008. PubMed DOI
Eddouks M., Maghrani M. Phlorizin-like effect of Fraxinus excelsior in normal and diabetic rats. J. Ethnopharmacol. 2004;94:149–154. doi: 10.1016/j.jep.2004.05.005. PubMed DOI
Gomez-Garcia F., Flanagan J., García-Molina O., Vilaplana-Vivo V., García-Carrillo N., Berthon P.F., Bily A., Roller M., Ortega V.V., Issaly N. Preventive effect of a Fraxinus excelsior L seeds/fruits extract on hepatic steatosis in obese type 2 diabetic mice. J. Diabetes Metab. 2015;6 doi: 10.4172/2155-6156.1000527. DOI
Visen P., Saraswat B., Visen A., Roller M., Bily A., Mermet C., He K., Bai N., Lemaire B., Lafay S., et al. Acute effects of Fraxinus excelsior L. seed extract on postprandial glycemia and insulin secretion on healthy volunteers. J. Ethnopharmacol. 2009;126:226–232. doi: 10.1016/j.jep.2009.08.039. PubMed DOI
Bai N., He K., Ibarra A., Bily A., Roller M., Chen X., Rülh R. Iridoids from Fraxinus excelsior with adipocyte differentiation-inhibitory and PPARα activation activity. J. Nat. Prod. 2010;73:2–6. doi: 10.1021/np9003118. PubMed DOI
Zulet M.A., Navas-Carretero S., Lara y Sanchez D., Abete I., Flanagan J., Issaly N., Fanca-Berthon P., Bily A., Roller M., Martinez J.A. A Fraxinus excelsior L. seeds/fruits extract benefits glucose homeostasis and adiposity related markers in elderly overweight/obese subjects: A longitudinal, randomized, crossover, double-blind, placebo-controlled nutritional intervention study. Phytomedicine. 2014;21:1162–1169. doi: 10.1016/j.phymed.2014.04.027. PubMed DOI
Bedekar A., Shah K., Koffas M. Natural products for type II diabetes treatment. Adv. Appl. Microbiol. 2010;71:21–73. PubMed
Perla V., Jayanty S.S. Biguanide related compounds in traditional antidiabetic functional foods. Food Chem. 2013;138:1574–1580. doi: 10.1016/j.foodchem.2012.09.125. PubMed DOI
Witters L.A. The blooming of the French lilac. J. Clin. Investig. 2001;108:1105–1107. doi: 10.1172/JCI14178. PubMed DOI PMC
Gardner C.D., Zehnder J.L., Rigby A.J., Nicholus J.R., Farquhar J.W. Effect of Ginkgo biloba (EGb 761) and aspirin on platelet aggregation and platelet function analysis among older adults at risk of cardiovascular disease: A randomized clinical trial. Blood Coagul. Fibrinolysis. 2007;18:787–793. doi: 10.1097/MBC.0b013e3282f102b1. PubMed DOI
Lu Q., Zuo W.-Z., Ji X.-J., Zhou Y.-X., Liu Y.-Q., Yao X.-Q., Zhou X.-Y., Liu Y.-W., Zhang F., Yin X.-X. Ethanolic Ginkgo biloba leaf extract prevents renal fibrosis through Akt/mTOR signaling in diabetic nephropathy. Phytomedicine. 2015;22:1071–1078. doi: 10.1016/j.phymed.2015.08.010. PubMed DOI
Erukainure O.L., Ajiboye J.A., Lawal B.A., Obode O.C., Okoro E.E., Amisu-Tugbobo A.O., Zaruwa M.Z. Alterations in atherogenic indices and hypolipidemic effect of soybean oil in normocholesteremic rats. Comp. Clin. Pathol. 2016;25:75–78. doi: 10.1007/s00580-015-2142-8. DOI
Kwon D.Y., Daily J.W., Kim H.J., Park S. Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutr. Res. 2010;30:1–13. doi: 10.1016/j.nutres.2009.11.004. PubMed DOI
Jiang H., Tong Y., Yan D., Jia S., Ostenson C.G., Chen Z. The soybean peptide vglycin preserves the diabetic beta-cells through improvement of proliferation and inhibition of apoptosis. Sci. Rep. 2015;5 doi: 10.1038/srep15599. PubMed DOI PMC
Fuhrman B., Volkova N., Kaplan M., Presser D., Attias J., Hayek T., Aviram M. Antiatherosclerotic effects of licorice extract supplementation on hypercholesterolemic patients: Increased resistance of LDL to atherogenic modifications, reduced plasma lipid levels, and decreased systolic blood pressure. Nutrition. 2002;18:268–273. doi: 10.1016/S0899-9007(01)00753-5. PubMed DOI
Chang W.-C., Jia H., Aw W., Saito K., Hasegawa S., Kato H. Beneficial effects of soluble dietary Jerusalem artichoke (Helianthus tuberosus) in the prevention of the onset of type 2 diabetes and non-alcoholic fatty liver disease in high-fructose diet-fed rats. Br. J. Nutr. 2014;112:709–717. doi: 10.1017/S0007114514001421. PubMed DOI
Gambero A., Ribeiro M.L. The positive effects of yerba maté (Ilex paraguariensis) in obesity. Nutrients. 2015;7:730–750. doi: 10.3390/nu7020730. PubMed DOI PMC
De Moraes Pontilho P., Nunes da Costa Teixeira A.M., Yuan C., Alves Luzia L., Markowicz Bastos D.H., Rondó P.H. Yerba mate (Ilex paraguariensis A. St. Hil) and risk factors for cardiovascular diseases. J. Food Nutr. Res. 2015;3:182–190. doi: 10.12691/jfnr-3-3-9. DOI
Cardozo E.L., Jr., Morand C. Interest of mate (Ilex paraguariensis A. St.-Hil.) as a new natural functional food to preserve human cardiovascular health—A review. J. Funct. Foods. 2016;21:440–454. doi: 10.1016/j.jff.2015.12.010. DOI
Chang C.L.T., Lin Y., Bartolome A.P., Chen Y.-C., Chiu S.-C., Yang W.-C. Herbal therapies for type 2 diabetes mellitus: Chemistry, biology, and potential application of selected plants and compounds. Evid. Based Complement. Alternat. Med. 2013;2013 doi: 10.1155/2013/378657. PubMed DOI PMC
Kim S.-Y., Oh M.-R., Kim M.-G., Chae H.-J., Chae S.-W. Anti-obesity effects of yerba mate (Ilex Paraguariensis): A randomized, double-blind, placebo-controlled clinical trial. BMC Complement. Altern. Med. 2015;15 doi: 10.1186/s12906-015-0859-1. PubMed DOI PMC
Yu S., Yue S.w., Liu Z., Zhang T., Xiang N., Fu H. Yerba mate (Ilex paraguariensis) improves microcirculation of volunteers with high blood viscosity: A randomized, double-blind, placebo-controlled trial. Exp. Gerontol. 2015;62:14–22. doi: 10.1016/j.exger.2014.12.016. PubMed DOI
Luo Q., Cai Y., Yan J., Sun M., Corke H. Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarum. Life Sci. 2004;76:137–149. doi: 10.1016/j.lfs.2004.04.056. PubMed DOI
Zhao R., Jin R., Chen Y., Han F.-m. Hypoglycemic and hypolipidemic effects of Lycium barbarum polysaccharide in diabetic rats. Chin. Herb. Med. 2015;7:310–315. doi: 10.1016/S1674-6384(15)60057-0. DOI
Amagase H., Nance D.M. A randomized, double-blind, placebo-controlled, clinical study of the general effects of a standardized Lycium barbarum (Goji) juice, GoChi™. J. Altern. Complement. Med. 2008;14:403–412. doi: 10.1089/acm.2008.0004. PubMed DOI
Zhang X., Yang X., Lin Y., Suo M., Gong L., Chen J., Hui R. Anti-hypertensive effect of Lycium barbarum L. with down-regulated expression of renal endothelial lncRNA sONE in a rat model of salt-sensitive hypertension. Int. J. Clin. Exp. Pathol. 2015;8:6981–6987. PubMed PMC
Lu S.-P., Zhao P.-T. Chemical characterization of Lycium barbarum polysaccharides and their reducing myocardial injury in ischemia/reperfusion of rat heart. Int. J. Biol. Macromol. 2010;47:681–684. doi: 10.1016/j.ijbiomac.2010.08.016. PubMed DOI
Ming M., Guanhua L., Zhanhai Y., Guang C., Xuan Z. Effect of the Lycium barbarum polysaccharides administration on blood lipid metabolism and oxidative stress of mice fed high-fat diet in vivo. Food Chem. 2009;113:872–877. doi: 10.1016/j.foodchem.2008.03.064. DOI
Cai H., Liu F., Zuo P., Huang G., Song Z., Wang T., Lu H., Guo F., Han C., Sun G. Practical application of antidiabetic efficacy of Lycium barbarum polysaccharide in patients with type 2 diabetes. Med. Chem. 2015;11:383–390. doi: 10.2174/1573406410666141110153858. PubMed DOI PMC
Zhu X., Hu S., Zhu L., Ding J., Zhou Y., Li G. Effects of Lycium barbarum polysaccharides on oxidative stress in hyperlipidemic mice following chronic composite psychological stress intervention. Mol. Med. Rep. 2015;11:3445–3450. doi: 10.3892/mmr.2014.3128. PubMed DOI
Mishra A., Gautam S., Pal S., Mishra A., Rawat A.K., Maurya R., Srivastava A.K. Effect of Momordica charantia fruits on streptozotocin-induced diabetes mellitus and its associated complications. Int. J. Pharm. Pharm. Sci. 2015;7:356–363.
Yang S.J., Choi J.M., Park S.E., Rhee E.J., Lee W.Y., Oh K.W., Park S.W., Park C.-Y. Preventive effects of bitter melon (Momordica charantia) against insulin resistance and diabetes are associated with the inhibition of NF-κB and JNK pathways in high-fat-fed OLETF rats. J. Nutr. Biochem. 2015;26:234–240. doi: 10.1016/j.jnutbio.2014.10.010. PubMed DOI
Singab A.N.B., El-Beshbishy H.A., Yonekawa M., Nomura T., Fukai T. Hypoglycemic effect of Egyptian Morus alba root bark extract: Effect on diabetes and lipid peroxidation of streptozotocin-induced diabetic rats. J. Ethnopharmacol. 2005;100:333–338. doi: 10.1016/j.jep.2005.03.013. PubMed DOI
Hunyadi A., Martins A., Hsieh T.-J., Seres A., Zupkó I. Chlorogenic acid and rutin play a major role in the in vivo anti-diabetic activity of Morus alba leaf extract on type II diabetic rats. PLoS ONE. 2012;7:e50619. doi: 10.1371/journal.pone.0050619. PubMed DOI PMC
Butt M.S., Nazir A., Sultan M.T., Schroën K. Morus alba L. nature’s functional tonic. Trends Food Sci. Technol. 2008;19:505–512. doi: 10.1016/j.tifs.2008.06.002. DOI
Cai S., Sun W., Fan Y., Guo X., Xu G., Xu T., Hou Y., Zhao B., Feng X., Liu T. Effect of mulberry leaf (Folium mori) on insulin resistance via IRS-1/PI3K/Glut-4 signalling pathway in type 2 diabetes mellitus rats. Pharm. Biol. 2016 doi: 10.1080/13880209.2016.1178779. PubMed DOI
Mahmoud A.M., Abd El-Twab S.M., Abdel-Reheim E.S. Consumption of polyphenol-rich Morus alba leaves extract attenuates early diabetic retinopathy: The underlying mechanism. Eur. J. Nutr. 2016 doi: 10.1007/s00394-016-1214-0. PubMed DOI
Phimarn W., Wichaiyo K., Silpsavikul K., Sungthong B., Saramunee K. A meta-analysis of efficacy of Morus alba Linn. to improve blood glucose and lipid profile. Eur. J. Nutr. 2016 doi: 10.1007/s00394-016-1197-x. PubMed DOI
Heshmati J., Namazi N. Effects of black seed (Nigella sativa) on metabolic parameters in diabetes mellitus: A systematic review. Complement. Ther. Med. 2015;23:275–282. doi: 10.1016/j.ctim.2015.01.013. PubMed DOI
Heshmati J., Namazi N., Memarzadeh M.-R., Taghizadeh M., Kolahdooz F. Nigella sativa oil affects glucose metabolism and lipid concentrations in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Food Res. Int. 2015;70:87–93. doi: 10.1016/j.foodres.2015.01.030. DOI
Kaatabi H., Bamosa A.O., Badar A., Al-Elq A., Abou-Hozaifa B., Lebda F., Al-Khadra A., Al-Almaie S. Nigella sativa improves glycemic control and ameliorates oxidative stress in patients with type 2 diabetes mellitus: Placebo controlled participant blinded clinical trial. PLoS ONE. 2015;10:e0113486. doi: 10.1371/journal.pone.0113486. PubMed DOI PMC
Mahdavi R., Namazi N., Alizadeh M., Farajnia S. Effects of Nigella sativa oil with a low-calorie diet on cardiometabolic risk factors in obese women: A randomized controlled clinical trial. Food Funct. 2015;6:2041–2048. doi: 10.1039/C5FO00316D. PubMed DOI
Asgary S., Sahebkar A., Goli-Malekabadi N. Ameliorative effects of Nigella sativa on dyslipidemia. J. Endocrinol. Investig. 2015;38:1039–1046. doi: 10.1007/s40618-015-0337-0. PubMed DOI
Husain I., Chander R., Saxena J.K., Mahdi A.A., Mahdi F. Antidyslipidemic effect of Ocimum sanctum leaf extract in streptozotocin induced diabetic rats. Indian J. Clin. Biochem. 2015;30:72–77. doi: 10.1007/s12291-013-0404-2. PubMed DOI PMC
Thadani S., Salman M.T., Tewari S., Singh S., Bhagchandani D., Ahmad A. Renoprotective effect of Ocimum sanctum in comparison with olmesartan medoxomil and pitavastatin in metformin treated diabetic rats. Int. J. Pharm. Sci. Res. 2015;6:4433–4441.
El S.N., Karakaya S. Olive tree (Olea europaea) leaves: Potential beneficial effects on human health. Nutr. Rev. 2009;67:632–638. doi: 10.1111/j.1753-4887.2009.00248.x. PubMed DOI
Poudyal H., Campbell F., Brown L. Olive leaf extract attenuates cardiac, hepatic, and metabolic changes in high carbohydrate-, high fat-fed rats. J. Nutr. 2010;140:946–953. doi: 10.3945/jn.109.117812. PubMed DOI
Susalit E., Agus N., Effendi I., Tjandrawinata R.R., Nofiarny D., Perrinjaquet-Moccetti T., Verbruggen M. Olive (Olea europaea) leaf extract effective in patients with stage-1 hypertension: Comparison with captopril. Phytomedicine. 2011;18:251–258. doi: 10.1016/j.phymed.2010.08.016. PubMed DOI
Efentakis P., Iliodromitis E.K., Mikros E., Papachristodoulou A., Dagres N., Skaltsounis A.-L., Andreadou I. Effects of the olive tree leaf constituents on myocardial oxidative damage and atherosclerosis. Planta Med. 2015;81:648–654. doi: 10.1055/s-0035-1546017. PubMed DOI
Wainstein J., Ganz T., Boaz M., Bar Dayan Y., Dolev E., Kerem Z., Madar Z. Olive leaf extract as a hypoglycemic agent in both human diabetic subjects and in rats. J. Med. Food. 2012;15:605–610. doi: 10.1089/jmf.2011.0243. PubMed DOI
Lepore S.M., Morittu V.M., Celano M., Trimboli F., Oliverio M., Procopio A., Di Loreto C., Damante G., Britti D., Bulotta S., et al. Oral administration of oleuropein and its semisynthetic peracetylated derivative prevents hepatic steatosis, hyperinsulinemia, and weight gain in mice fed with high fat cafeteria diet. Int. J. Endocrinol. 2015;2015 doi: 10.1155/2015/431453. PubMed DOI PMC
Perona J.S., Cañizares J., Montero E., Sánchez-Domínguez J.M., Catalá A., Ruiz-Gutiérrez V. Virgin olive oil reduces blood pressure in hypertensive elderly subjects. Clin. Nutr. 2004;23:1113–1121. doi: 10.1016/j.clnu.2004.02.004. PubMed DOI
Quintieri A.M., Filice E., Amelio D., Pasqua T., Lupi F.R., Scavello F., Cantafio P., Rocca C., Lauria A., Penna C., et al. The innovative “Bio-Oil Spread” prevents metabolic disorders and mediates preconditioning-like cardioprotection in rats. Nutr. Metab. Cardiovasc. Dis. 2016 doi: 10.1016/j.numecd.2016.02.009. PubMed DOI
Zhang Y.-G., Zhang H.-G., Zhang G.-Y., Fan J.-S., Li X.-H., Liu Y.-H., Li S.-H., Lian X.-M., Tang Z. Panax notoginseng saponins attenuate atherosclerosis in rats by regulating the blood lipid profile and an anti-inflammatory action. Clin. Exp. Pharmacol. Physiol. 2008;35:1238–1244. doi: 10.1111/j.1440-1681.2008.04997.x. PubMed DOI
Bello C.T., Turner L.W. Reserpine as an antihypertensive in the outpatient clinic: A double-blind clinical study. Am. J. Med. Sci. 1956;232:194–197. doi: 10.1097/00000441-195608000-00010. PubMed DOI
Shamon S.D., Perez M.I. Blood pressure lowering efficacy of reserpine for primary hypertension. Cochrane Database Syst. Rev. 2009;4:CD007655. PubMed
Yu L., Qin Y., Wang Q., Zhang L., Liu Y., Wang T., Huang L., Wu L., Xiong H. The efficacy and safety of Chinese herbal medicine, Rhodiola formulation in treating ischemic heart disease: A systematic review and meta-analysis of randomized controlled trials. Complement. Ther. Med. 2014;22:814–825. doi: 10.1016/j.ctim.2014.05.001. PubMed DOI
Wu T., Zhou H., Jin Z., Bi S., Yang X., Yi D., Liu W. Cardioprotection of salidroside from ischemia/reperfusion injury by increasing N-acetylglucosamine linkage to cellular proteins. Eur. J. Pharmacol. 2009;613:93–99. doi: 10.1016/j.ejphar.2009.04.012. PubMed DOI
Sinkovic A., Suran D., Lokar L., Fliser E., Skerget M., Novak Z., Knez Z. Rosemary extracts improve flow-mediated dilatation of the brachial artery and plasma PAI-1 activity in healthy young volunteers. Phytother. Res. 2011;25:402–407. doi: 10.1002/ptr.3276. PubMed DOI
Posadas S.J., Caz V., Largo C., de la Gándara B., Matallanas B., Reglero G., de Miguel E. Protective effect of supercritical fluid rosemary extract, Rosmarinus officinalis, on antioxidants of major organs of aged rats. Exp. Gerontol. 2009;44:383–389. doi: 10.1016/j.exger.2009.02.015. PubMed DOI
Vanscheidt W., Jost V., Wolna P., Lücker P.W., Müller A., Theurer C., Patz B., Grützner K.I. Efficacy and safety of a butcher’s broom preparation (Ruscus aculeatus L. extract) compared to placebo in patients suffering from chronic venous insufficiency. Arzneimittelforschung. 2002;52:243–250. doi: 10.1055/s-0031-1299887. PubMed DOI
Ciocoiu M., Mirón A., Mares L., Tutunaru D., Pohaci C., Groza M., Badescu M. The effects of Sambucus nigra polyphenols on oxidative stress and metabolic disorders in experimental diabetes mellitus. J. Physiol. Biochem. 2009;65:297–304. doi: 10.1007/BF03180582. PubMed DOI
Bhattacharya S., Christensen K.B., Olsen L.C.B., Christensen L.P., Grevsen K., Færgeman N.J., Kristiansen K., Young J.F., Oksbjerg N. Bioactive components from flowers of Sambucus nigra L. increase glucose uptake in primary porcine myotube cultures and reduce fat accumulation in Caenorhabditis elegans. J. Agric. Food Chem. 2013;61:11033–11040. doi: 10.1021/jf402838a. PubMed DOI
Christensen K.B., Petersen R.K., Kristiansen K., Christensen L.P. Identification of bioactive compounds from flowers of black elder (Sambucus nigra L.) that activate the human peroxisome proliferator-activated receptor (PPAR) gamma. Phytother. Res. 2010;24:S129–S132. doi: 10.1002/ptr.3005. PubMed DOI
Li L., Zhou X., Li N., Sun M., Lv J., Xu Z. Herbal drugs against cardiovascular disease: Traditional medicine and modern development. Drug Discov. Today. 2015;20:1074–1086. doi: 10.1016/j.drudis.2015.04.009. PubMed DOI
Chun J.N., Cho M., So I., Jeon J.-H. The protective effects of Schisandra chinensis fruit extract and its lignans against cardiovascular disease: A review of the molecular mechanisms. Fitoterapia. 2014;97:224–233. doi: 10.1016/j.fitote.2014.06.014. PubMed DOI
Liu H., Wu C., Wang S., Gao S., Liu J., Dong Z., Zhang B., Liu M., Sun X., Guo P. Extracts and lignans of Schisandra chinensis fruit alter lipid and glucose metabolism in vivo and in vitro. J. Funct. Foods. 2015;19:296–307. doi: 10.1016/j.jff.2015.09.049. DOI
Zhang M., Liu M., Xiong M., Gong J., Tan X. Schisandra chinensis fruit extract attenuates albuminuria and protects podocyte integrity in a mouse model of streptozotocin-induced diabetic nephropathy. J. Ethnopharmacol. 2012;141:111–118. doi: 10.1016/j.jep.2012.02.007. PubMed DOI
Li J., Wang J., Shao J.-Q., Du H., Wang Y.-T., Peng L. Effect of Schisandra chinensis on interleukins, glucose metabolism, and pituitary-adrenal and gonadal axis in rats under strenuous swimming exercise. Chin. J. Integr. Med. 2015;21:43–48. doi: 10.1007/s11655-014-1765-y. PubMed DOI
Huseini H.F., Larijani B., Heshmat R., Fakhrzadeh H., Radjabipour B., Toliat T., Raza M. The efficacy of Silybum marianum (L.) Gaertn. (silymarin) in the treatment of type II diabetes: A randomized, double-blind, placebo-controlled, clinical trial. Phytother. Res. 2006;20:1036–1039. doi: 10.1002/ptr.1988. PubMed DOI
Tamayo C., Diamond S. Review of clinical trials evaluating safety and efficacy of milk thistle (Silybum marianum [L.] Gaertn.) Integr. Cancer Ther. 2007;6:146–157. doi: 10.1177/1534735407301942. PubMed DOI
Derosa G., D’Angelo A., Maffioli P. The role of a fixed Berberis aristata/Silybum marianum combination in the treatment of type 1 diabetes mellitus. Clin. Nutr. 2015 doi: 10.1016/j.clnu.2015.08.004. PubMed DOI
Ebrahimpour Koujan S., Gargari B.P., Mobasseri M., Valizadeh H., Asghari-Jafarabadi M. Effects of Silybum marianum (L.) Gaertn. (silymarin) extract supplementation on antioxidant status and hs-CRP in patients with type 2 diabetes mellitus: A randomized, triple-blind, placebo-controlled clinical trial. Phytomedicine. 2015;22:290–296. doi: 10.1016/j.phymed.2014.12.010. PubMed DOI
Di Pierro F., Bellone I., Rapacioli G., Putignano P. Clinical role of a fixed combination of standardized Berberis aristata and Silybum marianum extracts in diabetic and hypercholesterolemic patients intolerant to statins. Diabetes Metab. Syndr. Obes. 2015;8:89–96. doi: 10.2147/DMSO.S78877. PubMed DOI PMC
Bhasker S., Madhav H., Chinnamma M. Molecular evidence of insulinomimetic property exhibited by steviol and stevioside in diabetes induced L6 and 3T3L1 cells. Phytomedicine. 2015;22:1037–1044. doi: 10.1016/j.phymed.2015.07.007. PubMed DOI
Ritu M., Nandini J. Nutritional composition of Stevia rebaudiana—A sweet herb and its hypoglycaemic and hypolipidaemic effect on patients with non insulin dependent diabetes mellitus. J. Sci. Food Agric. 2016 doi: 10.1002/jsfa.7627. PubMed DOI
Asemi Z., Khorrami-Rad A., Alizadeh S.A., Shakeri H., Esmaillzadeh A. Effects of synbiotic food consumption on metabolic status of diabetic patients: A double-blind randomized cross-over controlled clinical trial. Clin. Nutr. 2014;33:198–203. doi: 10.1016/j.clnu.2013.05.015. PubMed DOI
Saravanan R., Vengatash babu K., Ramachandran V. Effect of rebaudioside A, a diterpenoid on glucose homeostasis in STZ-induced diabetic rats. J. Physiol. Biochem. 2012;68:421–431. doi: 10.1007/s13105-012-0156-0. PubMed DOI
Fuller S., Stephens J.M. Diosgenin, 4-hydroxyisoleucine, and fiber from fenugreek: Mechanisms of actions and potential effects on metabolic syndrome. Adv. Nutr. 2015;6:189–197. doi: 10.3945/an.114.007807. PubMed DOI PMC
Gaddam A., Galla C., Thummisetti S., Marikanty R.K., Palanisamy U.D., Rao P.V. Role of fenugreek in the prevention of type 2 diabetes mellitus in prediabetes. J. Diabetes Metab. Disord. 2015;14 doi: 10.1186/s40200-015-0208-4. PubMed DOI PMC
Basu A., Du M., Leyva M.J., Sanchez K., Betts N.M., Wu M., Aston C.E., Lyons T.J. Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. J. Nutr. 2010;140:1582–1587. doi: 10.3945/jn.110.124701. PubMed DOI PMC
Johnson M.H., de Mejia E.G. Phenolic compounds from fermented berry beverages modulated gene and protein expression to increase insulin secretion from pancreatic beta-cells in vitro. J. Agric. Food Chem. 2016;64:2569–2581. doi: 10.1021/acs.jafc.6b00239. PubMed DOI
Johnson M.H., de Mejia E.G., Fan J., Lila M.A., Yousef G.G. Anthocyanins and proanthocyanidins from blueberry-blackberry fermented beverages inhibit markers of inflammation in macrophages and carbohydrate-utilizing enzymes in vitro. Mol. Nutr. Food Res. 2013;57:1182–1197. doi: 10.1002/mnfr.201200678. PubMed DOI
Vendrame S., Daugherty A., Kristo A.S., Riso P., Klimis-Zacas D. Wild blueberry (Vaccinium angustifolium) consumption improves inflammatory status in the obese Zucker rat model of the metabolic syndrome. J. Nutr. Biochem. 2013;24:1508–1512. doi: 10.1016/j.jnutbio.2012.12.010. PubMed DOI
Elek S.R., McNair J.D., Griffith G.C. Veratrum viride: Hypotensive and cardiac effects of intravenous use. Calif. Med. 1953;79:300–305. PubMed PMC
Nand V., Doggrell S.A., Barnett C.W. Effects of veratridine on the action potentials and contractility of right and left ventricles from normo- and hypertensive rats. Clin. Exp. Pharmacol. Physiol. 1997;24:570–576. doi: 10.1111/j.1440-1681.1997.tb02092.x. PubMed DOI
Singh B.N., Saha C., Galun D., Upreti D.K., Bayry J., Kaveri S.V. European Viscum album: A potent phytotherapeutic agent with multifarious phytochemicals, pharmacological properties and clinical evidence. RSC Adv. 2016;6:23837–23857. doi: 10.1039/C5RA27381A. DOI
Tang T.Y., Li F.-Z., Afseth J. Review of the regulations for clinical research in herbal medicines in USA. Chin. J. Integr. Med. 2014;20:883–893. doi: 10.1007/s11655-014-2024-y. PubMed DOI
Nelson H.S. Oral/sublingual Phleum pretense grass tablet (Grazax/Grastek) to treat allergic rhinitis in the USA. Expert Rev. Clin. Immunol. 2014;10:1437–1451. doi: 10.1586/1744666X.2014.963556. PubMed DOI
Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: A comprehensive review. Circulation. 2016;133:187–225. doi: 10.1161/CIRCULATIONAHA.115.018585. PubMed DOI PMC
Xiao J.B., Högger P. Dietary polyphenols and type 2 diabetes: Current insights and future perspectives. Curr. Med. Chem. 2015;22:23–38. doi: 10.2174/0929867321666140706130807. PubMed DOI
Rohn S., van Griensven L. Grain legumes and further gluten free legumes—Science, technology and impacts on human health. Food Res. Int. 2015;76:1–2. doi: 10.1016/j.foodres.2015.03.010. DOI
Barringer T.A. Mediterranean diets and cardiovascular disease. Curr. Atheroscler. Rep. 2001;3:437–445. doi: 10.1007/s11883-001-0033-8. PubMed DOI
Estruch R., Ros E., Salas-Salvadó J., Covas M.-I., Corella D., Arós F., Gómez-Gracia E., Ruiz-Gutiérrez V., Fiol M., Lapetra J., et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N. Engl. J. Med. 2013;368:1279–1290. doi: 10.1056/NEJMoa1200303. PubMed DOI
Naismith D.J., Akinyanju P.A., Szanto S., Yudkin J. The effect, in volunteers, of coffee and decaffeinated coffee on blood glucose, insulin, plasma lipids and some factors involved in blood clotting. Nutr. Metabol. 1970;12:144–151. doi: 10.1159/000175287. PubMed DOI
Barone J.J., Roberts H.R. Caffeine consumption. Food Chem. Toxicol. 1996;34:119–129. doi: 10.1016/0278-6915(95)00093-3. PubMed DOI
Santos R.M., Lima D.R. Coffee consumption, obesity and type 2 diabetes: A mini-review. Eur. J. Nutr. 2016;55:1345–1358. doi: 10.1007/s00394-016-1206-0. PubMed DOI
Morisco F., Lembo V., Mazzone G., Camera S., Caporaso N. Coffee and liver health. J. Clin. Gastroenterol. 2014;48(Suppl. 1):S87–S90. doi: 10.1097/MCG.0000000000000240. PubMed DOI
Akash M.S., Rehman K., Chen S. Effects of coffee on type 2 diabetes mellitus. Nutrition. 2014;30:755–763. doi: 10.1016/j.nut.2013.11.020. PubMed DOI
Zulli A., Smith R.M., Kubatka P., Novak J., Uehara Y., Loftus H., Qaradakhi T., Pohanka M., Kobyliak N., Zagatina A., et al. Caffeine and cardiovascular diseases: Critical review of current research. Eur. J. Nutr. 2016;55:1331–1343. doi: 10.1007/s00394-016-1179-z. PubMed DOI
Ding M., Bhupathiraju S.N., Satija A., van Dam R.M., Hu F.B. Long-term coffee consumption and risk of cardiovascular disease: A systematic review and a dose-response meta-analysis of prospective cohort studies. Circulation. 2014;129:643–659. doi: 10.1161/CIRCULATIONAHA.113.005925. PubMed DOI PMC
Ding M., Satija A., Bhupathiraju S.N., Hu Y., Sun Q., Han J., Lopez-Garcia E., Willett W., van Dam R.M., Hu F.B. Association of coffee consumption with total and cause-specific mortality in three large prospective cohorts. Circulation. 2015;132:2305–2315. doi: 10.1161/CIRCULATIONAHA.115.017341. PubMed DOI PMC
Natella F., Scaccini C. Role of coffee in modulation of diabetes risk. Nutr. Rev. 2012;70:207–217. doi: 10.1111/j.1753-4887.2012.00470.x. PubMed DOI
Vinson J.A., Proch J., Bose P., Muchler S., Taffera P., Shuta D., Samman N., Agbor G.A. Chocolate is a powerful ex vivo and in vivo antioxidant, an antiatherosclerotic agent in an animal model, and a significant contributor to antioxidants in the European and American diets. J. Agric. Food Chem. 2006;54:8071–8076. doi: 10.1021/jf062175j. PubMed DOI
Bonita J.S., Mandarano M., Shuta D., Vinson J. Coffee and cardiovascular disease: In vitro, cellular, animal, and human studies. Pharmacol. Res. 2007;55:187–198. doi: 10.1016/j.phrs.2007.01.006. PubMed DOI
Van Dijk A.E., Olthof M.R., Meeuse J.C., Seebus E., Heine R.J., van Dam R.M. Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care. 2009;32:1023–1025. doi: 10.2337/dc09-0207. PubMed DOI PMC
Meng S., Cao J., Feng Q., Peng J., Hu Y. Roles of chlorogenic acid on regulating glucose and lipids metabolism: A review. Evid. Based Complement. Altern. Med. 2013;2013 doi: 10.1155/2013/801457. PubMed DOI PMC
Murase T., Misawa K., Minegishi Y., Aoki M., Ominami H., Suzuki Y., Shibuya Y., Hase T. Coffee polyphenols suppress diet-induced body fat accumulation by downregulating SREBP-1c and related molecules in C57BL/6J mice. Am. J. Physiol. Endocrinol. Metab. 2011;300:E122–E133. doi: 10.1152/ajpendo.00441.2010. PubMed DOI
Murase T., Yokoi Y., Misawa K., Ominami H., Suzuki Y., Shibuya Y., Hase T. Coffee polyphenols modulate whole-body substrate oxidation and suppress postprandial hyperglycaemia, hyperinsulinaemia and hyperlipidaemia. Br. J. Nutr. 2012;107:1757–1765. doi: 10.1017/S0007114511005083. PubMed DOI
Gramza-Michalowska A. Caffeine in tea Camellia sinensis—Content, absorption, benefits and risks of consumption. J. Nutr. Health Aging. 2014;18:143–149. doi: 10.1007/s12603-013-0404-1. PubMed DOI
Beecher G.R., Warden B.A., Merken H. Analysis of tea polyphenols. Proc. Soc. Exp. Biol. Med. 1999;220:267–270. doi: 10.3181/00379727-220-44377A. PubMed DOI
Li S., Lo C.Y., Pan M.H., Lai C.S., Ho C.T. Black tea: Chemical analysis and stability. Food Funct. 2013;4:10–18. doi: 10.1039/C2FO30093A. PubMed DOI
Gormaz J.G., Valls N., Sotomayor C., Turner T., Rodrigo R. Potential role of polyphenols in the prevention of cardiovascular diseases: Molecular bases. Curr. Med. Chem. 2016;23:115–128. doi: 10.2174/0929867323666151127201732. PubMed DOI
Peters U., Poole C., Arab L. Does tea affect cardiovascular disease? A meta-analysis. Am. J. Epidemiol. 2001;154:495–503. doi: 10.1093/aje/154.6.495. PubMed DOI
Zhang C., Qin Y.Y., Wei X., Yu F.F., Zhou Y.H., He J. Tea consumption and risk of cardiovascular outcomes and total mortality: A systematic review and meta-analysis of prospective observational studies. Eur. J. Epidemiol. 2015;30:103–113. doi: 10.1007/s10654-014-9960-x. PubMed DOI
Basu A., Lucas E.A. Mechanisms and effects of green tea on cardiovascular health. Nutr. Rev. 2007;65:361–375. doi: 10.1111/j.1753-4887.2007.tb00314.x. PubMed DOI
Sano M., Tabata M., Suzuki M., Degawa M., Miyase T., Maeda-Yamamoto M. Simultaneous determination of twelve tea catechins by high-performance liquid chromatography with electrochemical detection. Analyst. 2001;126:816–820. doi: 10.1039/b102541b. PubMed DOI
Chowdhury A., Sarkar J., Chakraborti T., Pramanik P.K., Chakraborti S. Protective role of epigallocatechin-3-gallate in health and disease: A perspective. Biomed. Pharmacother. 2016;78:50–59. doi: 10.1016/j.biopha.2015.12.013. PubMed DOI
Chen G., Wang H., Zhang X., Yang S.-T. Nutraceuticals and functional foods in the management of hyperlipidemia. Crit. Rev. Food Sci. Nutr. 2014;54:1180–1201. doi: 10.1080/10408398.2011.629354. PubMed DOI
Magrone T., Perez De Heredia F., Jirillo E., Morabito G., Marcos A., Serafini M. Functional foods and nutraceuticals as therapeutic tools for the treatment of diet-related diseases. Can. J. Physiol. Pharmacol. 2013;91:387–396. doi: 10.1139/cjpp-2012-0307. PubMed DOI
Liu R.H. Dietary bioactive compounds and their health implications. J. Food Sci. 2013;78:A18–A25. doi: 10.1111/1750-3841.12101. PubMed DOI
Badimon L., Vilahur G., Padro T. Nutraceuticals and atherosclerosis: Human trials. Cardiovasc. Ther. 2010;28:202–215. doi: 10.1111/j.1755-5922.2010.00189.x. PubMed DOI
Zuchi C., Ambrosio G., Lüscher T.F., Landmesser U. Nutraceuticals in cardiovascular prevention: Lessons from studies on endothelial function. Cardiovasc. Ther. 2010;28:187–201. doi: 10.1111/j.1755-5922.2010.00165.x. PubMed DOI
Lacroix I.M., Li-Chan E.C. Overview of food products and dietary constituents with antidiabetic properties and their putative mechanisms of action: A natural approach to complement pharmacotherapy in the management of diabetes. Mol. Nutr. Food Res. 2014;58:61–78. doi: 10.1002/mnfr.201300223. PubMed DOI
Hung H.Y., Qian K., Morris-Natschke S.L., Hsu C.S., Lee K.H. Recent discovery of plant-derived anti-diabetic natural products. Nat. Prod. Rep. 2012;29:580–606. doi: 10.1039/c2np00074a. PubMed DOI
Gautam R., Jachak S.M. Recent developments in anti-inflammatory natural products. Med. Res. Rev. 2009;29:767–820. doi: 10.1002/med.20156. PubMed DOI
Hermansen K., Dinesen B., Hoie L.H., Morgenstern E., Gruenwald J. Effects of soy and other natural products on LDL:HDL ratio and other lipid parameters: A literature review. Adv. Ther. 2003;20:50–78. doi: 10.1007/BF02850119. PubMed DOI
Vasanthi H.R., ShriShriMal N., Das D.K. Phytochemicals from plants to combat cardiovascular disease. Curr. Med. Chem. 2012;19:2242–2251. doi: 10.2174/092986712800229078. PubMed DOI
Hardie D.G. AMPK: A target for drugs and natural products with effects on both diabetes and cancer. Diabetes. 2013;62:2164–2172. doi: 10.2337/db13-0368. PubMed DOI PMC
Yuan T., Nahar P., Sharma M., Liu K., Slitt A., Aisa H.A., Seeram N.P. Indazole-type alkaloids from Nigella sativa seeds exhibit antihyperglycemic effects via AMPK activation in vitro. J. Nat. Prod. 2014;77:2316–2320. doi: 10.1021/np500398m. PubMed DOI PMC
Nguyen P.H., Nguyen T.N., Dao T.T., Kang H.W., Ndinteh D.T., Mbafor J.T., Oh W.K. AMP-activated protein kinase (AMPK) activation by benzofurans and coumestans isolated from Erythrina abyssinica. J. Nat. Prod. 2010;73:598–602. doi: 10.1021/np900745g. PubMed DOI
Zimmermann K., Baldinger J., Mayerhofer B., Atanasov A.G., Dirsch V.M., Heiss E.H. Activated AMPK boosts the Nrf2/HO-1 signaling axis—A role for the unfolded protein response. Free Radic. Biol. Med. 2015;88:417–426. doi: 10.1016/j.freeradbiomed.2015.03.030. PubMed DOI PMC
Chen S. Natural products triggering biological targets—A review of the anti-inflammatory phytochemicals targeting the arachidonic acid pathway in allergy asthma and rheumatoid arthritis. Curr. Drug Targets. 2011;12:288–301. doi: 10.2174/138945011794815347. PubMed DOI
Jachak S.M. Cyclooxygenase inhibitory natural products: Current status. Curr. Med. Chem. 2006;13:659–678. doi: 10.2174/092986706776055698. PubMed DOI
Chi Y.S., Jong H.G., Son K.H., Chang H.W., Kang S.S., Kim H.P. Effects of naturally occurring prenylated flavonoids on enzymes metabolizing arachidonic acid: Cyclooxygenases and lipoxygenases. Biochem. Pharmacol. 2001;62:1185–1191. doi: 10.1016/S0006-2952(01)00773-0. PubMed DOI
Gao Y., Zhang Y., Zhu J., Li B., Li Z., Zhu W., Shi J., Jia Q., Li Y. Recent progress in natural products as DPP-4 inhibitors. Future Med. Chem. 2015;7:1079–1089. doi: 10.4155/fmc.15.49. PubMed DOI
Abe M., Akiyama T., Nakamura H., Kojima F., Harada S., Muraoka Y. First synthesis and determination of the absolute configuration of sulphostin, a novel inhibitor of dipeptidyl peptidase IV. J. Nat. Prod. 2004;67:999–1004. doi: 10.1021/np030491b. PubMed DOI
Saleem S., Jafri L., ul Haq I., Chang L.C., Calderwood D., Green B.D., Mirza B. Plants Fagonia cretica L. and Hedera nepalensis K. Koch contain natural compounds with potent dipeptidyl peptidase-4 (DPP-4) inhibitory activity. J. Ethnopharmacol. 2014;156:26–32. doi: 10.1016/j.jep.2014.08.017. PubMed DOI
Schmitt C.A., Dirsch V.M. Modulation of endothelial nitric oxide by plant-derived products. Nitric Oxide. 2009;21:77–91. doi: 10.1016/j.niox.2009.05.006. PubMed DOI
Waldbauer K., Seiringer G., Nguyen D.L., Winkler J., Blaschke M., McKinnon R., Urban E., Ladurner A., Dirsch V.M., Zehl M., et al. Triterpenoic acids from apple pomace enhance the activity of the endothelial nitric oxide synthase (eNOS) J. Agric. Food Chem. 2016;64:185–194. doi: 10.1021/acs.jafc.5b05061. PubMed DOI
Xia N., Pautz A., Wollscheid U., Reifenberg G., Förstermann U., Li H. Artichoke, cynarin and cyanidin downregulate the expression of inducible nitric oxide synthase in human coronary smooth muscle cells. Molecules. 2014;19:3654–3668. doi: 10.3390/molecules19033654. PubMed DOI PMC
Shen K., Leung S.W., Ji L., Huang Y., Hou M., Xu A., Wang Z., Vanhoutte P.M. Notoginsenoside Ft1 activates both glucocorticoid and estrogen receptors to induce endothelium-dependent, nitric oxide-mediated relaxations in rat mesenteric arteries. Biochem. Pharmacol. 2014;88:66–74. doi: 10.1016/j.bcp.2014.01.007. PubMed DOI
Auger C., Chaabi M., Anselm E., Lobstein A., Schini-Kerth V.B. The red wine extract-induced activation of endothelial nitric oxide synthase is mediated by a great variety of polyphenolic compounds. Mol. Nutr. Food Res. 2010;54(Suppl. 2):S171–S183. doi: 10.1002/mnfr.200900602. PubMed DOI
Leung K.W., Cheng Y.K., Mak N.K., Chan K.K., Fan T.P., Wong R.N. Signaling pathway of ginsenoside-Rg1 leading to nitric oxide production in endothelial cells. FEBS Lett. 2006;580:3211–3216. doi: 10.1016/j.febslet.2006.04.080. PubMed DOI
Ndiaye M., Chataigneau M., Lobysheva I., Chataigneau T., Schini-Kerth V.B. Red wine polyphenol-induced, endothelium-dependent NO-mediated relaxation is due to the redox-sensitive PI3-kinase/Akt-dependent phosphorylation of endothelial NO-synthase in the isolated porcine coronary artery. FASEB J. 2005;19:455–457. doi: 10.1096/fj.04-2146fje. PubMed DOI
Golan-Goldhirsh A., Gopas J. Plant derived inhibitors of NF-κB. Phytochem. Rev. 2014;13:107–121. doi: 10.1007/s11101-013-9293-5. DOI
Chan M.M. Inhibition of tumor necrosis factor by curcumin, a phytochemical. Biochem. Pharmacol. 1995;49:1551–1556. doi: 10.1016/0006-2952(95)00171-U. PubMed DOI
Siedle B., Garcia-Pineres A.J., Murillo R., Schulte-Mönting J., Castro V., Rüngeler P., Klaas C.A., da Costa F.B., Kisiel W., Merfort I. Quantitative structure-activity relationship of sesquiterpene lactones as inhibitors of the transcription factor NF-κB. J. Med. Chem. 2004;47:6042–6054. doi: 10.1021/jm049937r. PubMed DOI
Fakhrudin N., Waltenberger B., Cabaravdic M., Atanasov A.G., Malainer C., Schachner D., Heiss E.H., Liu R., Noha S.M., Grzywacz A.M., et al. Identification of plumericin as a potent new inhibitor of the NF-κB pathway with anti-inflammatory activity in vitro and in vivo. Br. J. Pharmacol. 2014;171:1676–1686. doi: 10.1111/bph.12558. PubMed DOI PMC
Kopp E., Ghosh S. Inhibition of NF-κB by sodium salicylate and aspirin. Science. 1994;265:956–959. doi: 10.1126/science.8052854. PubMed DOI
Kumar H., Kim I.S., More S.V., Kim B.W., Choi D.K. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Nat. Prod. Rep. 2014;31:109–139. doi: 10.1039/C3NP70065H. PubMed DOI
Balogun E., Hoque M., Gong P., Killeen E., Green C.J., Foresti R., Alam J., Motterlini R. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem. J. 2003;371:887–895. doi: 10.1042/bj20021619. PubMed DOI PMC
Heiss E.H., Tran T.V., Zimmermann K., Schwaiger S., Vouk C., Mayerhofer B., Malainer C., Atanasov A.G., Stuppner H., Dirsch V.M. Identification of chromomoric acid C-I as an Nrf2 activator in Chromolaena odorata. J. Nat. Prod. 2014;77:503–508. doi: 10.1021/np400778m. PubMed DOI PMC
Ahn Y.H., Hwang Y., Liu H., Wang X.J., Zhang Y., Stephenson K.K., Boronina T.N., Cole R.N., Dinkova-Kostova A.T., Talalay P., et al. Electrophilic tuning of the chemoprotective natural product sulforaphane. Proc. Natl. Acad. Sci. USA. 2010;107:9590–9595. doi: 10.1073/pnas.1004104107. PubMed DOI PMC
Wang L., Waltenberger B., Pferschy-Wenzig E.M., Blunder M., Liu X., Malainer C., Blazevic T., Schwaiger S., Rollinger J.M., Heiss E.H., et al. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARgamma): A review. Biochem. Pharmacol. 2014;92:73–89. doi: 10.1016/j.bcp.2014.07.018. PubMed DOI PMC
Atanasov A.G., Blunder M., Fakhrudin N., Liu X., Noha S.M., Malainer C., Kramer M.P., Cocic A., Kunert O., Schinkovitz A., et al. Polyacetylenes from Notopterygium incisum—New selective partial agonists of peroxisome proliferator-activated receptor-gamma. PLoS ONE. 2013;8:e61755. doi: 10.1371/journal.pone.0061755. PubMed DOI PMC
Atanasov A.G., Wang J.N., Gu S.P., Bu J., Kramer M.P., Baumgartner L., Fakhrudin N., Ladurner A., Malainer C., Vuorinen A., et al. Honokiol: A non-adipogenic PPARgamma agonist from nature. Biochim. Biophys. Acta. 2013;1830:4813–4819. doi: 10.1016/j.bbagen.2013.06.021. PubMed DOI PMC
Fakhrudin N., Ladurner A., Atanasov A.G., Heiss E.H., Baumgartner L., Markt P., Schuster D., Ellmerer E.P., Wolber G., Rollinger J.M., et al. Computer-aided discovery, validation, and mechanistic characterization of novel neolignan activators of peroxisome proliferator-activated receptor gamma. Mol. Pharmacol. 2010;77:559–566. doi: 10.1124/mol.109.062141. PubMed DOI PMC
Puhl A.C., Bernardes A., Silveira R.L., Yuan J., Campos J.L., Saidemberg D.M., Palma M.S., Cvoro A., Ayers S.D., Webb P., et al. Mode of peroxisome proliferator-activated receptor gamma activation by luteolin. Mol. Pharmacol. 2012;81:788–799. doi: 10.1124/mol.111.076216. PubMed DOI
Weidner C., de Groot J.C., Prasad A., Freiwald A., Quedenau C., Kliem M., Witzke A., Kodelja V., Han C.T., Giegold S., et al. Amorfrutins are potent antidiabetic dietary natural products. Proc. Natl. Acad. Sci. USA. 2012;109:7257–7262. doi: 10.1073/pnas.1116971109. PubMed DOI PMC
Wang L.-J., Jiang B., Wu N., Wang S.-Y., Shi D.-Y. Natural and semisynthetic protein tyrosine phosphatase 1B (PTP1B) inhibitors as anti-diabetic agents. RSC Adv. 2015;5:48822–48834. doi: 10.1039/C5RA01754H. DOI
Jiang C.S., Liang L.F., Guo Y.W. Natural products possessing protein tyrosine phosphatase 1B (PTP1B) inhibitory activity found in the last decades. Acta Pharmacol. Sin. 2012;33:1217–1245. doi: 10.1038/aps.2012.90. PubMed DOI PMC
Heiss E.H., Baumgartner L., Schwaiger S., Heredia R.J., Atanasov A.G., Rollinger J.M., Stuppner H., Dirsch V.M. Ratanhiaphenol III from Ratanhiae radix is a PTP1B inhibitor. Planta Med. 2012;78:678–681. doi: 10.1055/s-0031-1298242. PubMed DOI PMC
Feng Y., Carroll A.R., Addepalli R., Fechner G.A., Avery V.M., Quinn R.J. Vanillic acid derivatives from the green algae Cladophora socialis as potent protein tyrosine phosphatase 1B inhibitors. J. Nat. Prod. 2007;70:1790–1792. doi: 10.1021/np070225o. PubMed DOI
Yoon G., Lee W., Kim S.N., Cheon S.H. Inhibitory effect of chalcones and their derivatives from Glycyrrhiza inflata on protein tyrosine phosphatase 1B. Bioorg. Med. Chem. Lett. 2009;19:5155–5157. doi: 10.1016/j.bmcl.2009.07.054. PubMed DOI
Werz O. Inhibition of 5-lipoxygenase product synthesis by natural compounds of plant origin. Planta Med. 2007;73:1331–1357. doi: 10.1055/s-2007-990242. PubMed DOI
Oettl S.K., Gerstmeier J., Khan S.Y., Wiechmann K., Bauer J., Atanasov A.G., Malainer C., Awad E.M., Uhrin P., Heiss E.H., et al. Imbricaric acid and perlatolic acid: Multi-targeting anti-inflammatory depsides from Cetrelia monachorum. PLoS ONE. 2013;8:e76929. doi: 10.1371/journal.pone.0076929. PubMed DOI PMC
De la Puerta R., Ruiz Gutierrez V., Hoult J.R. Inhibition of leukocyte 5-lipoxygenase by phenolics from virgin olive oil. Biochem. Pharmacol. 1999;57:445–449. doi: 10.1016/S0006-2952(98)00320-7. PubMed DOI
Winekenstädde D., Angelis A., Waltenberger B., Schwaiger S., Tchoumtchoua J., König S., Werz O., Aligiannis N., Skaltsounis A.-L., Stuppner H. Phytochemical profile of the aerial parts of Sedum sediforme and anti-inflammatory activity of myricitrin. Nat. Prod. Commun. 2015;10:83–88. PubMed
Endo A. A historical perspective on the discovery of statins. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2010;86:484–493. doi: 10.2183/pjab.86.484. PubMed DOI PMC
Tanzawa K., Kuroda M., Endo A. Time-dependent, irreversible inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reductase by the antibiotic citrinin. Biochim. Biophys. Acta. 1977;488:97–101. PubMed
Endo A., Kuroda M. Citrinin, an inhibitor of cholesterol synthesis. J. Antibiot. Tokyo. 1976;29:841–843. doi: 10.7164/antibiotics.29.841. PubMed DOI
Endo A., Kuroda M., Tsujita Y. ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinium. J. Antibiot. Tokyo. 1976;29:1346–1348. doi: 10.7164/antibiotics.29.1346. PubMed DOI
Endo A., Kuroda M., Tanzawa K. Competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by ML-236A and ML-236B fungal metabolites, having hypocholesterolemic activity. FEBS Lett. 1976;72:323–326. doi: 10.1016/0014-5793(76)80996-9. PubMed DOI
Endo A., Tsujita Y., Kuroda M., Tanzawa K. Inhibition of cholesterol synthesis in vitro and in vivo by ML-236A and ML-236B, competitive inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Eur. J. Biochem. 1977;77:31–36. doi: 10.1111/j.1432-1033.1977.tb11637.x. PubMed DOI
Alberts A.W., Chen J., Kuron G., Hunt V., Huff J., Hoffman C., Rothrock J., Lopez M., Joshua H., Harris E., et al. Mevinolin: A highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc. Natl. Acad. Sci. USA. 1980;77:3957–3961. doi: 10.1073/pnas.77.7.3957. PubMed DOI PMC
Endo A. Monacolin K, a new hypocholesterolemic agent produced by a Monascus species. J. Antibiot. Tokyo. 1979;32:852–854. doi: 10.7164/antibiotics.32.852. PubMed DOI
Endo A. A gift from nature: The birth of the statins. Nat. Med. 2008;14:1050–1052. doi: 10.1038/nm1008-1050. PubMed DOI
Grundy S.M. Dyslipidaemia in 2015: Advances in treatment of dyslipidaemia. Nat. Rev. Cardiol. 2016;13:74–75. doi: 10.1038/nrcardio.2015.208. PubMed DOI
Bailey C., Day C. Metformin: Its botanical background. Pract. Diab. Int. 2004;21:115–117. doi: 10.1002/pdi.606. DOI
Müller H., Reinwein H. Pharmacology of galegin. Arch. Exp. Pathol. Pharmakol. 1927;125:212–228. doi: 10.1007/BF01862957. DOI
Tanret G. An alkaloid extracted from Galega officinalis. Compt. Rend. 1914;158:1182–1184.
Barger G., White F.D. The constitution of galegine. Biochem. J. 1923;17:827–835. doi: 10.1042/bj0170827. PubMed DOI PMC
Watanabe C.K. Studies in the metabolic changes induced by administration of guanidine bases. I. The influence of injected guanidine hydrochloride upon blood sugar content. J. Biol. Chem. 1918;33:253–265.
Bailey C., Campbell I., Chan J., Davidson J., Howlett H., Ritz P. Metformin: The Gold Standard. A Scientific Handbook. Wiley; Chichester, UK: 2007.
Cusi K., DeFronzo R.A. Metformin: A review of its metabolic effects. Diabetes Rev. 1998;6:89–131.
The Forty-Sixth Euro Congress on Drug Synthesis and Analysis: Snapshot †
The Eighth Central European Conference "Chemistry towards Biology": Snapshot