Natural Products to Counteract the Epidemic of Cardiovascular and Metabolic Disorders

. 2016 Jun 22 ; 21 (6) : . [epub] 20160622

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid27338339

Grantová podpora
P 25971 Austrian Science Fund FWF - Austria

Natural products have always been exploited to promote health and served as a valuable source for the discovery of new drugs. In this review, the great potential of natural compounds and medicinal plants for the treatment or prevention of cardiovascular and metabolic disorders, global health problems with rising prevalence, is addressed. Special emphasis is laid on natural products for which efficacy and safety have already been proven and which are in clinical trials, as well as on plants used in traditional medicine. Potential benefits from certain dietary habits and dietary constituents, as well as common molecular targets of natural products, are also briefly discussed. A glimpse at the history of statins and biguanides, two prominent representatives of natural products (or their derivatives) in the fight against metabolic disease, is also included. The present review aims to serve as an "opening" of this special issue of Molecules, presenting key historical developments, recent advances, and future perspectives outlining the potential of natural products for prevention or therapy of cardiovascular and metabolic disease.

Zobrazit více v PubMed

Atanasov A.G., Waltenberger B., Pferschy-Wenzig E.M., Linder T., Wawrosch C., Uhrin P., Temml V., Wang L., Schwaiger S., Heiss E.H., et al. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv. 2015;33:1582–1614. doi: 10.1016/j.biotechadv.2015.08.001. PubMed DOI PMC

David B., Wolfender J.-L., Dias D.A. The pharmaceutical industry and natural products: Historical status and new trends. Phytochem. Rev. 2015;14:299–315. doi: 10.1007/s11101-014-9367-z. DOI

Amirkia V., Heinrich M. Natural products and drug discovery: A survey of stakeholders in industry and academia. Front. Pharmacol. 2015;6 doi: 10.3389/fphar.2015.00237. PubMed DOI PMC

Efferth T., Zacchino S., Georgiev M.I., Liu L., Wagner H., Panossian A. Nobel Prize for artemisinin brings phytotherapy into the spotlight. Phytomedicine. 2015;22:A1–A3. doi: 10.1016/j.phymed.2015.10.003. PubMed DOI

Hertweck C. Natural products as source of therapeutics against parasitic diseases. Angew. Chem. Int. Ed. Engl. 2015;54:14622–14624. doi: 10.1002/anie.201509828. PubMed DOI

Cardoso S.M., Pereira O.R., Seca A.M., Pinto D.C., Silva A.M. Seaweeds as preventive agents for cardiovascular diseases: From nutrients to functional foods. Mar. Drugs. 2015;13:6838–6865. doi: 10.3390/md13116838. PubMed DOI PMC

Cornish M.L., Critchley A.T., Mouritsen O.G. A role for dietary macroalgae in the amelioration of certain risk factors associated with cardiovascular disease. Phycologia. 2015;54:649–666. doi: 10.2216/15-77.1. DOI

Tierney M.S., Croft A.K., Hayes M. A review of antihypertensive and antioxidant activities in macroalgae. Bot. Mar. 2010;53:387–408. doi: 10.1515/bot.2010.044. DOI

Wijesekara I., Kim S.K. Angiotensin-I-converting enzyme (ACE) inhibitors from marine resources: Prospects in the pharmaceutical industry. Mar. Drugs. 2010;8:1080–1093. doi: 10.3390/md8041080. PubMed DOI PMC

Sperling L.S., Mechanick J.I., Neeland I.J., Herrick C.J., Després J.-P., Ndumele C.E., Vijayaraghavan K., Handelsman Y., Puckrein G.A., Araneta M.R.G., et al. The CardioMetabolic Health Alliance: Working toward a new care model for the metabolic syndrome. J. Am. Coll. Cardiol. 2015;66:1050–1067. doi: 10.1016/j.jacc.2015.06.1328. PubMed DOI

Huang T.H.-W., Teoh A.W., Lin B.-L., Lin D.S.-H., Roufogalis B. The role of herbal PPAR modulators in the treatment of cardiometabolic syndrome. Pharmacol. Res. 2009;60:195–206. doi: 10.1016/j.phrs.2009.03.020. PubMed DOI

Lusis A.J. Atherosclerosis. Nature. 2000;407:233–241. doi: 10.1038/35025203. PubMed DOI PMC

World Health Organization (WHO) Global Status Report on Noncommunicable Diseases 2014. WHO; Geneva, Switzerland: 2014.

World Health Organization (WHO) Global Report on Diabetes 2016. WHO; Geneva, Switzerland: 2016.

Shaw J.E., Sicree R.A., Zimmet P.Z. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 2010;87:4–14. doi: 10.1016/j.diabres.2009.10.007. PubMed DOI

Xiao J. Natural polyphenols and diabetes: Understanding their mechanism of action. Curr. Med. Chem. 2015;22:2–3. doi: 10.2174/0929867321666141012173816. PubMed DOI

Cefalu W.T., Ye J., Wang Z.Q. Efficacy of dietary supplementation with botanicals on carbohydrate metabolism in humans. Endocr. Metab. Immune Disord. Drug Targets. 2008;8:78–81. doi: 10.2174/187153008784534376. PubMed DOI

Dong H., Lu F.-E., Zhao L. Chinese herbal medicine in the treatment of nonalcoholic fatty liver disease. Chin. J. Integr. Med. 2012;18:152–160. doi: 10.1007/s11655-012-0993-2. PubMed DOI

Heber D. Herbs and atherosclerosis. Curr. Atheroscler. Rep. 2001;3:93–96. doi: 10.1007/s11883-001-0016-9. PubMed DOI

World Health Organization (WHO) Traditional Medicine Strategy 2014–2023. WHO; Geneva, Switzerland: 2013.

Mashour N.H., Lin G.I., Frishman W.H. Herbal medicine for the treatment of cardiovascular disease: Clinical considerations. Arch. Intern. Med. 1998;158:2225–2234. doi: 10.1001/archinte.158.20.2225. PubMed DOI

Pittler M.H., Ernst E. Horse chestnut seed extract for chronic venous insufficiency. Cochrane Database Syst. Rev. 2012;11:CD003230. doi: 10.1002/14651858.CD003230.pub4. PubMed DOI

Suter A., Bommer S., Rechner J. Treatment of patients with venous insufficiency with fresh plant horse chestnut seed extract: A review of 5 clinical studies. Adv. Ther. 2006;23:179–190. doi: 10.1007/BF02850359. PubMed DOI

Siebert U., Brach M., Sroczynski G., Berla K. Efficacy, routine effectiveness, and safety of horsechestnut seed extract in the treatment of chronic venous insufficiency. A meta-analysis of randomized controlled trials and large observational studies. Int. Angiol. 2002;21:305–315. PubMed

Rahman K., Lowe G.M. Garlic and cardiovascular disease: A critical review. J. Nutr. 2006;136:736S–740S. PubMed

Sobenin I.A., Nedosugova L.V., Filatova L.V., Balabolkin M.I., Gorchakova T.V., Orekhov A.N. Metabolic effects of time-released garlic powder tablets in type 2 diabetes mellitus: The results of double-blinded placebo-controlled study. Acta Diabetol. 2008;45:1–6. doi: 10.1007/s00592-007-0011-x. PubMed DOI

Al Disi S.S., Anwar M.A., Eid A.H. Anti-hypertensive herbs and their mechanism of action: Part I. Front. Pharmacol. 2016;6 doi: 10.3389/fphar.2015.00323. PubMed DOI PMC

Kwak J.S., Kim J.Y., Paek J.E., Lee Y.J., Kim H.R., Park D.S., Kwon O. Garlic powder intake and cardiovascular risk factors: A meta-analysis of randomized controlled clinical trials. Nutr. Res. Pract. 2014;8:644–654. doi: 10.4162/nrp.2014.8.6.644. PubMed DOI PMC

Stabler S.N., Tejani A.M., Huynh F., Fowkes C. Garlic for the prevention of cardiovascular morbidity and mortality in hypertensive patients. Cochrane Database Syst. Rev. 2012;8:CD007653. PubMed PMC

Zeng T., Guo F.F., Zhang C.L., Song F.Y., Zhao X.L., Xie K.Q. A meta-analysis of randomized, double-blind, placebo-controlled trials for the effects of garlic on serum lipid profiles. J. Sci. Food Agric. 2012;92:1892–1902. doi: 10.1002/jsfa.5557. PubMed DOI

Okyar A., Can A., Akev N., Baktir G., Sütlüpinar N. Effect of Aloe vera leaves on blood glucose level in type I and type II diabetic rat models. Phytother. Res. 2001;15:157–161. doi: 10.1002/ptr.719. PubMed DOI

Rajasekaran S., Ravi K., Sivagnanam K., Subramanian S. Beneficial effects of Aloe vera leaf gel extract on lipid profile status in rats with streptozotocin diabetes. Clin. Exp. Pharmacol. Physiol. 2006;33:232–237. doi: 10.1111/j.1440-1681.2006.04351.x. PubMed DOI

Alinejad-Mofrad S., Foadoddini M., Saadatjoo S.A., Shayesteh M. Improvement of glucose and lipid profile status with Aloe vera in pre-diabetic subjects: A randomized controlled-trial. J. Diabetes Metab. Disord. 2015;14 doi: 10.1186/s40200-015-0137-2. PubMed DOI PMC

Dick W.R., Fletcher E.A., Shah S.A. Reduction of fasting blood glucose and hemoglobin A1c using oral Aloe vera: A meta-analysis. J. Altern. Complement. Med. 2016 doi: 10.1089/acm.2015.0122. PubMed DOI

Devaraj S., Yimam M., Brownell L.A., Jialal I., Singh S., Jia Q. Effects of Aloe vera supplementation in subjects with prediabetes/metabolic syndrome. Metab. Syndr. Relat. Disord. 2013;11:35–40. doi: 10.1089/met.2012.0066. PubMed DOI

Hashim S., Jan A., Marwat K.B., Khan M.A. Phytochemistry and medicinal properties of Ammi visnaga (Apiacae) Pak. J. Bot. 2014;46:861–867.

Durate J., Vallejo I., Perez-Vizcaino F., Jimenez R., Zarzuelo A., Tamargo J. Effects of visnadine on rat isolated vascular smooth muscles. Planta Med. 1997;63:233–236. doi: 10.1055/s-2006-957660. PubMed DOI

Duarte J., Perez-Vizcaino F., Torres A.I., Zarzuelo A., Jimenez J., Tamargo J. Vasodilator effects of visnagin in isolated rat vascular smooth muscle. Eur. J. Pharmacol. 1995;286:115–122. doi: 10.1016/0014-2999(95)00418-K. PubMed DOI

Hao P.-P., Jiang F., Chen Y.-G., Yang J., Zhang K., Zhang M.-X., Zhang C., Zhao Y.-X., Zhang Y. Traditional Chinese medication for cardiovascular disease. Nat. Rev. Cardiol. 2015;12:115–122. doi: 10.1038/nrcardio.2014.177. PubMed DOI

Kim D.-W., Yokozawa T., Hattori M., Kadota S., Namba T. Effects of aqueous extracts of Apocynum venetum leaves on spontaneously hypertensive, renal hypertensive and NaCl-fed-hypertensive rats. J. Ethnopharmacol. 2000;72:53–59. doi: 10.1016/S0378-8741(00)00197-5. PubMed DOI

Xie W., Zhang X., Wang T., Hu J. Botany, traditional uses, phytochemistry and pharmacology of Apocynum venetum L. (Luobuma): A review. J. Ethnopharmacol. 2012;141:1–8. doi: 10.1016/j.jep.2012.02.003. PubMed DOI

Wang W., Liang X., Fu D., Tie R., Xing W., Ji L., Liu F., Zhang H., Li R. Apocynum venetum leaf attenuates myocardial ischemia/reperfusion injury by inhibiting oxidative stress. Am. J. Chin. Med. 2015;43:71–85. doi: 10.1142/S0192415X15500056. PubMed DOI

Aggarwal S., Shailendra G., Ribnicky D.M., Burk D., Karki N., Qingxia Wang M.S. An extract of Artemisia dracunculus L. stimulates insulin secretion from β cells, activates AMPK and suppresses inflammation. J. Ethnopharmacol. 2015;170:98–105. doi: 10.1016/j.jep.2015.05.003. PubMed DOI PMC

Watcho P., Stavniichuk R., Tane P., Shevalye H., Maksimchyk Y., Pacher P., Obrosova I.G. Evaluation of PMI-5011, an ethanolic extract of Artemisia dracunculus L., on peripheral neuropathy in streptozotocin-diabetic mice. Int. J. Mol. Med. 2011;27:299–307. PubMed PMC

Watcho P., Stavniichuk R., Ribnicky D.M., Raskin I., Obrosova I.G. High-fat diet-induced neuropathy of prediabetes and obesity: Effect of PMI-5011, an ethanolic extract of Artemisia dracunculus L. Mediat. Inflamm. 2010;2010 doi: 10.1155/2010/268547. PubMed DOI PMC

Hamza N., Berke B., Cheze C., Marais S., Lorrain S., Abdouelfath A., Lassalle R., Carles D., Gin H., Moore N. Effect of Centaurium erythraea Rafn, Artemisia herba-alba Asso and Trigonella foenum-graecum L. on liver fat accumulation in C57BL/6J mice with high-fat diet-induced type 2 diabetes. J. Ethnopharmacol. 2015;171:4–11. doi: 10.1016/j.jep.2015.05.027. PubMed DOI

Boudjelal A., Siracusa L., Henchiri C., Sarri M., Abderrahim B., Baali F., Ruberto G. Antidiabetic effects of aqueous infusions of Artemisia herba-alba and Ajuga iva in alloxan-induced diabetic rats. Planta Med. 2015;81:696–704. doi: 10.1055/s-0035-1546006. PubMed DOI

Hamza N., Berke B., Cheze C., Le Garrec R., Lassalle R., Agli A.N., Robinson P., Gin H., Moore N. Treatment of high fat diet induced type 2 diabetes in C57BL/6J mice by two medicinal plants used in traditional treatment of diabetes in the east of Algeria. J. Ethnopharmacol. 2011;133:931–933. doi: 10.1016/j.jep.2010.11.019. PubMed DOI

Al-Shamaony L., al-Khazraji S.M., Twaij H.A. Hypoglycaemic effect of Artemisia herba alba. II. Effect of a valuable extract on some blood parameters in diabetic animals. J. Ethnopharmacol. 1994;43:167–171. doi: 10.1016/0378-8741(94)90038-8. PubMed DOI

Hamza N., Berke B., Cheze C., Agli A.N., Robinson P., Gin H., Moore N. Prevention of type 2 diabetes induced by high fat diet in the C57BL/6J mouse by two medicinal plants used in traditional treatment of diabetes in the east of Algeria. J. Ethnopharmacol. 2010;128:513–518. doi: 10.1016/j.jep.2010.01.004. PubMed DOI

Kawano A., Nakamura H., Hata S.-I., Minakawa M., Miura Y., Yagasaki K. Hypoglycemic effect of aspalathin, a rooibos tea component from Aspalathus linearis, in type 2 diabetic model db/db mice. Phytomedicine. 2009;16:437–443. doi: 10.1016/j.phymed.2008.11.009. PubMed DOI

Son M.J., Minakawa M., Miura Y., Yagasaki K. Aspalathin improves hyperglycemia and glucose intolerance in obese diabetic ob/ob mice. Eur. J. Nutr. 2013;52:1607–1619. doi: 10.1007/s00394-012-0466-6. PubMed DOI

Mazibuko S.E., Joubert E., Johnson R., Louw J., Opoku A.R., Muller C.J. Aspalathin improves glucose and lipid metabolism in 3T3-L1 adipocytes exposed to palmitate. Mol. Nutr. Food Res. 2015;59:2199–2208. doi: 10.1002/mnfr.201500258. PubMed DOI

Ku S.K., Kwak S., Kim Y., Bae J.S. Aspalathin and nothofagin from rooibos (Aspalathus linearis) inhibits high glucose-induced inflammation in vitro and in vivo. Inflammation. 2015;38:445–455. doi: 10.1007/s10753-014-0049-1. PubMed DOI

Chen W., Lai Y., Wang L., Xia Y., Chen W., Zhao X., Yu M., Li Y., Zhang Y., Ye H. Astragalus polysaccharides repress myocardial lipotoxicity in a PPARalpha-dependent manner in vitro and in vivo in mice. J. Diabetes Complicat. 2015;29:164–175. doi: 10.1016/j.jdiacomp.2014.11.007. PubMed DOI

Kim J., Moon E., Kwon S. Effect of Astragalus membranaceus extract on diabetic nephropathy. Endocrinol. Diabetes Metab. Case Rep. 2014;2014 doi: 10.1530/EDM-14-0063. PubMed DOI PMC

Qin H., Liu P., Lin S. Effects of astragaloside IV on the SDF-1/CXCR4 expression in atherosclerosis of apoE−/− mice induced by hyperlipaemia. Evid. Based Complement. Altern. Med. 2015;2015 doi: 10.1155/2015/385154. PubMed DOI PMC

Zhao P., Wang Y., Zeng S., Lu J., Jiang T.-M., Li Y.-M. Protective effect of astragaloside IV on lipopolysaccharide-induced cardiac dysfunction via downregulation of inflammatory signaling in mice. Immunopharmacol. Immunotoxicol. 2015;37:428–433. doi: 10.3109/08923973.2015.1080266. PubMed DOI

Lu Y., Li S., Wu H., Bian Z., Xu J., Gu C., Chen X., Yang D. Beneficial effects of astragaloside IV against angiotensin II-induced mitochondrial dysfunction in rat vascular smooth muscle cells. Int. J. Mol. Med. 2015;36:1223–1232. doi: 10.3892/ijmm.2015.2345. PubMed DOI PMC

Bai Y., Lu P., Han C., Yu C., Chen M., He F., Yi D., Wu L. Hydroxysafflor yellow A (HSYA) from flowers of Carthamus tinctorius L. and its vasodilatation effects on pulmonary artery. Molecules. 2012;17:14918–14927. doi: 10.3390/molecules171214918. PubMed DOI PMC

Nie P.H., Zhang L., Zhang W.H., Rong W.F., Zhi J.M. The effects of hydroxysafflor yellow A on blood pressure and cardiac function. J. Ethnopharmacol. 2012;139:746–750. doi: 10.1016/j.jep.2011.11.054. PubMed DOI

Chen J., Deng J., Zhang Y., Yang J., He Y., Fu W., Xing P., Wan H.T. Lipid-lowering effects of Danhong injection on hyperlipidemia rats. J. Ethnopharmacol. 2014;154:437–442. doi: 10.1016/j.jep.2014.04.023. PubMed DOI

Li L., Dong P., Hou C., Cao F., Sun S., He F., Song Y., Li S., Bai Y., Zhu D. Hydroxysafflor yellow A (HSYA) attenuates hypoxic pulmonary arterial remodelling and reverses right ventricular hypertrophy in rats. J. Ethnopharmacol. 2016;186:224–233. doi: 10.1016/j.jep.2016.04.004. PubMed DOI

Maneesai P., Prasarttong P., Bunbupha S., Kukongviriyapan U., Kukongviriyapan V., Tangsucharit P., Prachaney P., Pakdeechote P. Synergistic antihypertensive effect of Carthamus tinctorius L. extract and captopril in l-NAME-induced hypertensive rats via restoration of eNOS and AT1R expression. Nutrients. 2016;8 doi: 10.3390/nu8030122. PubMed DOI PMC

Sefi M., Fetoui H., Lachkar N., Tahraoui A., Lyoussi B., Boudawara T., Zeghal N. Centaurium erythrea (Gentianaceae) leaf extract alleviates streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. J. Ethnopharmacol. 2011;135:243–250. doi: 10.1016/j.jep.2011.02.029. PubMed DOI

Stefkov G., Miova B., Dinevska-Kjovkarovska S., Stanoeva J.P., Stefova M., Petrusevska G., Kulevanova S. Chemical characterization of Centaurium erythrea L. and its effects on carbohydrate and lipid metabolism in experimental diabetes. J. Ethnopharmacol. 2014;152:71–77. doi: 10.1016/j.jep.2013.11.047. PubMed DOI

Eddouks M., Bidi A., El Bouhali B., Hajji L., Zeggwagh N.A. Antidiabetic plants improving insulin sensitivity. J. Pharm. Pharmacol. 2014;66:1197–1214. doi: 10.1111/jphp.12243. PubMed DOI

Yan Y.-M., Fang P., Yang M.-T., Li N., Lu Q., Cheng Y.-X. Anti-diabetic nephropathy compounds from Cinnamomum cassia. J. Ethnopharmacol. 2015;165:141–147. doi: 10.1016/j.jep.2015.01.049. PubMed DOI

Medagama A.B. The glycaemic outcomes of cinnamon, a review of the experimental evidence and clinical trials. Nutr. J. 2015;14 doi: 10.1186/s12937-015-0098-9. PubMed DOI PMC

Crawford P. Effectiveness of cinnamon for lowering hemoglobin A1C in patients with type 2 diabetes: A randomized, controlled trial. J. Am. Board Fam. Med. 2009;22:507–512. doi: 10.3122/jabfm.2009.05.080093. PubMed DOI

Mirfeizi M., Mehdizadeh Tourzani Z., Mirfeizi S.Z., Asghari Jafarabadi M., Rezvani H.R., Afzali M., Gholami M.J. Controlling diabetes mellitus type 2 with herbal medicines: A triple blind, randomized clinical trial of efficacy and safety. J. Diabetes. 2015 doi: 10.1111/1753-0407.12342. PubMed DOI

Ríos J.L., Francini F., Schinella G.R. Natural products for the treatment of type 2 diabetes mellitus. Planta Med. 2015;81:975–994. doi: 10.1055/s-0035-1546131. PubMed DOI

Whitfield P., Parry-Strong A., Walsh E., Weatherall M., Krebs J.D. The effect of a cinnamon-, chromium- and magnesium-formulated honey on glycaemic control, weight loss and lipid parameters in type 2 diabetes: An open-label cross-over randomised controlled trial. Eur. J. Nutr. 2016;55:1123–1131. doi: 10.1007/s00394-015-0926-x. PubMed DOI

Beejmohun V., Peytavy-Izard M., Mignon C., Muscente-Paque D., Deplanque X., Ripoll C., Chapal N. Acute effect of Ceylon cinnamon extract on postprandial glycemia: Alpha-amylase inhibition, starch tolerance test in rats, and randomized crossover clinical trial in healthy volunteers. BMC Complement. Altern. Med. 2014;14 doi: 10.1186/1472-6882-14-351. PubMed DOI PMC

Frishman W.H., Beravol P., Carosella C. Alternative and complementary medicine for preventing and treating cardiovascular disease. Dis. Mon. 2009;55:121–192. doi: 10.1016/j.disamonth.2008.12.002. PubMed DOI

Ojha S.K., Nandave M., Arora S., Mehra R.D., Joshi S., Narang R., Arya D.S. Effect of Commiphora mukul extract on cardiac dysfunction and ventricular function in isoproterenol-induced myocardial infarction. Indian J. Exp. Biol. 2008;46:646–652. PubMed

Yuan L., Tu D., Ye X., Wu J. Hypoglycemic and hypocholesterolemic effects of Coptis chinensis Franch inflorescence. Plant Foods Hum. Nutr. 2006;61:139–144. doi: 10.1007/s11130-006-0023-7. PubMed DOI

Dong H., Wang J.-H., Lu F.-E., Xu L.-J., Gong Y.-L., Zou X. Jiaotai Pill enhances insulin signaling through phosphatidylinositol 3-kinase pathway in skeletal muscle of diabetic rats. Chin. J. Integr. Med. 2013;19:668–674. doi: 10.1007/s11655-013-1560-1. PubMed DOI

Yang Z., Wang L., Zhang F., Li Z. Evaluating the antidiabetic effects of Chinese herbal medicine: Xiao-Ke-An in 3T3-L1 cells and KKAy mice using both conventional and holistic omics approaches. BMC Complement. Altern. Med. 2015;15 doi: 10.1186/s12906-015-0785-2. PubMed DOI PMC

Eidi M., Eidi A., Saeidi A., Molanaei S., Sadeghipour A., Bahar M., Bahar K. Effect of coriander seed (Coriandrum sativum L.) ethanol extract on insulin release from pancreatic beta cells in streptozotocin-induced diabetic rats. Phytother. Res. 2009;23:404–406. doi: 10.1002/ptr.2642. PubMed DOI

Dhanapakiam P., Joseph J.M., Ramaswamy V.K., Moorthi M., Kumar A.S. The cholesterol lowering properties of coriander seeds (Coriandrum sativum): Mechanism of action. J. Environ. Biol. 2008;29:53–56. PubMed

Sreelatha S., Inbavalli R. Antioxidant, antihyperglycemic, and antihyperlipidemic effects of Coriandrum sativum leaf and stem in alloxan-induced diabetic rats. J. Food Sci. 2012;77:T119–T123. doi: 10.1111/j.1750-3841.2012.02755.x. PubMed DOI

Aissaoui A., Zizi S., Israili Z.H., Lyoussi B. Hypoglycemic and hypolipidemic effects of Coriandrum sativum L. in Meriones shawi rats. J. Ethnopharmacol. 2011;137:652–661. doi: 10.1016/j.jep.2011.06.019. PubMed DOI

Chang W.-T., Dao J., Shao Z.-H. Hawthorn: Potential roles in cardiovascular disease. Am. J. Chin. Med. 2005;33:1–10. doi: 10.1142/S0192415X05002606. PubMed DOI

Chrysant S.G. The clinical significance and costs of herbs and food supplements used by complementary and alternative medicine for the treatment of cardiovascular diseases and hypertension. J. Hum. Hypertens. 2016;30:1–6. doi: 10.1038/jhh.2015.42. PubMed DOI

Asher G.N., Viera A.J., Weaver M.A., Dominik R., Caughey M., Hinderliter A.L. Effect of hawthorn standardized extract on flow mediated dilation in prehypertensive and mildly hypertensive adults: A randomized, controlled cross-over trial. BMC Complement. Altern. Med. 2012;12 doi: 10.1186/1472-6882-12-26. PubMed DOI PMC

Pittler M.H., Guo R., Ernst E. Hawthorn extract for treating chronic heart failure. Cochrane Database Syst. Rev. 2008;1:CD005312. PubMed PMC

Bundy R., Walker A.F., Middleton R.W., Wallis C., Simpson H.C.R. Artichoke leaf extract (Cynara scolymus) reduces plasma cholesterol in otherwise healthy hypercholesterolemic adults: A randomized, double blind placebo controlled trial. Phytomedicine. 2008;15:668–675. doi: 10.1016/j.phymed.2008.03.001. PubMed DOI

Ben Salem M., Affes H., Ksouda K., Dhouibi R., Sahnoun Z., Hammami S., Zeghal K.M. Pharmacological studies of artichoke leaf extract and their health benefits. Plant Foods Hum. Nutr. 2015;70:441–453. doi: 10.1007/s11130-015-0503-8. PubMed DOI

Maghrani M., Zeggwagh N.-A., Lemhadri A., El Amraoui M., Michel J.-B., Eddouks M. Study of the hypoglycaemic activity of Fraxinus excelsior and Silybum marianum in an animal model of type 1 diabetes mellitus. J. Ethnopharmacol. 2004;91:309–316. doi: 10.1016/j.jep.2004.01.008. PubMed DOI

Eddouks M., Maghrani M. Phlorizin-like effect of Fraxinus excelsior in normal and diabetic rats. J. Ethnopharmacol. 2004;94:149–154. doi: 10.1016/j.jep.2004.05.005. PubMed DOI

Gomez-Garcia F., Flanagan J., García-Molina O., Vilaplana-Vivo V., García-Carrillo N., Berthon P.F., Bily A., Roller M., Ortega V.V., Issaly N. Preventive effect of a Fraxinus excelsior L seeds/fruits extract on hepatic steatosis in obese type 2 diabetic mice. J. Diabetes Metab. 2015;6 doi: 10.4172/2155-6156.1000527. DOI

Visen P., Saraswat B., Visen A., Roller M., Bily A., Mermet C., He K., Bai N., Lemaire B., Lafay S., et al. Acute effects of Fraxinus excelsior L. seed extract on postprandial glycemia and insulin secretion on healthy volunteers. J. Ethnopharmacol. 2009;126:226–232. doi: 10.1016/j.jep.2009.08.039. PubMed DOI

Bai N., He K., Ibarra A., Bily A., Roller M., Chen X., Rülh R. Iridoids from Fraxinus excelsior with adipocyte differentiation-inhibitory and PPARα activation activity. J. Nat. Prod. 2010;73:2–6. doi: 10.1021/np9003118. PubMed DOI

Zulet M.A., Navas-Carretero S., Lara y Sanchez D., Abete I., Flanagan J., Issaly N., Fanca-Berthon P., Bily A., Roller M., Martinez J.A. A Fraxinus excelsior L. seeds/fruits extract benefits glucose homeostasis and adiposity related markers in elderly overweight/obese subjects: A longitudinal, randomized, crossover, double-blind, placebo-controlled nutritional intervention study. Phytomedicine. 2014;21:1162–1169. doi: 10.1016/j.phymed.2014.04.027. PubMed DOI

Bedekar A., Shah K., Koffas M. Natural products for type II diabetes treatment. Adv. Appl. Microbiol. 2010;71:21–73. PubMed

Perla V., Jayanty S.S. Biguanide related compounds in traditional antidiabetic functional foods. Food Chem. 2013;138:1574–1580. doi: 10.1016/j.foodchem.2012.09.125. PubMed DOI

Witters L.A. The blooming of the French lilac. J. Clin. Investig. 2001;108:1105–1107. doi: 10.1172/JCI14178. PubMed DOI PMC

Gardner C.D., Zehnder J.L., Rigby A.J., Nicholus J.R., Farquhar J.W. Effect of Ginkgo biloba (EGb 761) and aspirin on platelet aggregation and platelet function analysis among older adults at risk of cardiovascular disease: A randomized clinical trial. Blood Coagul. Fibrinolysis. 2007;18:787–793. doi: 10.1097/MBC.0b013e3282f102b1. PubMed DOI

Lu Q., Zuo W.-Z., Ji X.-J., Zhou Y.-X., Liu Y.-Q., Yao X.-Q., Zhou X.-Y., Liu Y.-W., Zhang F., Yin X.-X. Ethanolic Ginkgo biloba leaf extract prevents renal fibrosis through Akt/mTOR signaling in diabetic nephropathy. Phytomedicine. 2015;22:1071–1078. doi: 10.1016/j.phymed.2015.08.010. PubMed DOI

Erukainure O.L., Ajiboye J.A., Lawal B.A., Obode O.C., Okoro E.E., Amisu-Tugbobo A.O., Zaruwa M.Z. Alterations in atherogenic indices and hypolipidemic effect of soybean oil in normocholesteremic rats. Comp. Clin. Pathol. 2016;25:75–78. doi: 10.1007/s00580-015-2142-8. DOI

Kwon D.Y., Daily J.W., Kim H.J., Park S. Antidiabetic effects of fermented soybean products on type 2 diabetes. Nutr. Res. 2010;30:1–13. doi: 10.1016/j.nutres.2009.11.004. PubMed DOI

Jiang H., Tong Y., Yan D., Jia S., Ostenson C.G., Chen Z. The soybean peptide vglycin preserves the diabetic beta-cells through improvement of proliferation and inhibition of apoptosis. Sci. Rep. 2015;5 doi: 10.1038/srep15599. PubMed DOI PMC

Fuhrman B., Volkova N., Kaplan M., Presser D., Attias J., Hayek T., Aviram M. Antiatherosclerotic effects of licorice extract supplementation on hypercholesterolemic patients: Increased resistance of LDL to atherogenic modifications, reduced plasma lipid levels, and decreased systolic blood pressure. Nutrition. 2002;18:268–273. doi: 10.1016/S0899-9007(01)00753-5. PubMed DOI

Chang W.-C., Jia H., Aw W., Saito K., Hasegawa S., Kato H. Beneficial effects of soluble dietary Jerusalem artichoke (Helianthus tuberosus) in the prevention of the onset of type 2 diabetes and non-alcoholic fatty liver disease in high-fructose diet-fed rats. Br. J. Nutr. 2014;112:709–717. doi: 10.1017/S0007114514001421. PubMed DOI

Gambero A., Ribeiro M.L. The positive effects of yerba maté (Ilex paraguariensis) in obesity. Nutrients. 2015;7:730–750. doi: 10.3390/nu7020730. PubMed DOI PMC

De Moraes Pontilho P., Nunes da Costa Teixeira A.M., Yuan C., Alves Luzia L., Markowicz Bastos D.H., Rondó P.H. Yerba mate (Ilex paraguariensis A. St. Hil) and risk factors for cardiovascular diseases. J. Food Nutr. Res. 2015;3:182–190. doi: 10.12691/jfnr-3-3-9. DOI

Cardozo E.L., Jr., Morand C. Interest of mate (Ilex paraguariensis A. St.-Hil.) as a new natural functional food to preserve human cardiovascular health—A review. J. Funct. Foods. 2016;21:440–454. doi: 10.1016/j.jff.2015.12.010. DOI

Chang C.L.T., Lin Y., Bartolome A.P., Chen Y.-C., Chiu S.-C., Yang W.-C. Herbal therapies for type 2 diabetes mellitus: Chemistry, biology, and potential application of selected plants and compounds. Evid. Based Complement. Alternat. Med. 2013;2013 doi: 10.1155/2013/378657. PubMed DOI PMC

Kim S.-Y., Oh M.-R., Kim M.-G., Chae H.-J., Chae S.-W. Anti-obesity effects of yerba mate (Ilex Paraguariensis): A randomized, double-blind, placebo-controlled clinical trial. BMC Complement. Altern. Med. 2015;15 doi: 10.1186/s12906-015-0859-1. PubMed DOI PMC

Yu S., Yue S.w., Liu Z., Zhang T., Xiang N., Fu H. Yerba mate (Ilex paraguariensis) improves microcirculation of volunteers with high blood viscosity: A randomized, double-blind, placebo-controlled trial. Exp. Gerontol. 2015;62:14–22. doi: 10.1016/j.exger.2014.12.016. PubMed DOI

Luo Q., Cai Y., Yan J., Sun M., Corke H. Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarum. Life Sci. 2004;76:137–149. doi: 10.1016/j.lfs.2004.04.056. PubMed DOI

Zhao R., Jin R., Chen Y., Han F.-m. Hypoglycemic and hypolipidemic effects of Lycium barbarum polysaccharide in diabetic rats. Chin. Herb. Med. 2015;7:310–315. doi: 10.1016/S1674-6384(15)60057-0. DOI

Amagase H., Nance D.M. A randomized, double-blind, placebo-controlled, clinical study of the general effects of a standardized Lycium barbarum (Goji) juice, GoChi™. J. Altern. Complement. Med. 2008;14:403–412. doi: 10.1089/acm.2008.0004. PubMed DOI

Zhang X., Yang X., Lin Y., Suo M., Gong L., Chen J., Hui R. Anti-hypertensive effect of Lycium barbarum L. with down-regulated expression of renal endothelial lncRNA sONE in a rat model of salt-sensitive hypertension. Int. J. Clin. Exp. Pathol. 2015;8:6981–6987. PubMed PMC

Lu S.-P., Zhao P.-T. Chemical characterization of Lycium barbarum polysaccharides and their reducing myocardial injury in ischemia/reperfusion of rat heart. Int. J. Biol. Macromol. 2010;47:681–684. doi: 10.1016/j.ijbiomac.2010.08.016. PubMed DOI

Ming M., Guanhua L., Zhanhai Y., Guang C., Xuan Z. Effect of the Lycium barbarum polysaccharides administration on blood lipid metabolism and oxidative stress of mice fed high-fat diet in vivo. Food Chem. 2009;113:872–877. doi: 10.1016/j.foodchem.2008.03.064. DOI

Cai H., Liu F., Zuo P., Huang G., Song Z., Wang T., Lu H., Guo F., Han C., Sun G. Practical application of antidiabetic efficacy of Lycium barbarum polysaccharide in patients with type 2 diabetes. Med. Chem. 2015;11:383–390. doi: 10.2174/1573406410666141110153858. PubMed DOI PMC

Zhu X., Hu S., Zhu L., Ding J., Zhou Y., Li G. Effects of Lycium barbarum polysaccharides on oxidative stress in hyperlipidemic mice following chronic composite psychological stress intervention. Mol. Med. Rep. 2015;11:3445–3450. doi: 10.3892/mmr.2014.3128. PubMed DOI

Mishra A., Gautam S., Pal S., Mishra A., Rawat A.K., Maurya R., Srivastava A.K. Effect of Momordica charantia fruits on streptozotocin-induced diabetes mellitus and its associated complications. Int. J. Pharm. Pharm. Sci. 2015;7:356–363.

Yang S.J., Choi J.M., Park S.E., Rhee E.J., Lee W.Y., Oh K.W., Park S.W., Park C.-Y. Preventive effects of bitter melon (Momordica charantia) against insulin resistance and diabetes are associated with the inhibition of NF-κB and JNK pathways in high-fat-fed OLETF rats. J. Nutr. Biochem. 2015;26:234–240. doi: 10.1016/j.jnutbio.2014.10.010. PubMed DOI

Singab A.N.B., El-Beshbishy H.A., Yonekawa M., Nomura T., Fukai T. Hypoglycemic effect of Egyptian Morus alba root bark extract: Effect on diabetes and lipid peroxidation of streptozotocin-induced diabetic rats. J. Ethnopharmacol. 2005;100:333–338. doi: 10.1016/j.jep.2005.03.013. PubMed DOI

Hunyadi A., Martins A., Hsieh T.-J., Seres A., Zupkó I. Chlorogenic acid and rutin play a major role in the in vivo anti-diabetic activity of Morus alba leaf extract on type II diabetic rats. PLoS ONE. 2012;7:e50619. doi: 10.1371/journal.pone.0050619. PubMed DOI PMC

Butt M.S., Nazir A., Sultan M.T., Schroën K. Morus alba L. nature’s functional tonic. Trends Food Sci. Technol. 2008;19:505–512. doi: 10.1016/j.tifs.2008.06.002. DOI

Cai S., Sun W., Fan Y., Guo X., Xu G., Xu T., Hou Y., Zhao B., Feng X., Liu T. Effect of mulberry leaf (Folium mori) on insulin resistance via IRS-1/PI3K/Glut-4 signalling pathway in type 2 diabetes mellitus rats. Pharm. Biol. 2016 doi: 10.1080/13880209.2016.1178779. PubMed DOI

Mahmoud A.M., Abd El-Twab S.M., Abdel-Reheim E.S. Consumption of polyphenol-rich Morus alba leaves extract attenuates early diabetic retinopathy: The underlying mechanism. Eur. J. Nutr. 2016 doi: 10.1007/s00394-016-1214-0. PubMed DOI

Phimarn W., Wichaiyo K., Silpsavikul K., Sungthong B., Saramunee K. A meta-analysis of efficacy of Morus alba Linn. to improve blood glucose and lipid profile. Eur. J. Nutr. 2016 doi: 10.1007/s00394-016-1197-x. PubMed DOI

Heshmati J., Namazi N. Effects of black seed (Nigella sativa) on metabolic parameters in diabetes mellitus: A systematic review. Complement. Ther. Med. 2015;23:275–282. doi: 10.1016/j.ctim.2015.01.013. PubMed DOI

Heshmati J., Namazi N., Memarzadeh M.-R., Taghizadeh M., Kolahdooz F. Nigella sativa oil affects glucose metabolism and lipid concentrations in patients with type 2 diabetes: A randomized, double-blind, placebo-controlled trial. Food Res. Int. 2015;70:87–93. doi: 10.1016/j.foodres.2015.01.030. DOI

Kaatabi H., Bamosa A.O., Badar A., Al-Elq A., Abou-Hozaifa B., Lebda F., Al-Khadra A., Al-Almaie S. Nigella sativa improves glycemic control and ameliorates oxidative stress in patients with type 2 diabetes mellitus: Placebo controlled participant blinded clinical trial. PLoS ONE. 2015;10:e0113486. doi: 10.1371/journal.pone.0113486. PubMed DOI PMC

Mahdavi R., Namazi N., Alizadeh M., Farajnia S. Effects of Nigella sativa oil with a low-calorie diet on cardiometabolic risk factors in obese women: A randomized controlled clinical trial. Food Funct. 2015;6:2041–2048. doi: 10.1039/C5FO00316D. PubMed DOI

Asgary S., Sahebkar A., Goli-Malekabadi N. Ameliorative effects of Nigella sativa on dyslipidemia. J. Endocrinol. Investig. 2015;38:1039–1046. doi: 10.1007/s40618-015-0337-0. PubMed DOI

Husain I., Chander R., Saxena J.K., Mahdi A.A., Mahdi F. Antidyslipidemic effect of Ocimum sanctum leaf extract in streptozotocin induced diabetic rats. Indian J. Clin. Biochem. 2015;30:72–77. doi: 10.1007/s12291-013-0404-2. PubMed DOI PMC

Thadani S., Salman M.T., Tewari S., Singh S., Bhagchandani D., Ahmad A. Renoprotective effect of Ocimum sanctum in comparison with olmesartan medoxomil and pitavastatin in metformin treated diabetic rats. Int. J. Pharm. Sci. Res. 2015;6:4433–4441.

El S.N., Karakaya S. Olive tree (Olea europaea) leaves: Potential beneficial effects on human health. Nutr. Rev. 2009;67:632–638. doi: 10.1111/j.1753-4887.2009.00248.x. PubMed DOI

Poudyal H., Campbell F., Brown L. Olive leaf extract attenuates cardiac, hepatic, and metabolic changes in high carbohydrate-, high fat-fed rats. J. Nutr. 2010;140:946–953. doi: 10.3945/jn.109.117812. PubMed DOI

Susalit E., Agus N., Effendi I., Tjandrawinata R.R., Nofiarny D., Perrinjaquet-Moccetti T., Verbruggen M. Olive (Olea europaea) leaf extract effective in patients with stage-1 hypertension: Comparison with captopril. Phytomedicine. 2011;18:251–258. doi: 10.1016/j.phymed.2010.08.016. PubMed DOI

Efentakis P., Iliodromitis E.K., Mikros E., Papachristodoulou A., Dagres N., Skaltsounis A.-L., Andreadou I. Effects of the olive tree leaf constituents on myocardial oxidative damage and atherosclerosis. Planta Med. 2015;81:648–654. doi: 10.1055/s-0035-1546017. PubMed DOI

Wainstein J., Ganz T., Boaz M., Bar Dayan Y., Dolev E., Kerem Z., Madar Z. Olive leaf extract as a hypoglycemic agent in both human diabetic subjects and in rats. J. Med. Food. 2012;15:605–610. doi: 10.1089/jmf.2011.0243. PubMed DOI

Lepore S.M., Morittu V.M., Celano M., Trimboli F., Oliverio M., Procopio A., Di Loreto C., Damante G., Britti D., Bulotta S., et al. Oral administration of oleuropein and its semisynthetic peracetylated derivative prevents hepatic steatosis, hyperinsulinemia, and weight gain in mice fed with high fat cafeteria diet. Int. J. Endocrinol. 2015;2015 doi: 10.1155/2015/431453. PubMed DOI PMC

Perona J.S., Cañizares J., Montero E., Sánchez-Domínguez J.M., Catalá A., Ruiz-Gutiérrez V. Virgin olive oil reduces blood pressure in hypertensive elderly subjects. Clin. Nutr. 2004;23:1113–1121. doi: 10.1016/j.clnu.2004.02.004. PubMed DOI

Quintieri A.M., Filice E., Amelio D., Pasqua T., Lupi F.R., Scavello F., Cantafio P., Rocca C., Lauria A., Penna C., et al. The innovative “Bio-Oil Spread” prevents metabolic disorders and mediates preconditioning-like cardioprotection in rats. Nutr. Metab. Cardiovasc. Dis. 2016 doi: 10.1016/j.numecd.2016.02.009. PubMed DOI

Zhang Y.-G., Zhang H.-G., Zhang G.-Y., Fan J.-S., Li X.-H., Liu Y.-H., Li S.-H., Lian X.-M., Tang Z. Panax notoginseng saponins attenuate atherosclerosis in rats by regulating the blood lipid profile and an anti-inflammatory action. Clin. Exp. Pharmacol. Physiol. 2008;35:1238–1244. doi: 10.1111/j.1440-1681.2008.04997.x. PubMed DOI

Bello C.T., Turner L.W. Reserpine as an antihypertensive in the outpatient clinic: A double-blind clinical study. Am. J. Med. Sci. 1956;232:194–197. doi: 10.1097/00000441-195608000-00010. PubMed DOI

Shamon S.D., Perez M.I. Blood pressure lowering efficacy of reserpine for primary hypertension. Cochrane Database Syst. Rev. 2009;4:CD007655. PubMed

Yu L., Qin Y., Wang Q., Zhang L., Liu Y., Wang T., Huang L., Wu L., Xiong H. The efficacy and safety of Chinese herbal medicine, Rhodiola formulation in treating ischemic heart disease: A systematic review and meta-analysis of randomized controlled trials. Complement. Ther. Med. 2014;22:814–825. doi: 10.1016/j.ctim.2014.05.001. PubMed DOI

Wu T., Zhou H., Jin Z., Bi S., Yang X., Yi D., Liu W. Cardioprotection of salidroside from ischemia/reperfusion injury by increasing N-acetylglucosamine linkage to cellular proteins. Eur. J. Pharmacol. 2009;613:93–99. doi: 10.1016/j.ejphar.2009.04.012. PubMed DOI

Sinkovic A., Suran D., Lokar L., Fliser E., Skerget M., Novak Z., Knez Z. Rosemary extracts improve flow-mediated dilatation of the brachial artery and plasma PAI-1 activity in healthy young volunteers. Phytother. Res. 2011;25:402–407. doi: 10.1002/ptr.3276. PubMed DOI

Posadas S.J., Caz V., Largo C., de la Gándara B., Matallanas B., Reglero G., de Miguel E. Protective effect of supercritical fluid rosemary extract, Rosmarinus officinalis, on antioxidants of major organs of aged rats. Exp. Gerontol. 2009;44:383–389. doi: 10.1016/j.exger.2009.02.015. PubMed DOI

Vanscheidt W., Jost V., Wolna P., Lücker P.W., Müller A., Theurer C., Patz B., Grützner K.I. Efficacy and safety of a butcher’s broom preparation (Ruscus aculeatus L. extract) compared to placebo in patients suffering from chronic venous insufficiency. Arzneimittelforschung. 2002;52:243–250. doi: 10.1055/s-0031-1299887. PubMed DOI

Ciocoiu M., Mirón A., Mares L., Tutunaru D., Pohaci C., Groza M., Badescu M. The effects of Sambucus nigra polyphenols on oxidative stress and metabolic disorders in experimental diabetes mellitus. J. Physiol. Biochem. 2009;65:297–304. doi: 10.1007/BF03180582. PubMed DOI

Bhattacharya S., Christensen K.B., Olsen L.C.B., Christensen L.P., Grevsen K., Færgeman N.J., Kristiansen K., Young J.F., Oksbjerg N. Bioactive components from flowers of Sambucus nigra L. increase glucose uptake in primary porcine myotube cultures and reduce fat accumulation in Caenorhabditis elegans. J. Agric. Food Chem. 2013;61:11033–11040. doi: 10.1021/jf402838a. PubMed DOI

Christensen K.B., Petersen R.K., Kristiansen K., Christensen L.P. Identification of bioactive compounds from flowers of black elder (Sambucus nigra L.) that activate the human peroxisome proliferator-activated receptor (PPAR) gamma. Phytother. Res. 2010;24:S129–S132. doi: 10.1002/ptr.3005. PubMed DOI

Li L., Zhou X., Li N., Sun M., Lv J., Xu Z. Herbal drugs against cardiovascular disease: Traditional medicine and modern development. Drug Discov. Today. 2015;20:1074–1086. doi: 10.1016/j.drudis.2015.04.009. PubMed DOI

Chun J.N., Cho M., So I., Jeon J.-H. The protective effects of Schisandra chinensis fruit extract and its lignans against cardiovascular disease: A review of the molecular mechanisms. Fitoterapia. 2014;97:224–233. doi: 10.1016/j.fitote.2014.06.014. PubMed DOI

Liu H., Wu C., Wang S., Gao S., Liu J., Dong Z., Zhang B., Liu M., Sun X., Guo P. Extracts and lignans of Schisandra chinensis fruit alter lipid and glucose metabolism in vivo and in vitro. J. Funct. Foods. 2015;19:296–307. doi: 10.1016/j.jff.2015.09.049. DOI

Zhang M., Liu M., Xiong M., Gong J., Tan X. Schisandra chinensis fruit extract attenuates albuminuria and protects podocyte integrity in a mouse model of streptozotocin-induced diabetic nephropathy. J. Ethnopharmacol. 2012;141:111–118. doi: 10.1016/j.jep.2012.02.007. PubMed DOI

Li J., Wang J., Shao J.-Q., Du H., Wang Y.-T., Peng L. Effect of Schisandra chinensis on interleukins, glucose metabolism, and pituitary-adrenal and gonadal axis in rats under strenuous swimming exercise. Chin. J. Integr. Med. 2015;21:43–48. doi: 10.1007/s11655-014-1765-y. PubMed DOI

Huseini H.F., Larijani B., Heshmat R., Fakhrzadeh H., Radjabipour B., Toliat T., Raza M. The efficacy of Silybum marianum (L.) Gaertn. (silymarin) in the treatment of type II diabetes: A randomized, double-blind, placebo-controlled, clinical trial. Phytother. Res. 2006;20:1036–1039. doi: 10.1002/ptr.1988. PubMed DOI

Tamayo C., Diamond S. Review of clinical trials evaluating safety and efficacy of milk thistle (Silybum marianum [L.] Gaertn.) Integr. Cancer Ther. 2007;6:146–157. doi: 10.1177/1534735407301942. PubMed DOI

Derosa G., D’Angelo A., Maffioli P. The role of a fixed Berberis aristata/Silybum marianum combination in the treatment of type 1 diabetes mellitus. Clin. Nutr. 2015 doi: 10.1016/j.clnu.2015.08.004. PubMed DOI

Ebrahimpour Koujan S., Gargari B.P., Mobasseri M., Valizadeh H., Asghari-Jafarabadi M. Effects of Silybum marianum (L.) Gaertn. (silymarin) extract supplementation on antioxidant status and hs-CRP in patients with type 2 diabetes mellitus: A randomized, triple-blind, placebo-controlled clinical trial. Phytomedicine. 2015;22:290–296. doi: 10.1016/j.phymed.2014.12.010. PubMed DOI

Di Pierro F., Bellone I., Rapacioli G., Putignano P. Clinical role of a fixed combination of standardized Berberis aristata and Silybum marianum extracts in diabetic and hypercholesterolemic patients intolerant to statins. Diabetes Metab. Syndr. Obes. 2015;8:89–96. doi: 10.2147/DMSO.S78877. PubMed DOI PMC

Bhasker S., Madhav H., Chinnamma M. Molecular evidence of insulinomimetic property exhibited by steviol and stevioside in diabetes induced L6 and 3T3L1 cells. Phytomedicine. 2015;22:1037–1044. doi: 10.1016/j.phymed.2015.07.007. PubMed DOI

Ritu M., Nandini J. Nutritional composition of Stevia rebaudiana—A sweet herb and its hypoglycaemic and hypolipidaemic effect on patients with non insulin dependent diabetes mellitus. J. Sci. Food Agric. 2016 doi: 10.1002/jsfa.7627. PubMed DOI

Asemi Z., Khorrami-Rad A., Alizadeh S.A., Shakeri H., Esmaillzadeh A. Effects of synbiotic food consumption on metabolic status of diabetic patients: A double-blind randomized cross-over controlled clinical trial. Clin. Nutr. 2014;33:198–203. doi: 10.1016/j.clnu.2013.05.015. PubMed DOI

Saravanan R., Vengatash babu K., Ramachandran V. Effect of rebaudioside A, a diterpenoid on glucose homeostasis in STZ-induced diabetic rats. J. Physiol. Biochem. 2012;68:421–431. doi: 10.1007/s13105-012-0156-0. PubMed DOI

Fuller S., Stephens J.M. Diosgenin, 4-hydroxyisoleucine, and fiber from fenugreek: Mechanisms of actions and potential effects on metabolic syndrome. Adv. Nutr. 2015;6:189–197. doi: 10.3945/an.114.007807. PubMed DOI PMC

Gaddam A., Galla C., Thummisetti S., Marikanty R.K., Palanisamy U.D., Rao P.V. Role of fenugreek in the prevention of type 2 diabetes mellitus in prediabetes. J. Diabetes Metab. Disord. 2015;14 doi: 10.1186/s40200-015-0208-4. PubMed DOI PMC

Basu A., Du M., Leyva M.J., Sanchez K., Betts N.M., Wu M., Aston C.E., Lyons T.J. Blueberries decrease cardiovascular risk factors in obese men and women with metabolic syndrome. J. Nutr. 2010;140:1582–1587. doi: 10.3945/jn.110.124701. PubMed DOI PMC

Johnson M.H., de Mejia E.G. Phenolic compounds from fermented berry beverages modulated gene and protein expression to increase insulin secretion from pancreatic beta-cells in vitro. J. Agric. Food Chem. 2016;64:2569–2581. doi: 10.1021/acs.jafc.6b00239. PubMed DOI

Johnson M.H., de Mejia E.G., Fan J., Lila M.A., Yousef G.G. Anthocyanins and proanthocyanidins from blueberry-blackberry fermented beverages inhibit markers of inflammation in macrophages and carbohydrate-utilizing enzymes in vitro. Mol. Nutr. Food Res. 2013;57:1182–1197. doi: 10.1002/mnfr.201200678. PubMed DOI

Vendrame S., Daugherty A., Kristo A.S., Riso P., Klimis-Zacas D. Wild blueberry (Vaccinium angustifolium) consumption improves inflammatory status in the obese Zucker rat model of the metabolic syndrome. J. Nutr. Biochem. 2013;24:1508–1512. doi: 10.1016/j.jnutbio.2012.12.010. PubMed DOI

Elek S.R., McNair J.D., Griffith G.C. Veratrum viride: Hypotensive and cardiac effects of intravenous use. Calif. Med. 1953;79:300–305. PubMed PMC

Nand V., Doggrell S.A., Barnett C.W. Effects of veratridine on the action potentials and contractility of right and left ventricles from normo- and hypertensive rats. Clin. Exp. Pharmacol. Physiol. 1997;24:570–576. doi: 10.1111/j.1440-1681.1997.tb02092.x. PubMed DOI

Singh B.N., Saha C., Galun D., Upreti D.K., Bayry J., Kaveri S.V. European Viscum album: A potent phytotherapeutic agent with multifarious phytochemicals, pharmacological properties and clinical evidence. RSC Adv. 2016;6:23837–23857. doi: 10.1039/C5RA27381A. DOI

Tang T.Y., Li F.-Z., Afseth J. Review of the regulations for clinical research in herbal medicines in USA. Chin. J. Integr. Med. 2014;20:883–893. doi: 10.1007/s11655-014-2024-y. PubMed DOI

Nelson H.S. Oral/sublingual Phleum pretense grass tablet (Grazax/Grastek) to treat allergic rhinitis in the USA. Expert Rev. Clin. Immunol. 2014;10:1437–1451. doi: 10.1586/1744666X.2014.963556. PubMed DOI

Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity: A comprehensive review. Circulation. 2016;133:187–225. doi: 10.1161/CIRCULATIONAHA.115.018585. PubMed DOI PMC

Xiao J.B., Högger P. Dietary polyphenols and type 2 diabetes: Current insights and future perspectives. Curr. Med. Chem. 2015;22:23–38. doi: 10.2174/0929867321666140706130807. PubMed DOI

Rohn S., van Griensven L. Grain legumes and further gluten free legumes—Science, technology and impacts on human health. Food Res. Int. 2015;76:1–2. doi: 10.1016/j.foodres.2015.03.010. DOI

Barringer T.A. Mediterranean diets and cardiovascular disease. Curr. Atheroscler. Rep. 2001;3:437–445. doi: 10.1007/s11883-001-0033-8. PubMed DOI

Estruch R., Ros E., Salas-Salvadó J., Covas M.-I., Corella D., Arós F., Gómez-Gracia E., Ruiz-Gutiérrez V., Fiol M., Lapetra J., et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N. Engl. J. Med. 2013;368:1279–1290. doi: 10.1056/NEJMoa1200303. PubMed DOI

Naismith D.J., Akinyanju P.A., Szanto S., Yudkin J. The effect, in volunteers, of coffee and decaffeinated coffee on blood glucose, insulin, plasma lipids and some factors involved in blood clotting. Nutr. Metabol. 1970;12:144–151. doi: 10.1159/000175287. PubMed DOI

Barone J.J., Roberts H.R. Caffeine consumption. Food Chem. Toxicol. 1996;34:119–129. doi: 10.1016/0278-6915(95)00093-3. PubMed DOI

Santos R.M., Lima D.R. Coffee consumption, obesity and type 2 diabetes: A mini-review. Eur. J. Nutr. 2016;55:1345–1358. doi: 10.1007/s00394-016-1206-0. PubMed DOI

Morisco F., Lembo V., Mazzone G., Camera S., Caporaso N. Coffee and liver health. J. Clin. Gastroenterol. 2014;48(Suppl. 1):S87–S90. doi: 10.1097/MCG.0000000000000240. PubMed DOI

Akash M.S., Rehman K., Chen S. Effects of coffee on type 2 diabetes mellitus. Nutrition. 2014;30:755–763. doi: 10.1016/j.nut.2013.11.020. PubMed DOI

Zulli A., Smith R.M., Kubatka P., Novak J., Uehara Y., Loftus H., Qaradakhi T., Pohanka M., Kobyliak N., Zagatina A., et al. Caffeine and cardiovascular diseases: Critical review of current research. Eur. J. Nutr. 2016;55:1331–1343. doi: 10.1007/s00394-016-1179-z. PubMed DOI

Ding M., Bhupathiraju S.N., Satija A., van Dam R.M., Hu F.B. Long-term coffee consumption and risk of cardiovascular disease: A systematic review and a dose-response meta-analysis of prospective cohort studies. Circulation. 2014;129:643–659. doi: 10.1161/CIRCULATIONAHA.113.005925. PubMed DOI PMC

Ding M., Satija A., Bhupathiraju S.N., Hu Y., Sun Q., Han J., Lopez-Garcia E., Willett W., van Dam R.M., Hu F.B. Association of coffee consumption with total and cause-specific mortality in three large prospective cohorts. Circulation. 2015;132:2305–2315. doi: 10.1161/CIRCULATIONAHA.115.017341. PubMed DOI PMC

Natella F., Scaccini C. Role of coffee in modulation of diabetes risk. Nutr. Rev. 2012;70:207–217. doi: 10.1111/j.1753-4887.2012.00470.x. PubMed DOI

Vinson J.A., Proch J., Bose P., Muchler S., Taffera P., Shuta D., Samman N., Agbor G.A. Chocolate is a powerful ex vivo and in vivo antioxidant, an antiatherosclerotic agent in an animal model, and a significant contributor to antioxidants in the European and American diets. J. Agric. Food Chem. 2006;54:8071–8076. doi: 10.1021/jf062175j. PubMed DOI

Bonita J.S., Mandarano M., Shuta D., Vinson J. Coffee and cardiovascular disease: In vitro, cellular, animal, and human studies. Pharmacol. Res. 2007;55:187–198. doi: 10.1016/j.phrs.2007.01.006. PubMed DOI

Van Dijk A.E., Olthof M.R., Meeuse J.C., Seebus E., Heine R.J., van Dam R.M. Acute effects of decaffeinated coffee and the major coffee components chlorogenic acid and trigonelline on glucose tolerance. Diabetes Care. 2009;32:1023–1025. doi: 10.2337/dc09-0207. PubMed DOI PMC

Meng S., Cao J., Feng Q., Peng J., Hu Y. Roles of chlorogenic acid on regulating glucose and lipids metabolism: A review. Evid. Based Complement. Altern. Med. 2013;2013 doi: 10.1155/2013/801457. PubMed DOI PMC

Murase T., Misawa K., Minegishi Y., Aoki M., Ominami H., Suzuki Y., Shibuya Y., Hase T. Coffee polyphenols suppress diet-induced body fat accumulation by downregulating SREBP-1c and related molecules in C57BL/6J mice. Am. J. Physiol. Endocrinol. Metab. 2011;300:E122–E133. doi: 10.1152/ajpendo.00441.2010. PubMed DOI

Murase T., Yokoi Y., Misawa K., Ominami H., Suzuki Y., Shibuya Y., Hase T. Coffee polyphenols modulate whole-body substrate oxidation and suppress postprandial hyperglycaemia, hyperinsulinaemia and hyperlipidaemia. Br. J. Nutr. 2012;107:1757–1765. doi: 10.1017/S0007114511005083. PubMed DOI

Gramza-Michalowska A. Caffeine in tea Camellia sinensis—Content, absorption, benefits and risks of consumption. J. Nutr. Health Aging. 2014;18:143–149. doi: 10.1007/s12603-013-0404-1. PubMed DOI

Beecher G.R., Warden B.A., Merken H. Analysis of tea polyphenols. Proc. Soc. Exp. Biol. Med. 1999;220:267–270. doi: 10.3181/00379727-220-44377A. PubMed DOI

Li S., Lo C.Y., Pan M.H., Lai C.S., Ho C.T. Black tea: Chemical analysis and stability. Food Funct. 2013;4:10–18. doi: 10.1039/C2FO30093A. PubMed DOI

Gormaz J.G., Valls N., Sotomayor C., Turner T., Rodrigo R. Potential role of polyphenols in the prevention of cardiovascular diseases: Molecular bases. Curr. Med. Chem. 2016;23:115–128. doi: 10.2174/0929867323666151127201732. PubMed DOI

Peters U., Poole C., Arab L. Does tea affect cardiovascular disease? A meta-analysis. Am. J. Epidemiol. 2001;154:495–503. doi: 10.1093/aje/154.6.495. PubMed DOI

Zhang C., Qin Y.Y., Wei X., Yu F.F., Zhou Y.H., He J. Tea consumption and risk of cardiovascular outcomes and total mortality: A systematic review and meta-analysis of prospective observational studies. Eur. J. Epidemiol. 2015;30:103–113. doi: 10.1007/s10654-014-9960-x. PubMed DOI

Basu A., Lucas E.A. Mechanisms and effects of green tea on cardiovascular health. Nutr. Rev. 2007;65:361–375. doi: 10.1111/j.1753-4887.2007.tb00314.x. PubMed DOI

Sano M., Tabata M., Suzuki M., Degawa M., Miyase T., Maeda-Yamamoto M. Simultaneous determination of twelve tea catechins by high-performance liquid chromatography with electrochemical detection. Analyst. 2001;126:816–820. doi: 10.1039/b102541b. PubMed DOI

Chowdhury A., Sarkar J., Chakraborti T., Pramanik P.K., Chakraborti S. Protective role of epigallocatechin-3-gallate in health and disease: A perspective. Biomed. Pharmacother. 2016;78:50–59. doi: 10.1016/j.biopha.2015.12.013. PubMed DOI

Chen G., Wang H., Zhang X., Yang S.-T. Nutraceuticals and functional foods in the management of hyperlipidemia. Crit. Rev. Food Sci. Nutr. 2014;54:1180–1201. doi: 10.1080/10408398.2011.629354. PubMed DOI

Magrone T., Perez De Heredia F., Jirillo E., Morabito G., Marcos A., Serafini M. Functional foods and nutraceuticals as therapeutic tools for the treatment of diet-related diseases. Can. J. Physiol. Pharmacol. 2013;91:387–396. doi: 10.1139/cjpp-2012-0307. PubMed DOI

Liu R.H. Dietary bioactive compounds and their health implications. J. Food Sci. 2013;78:A18–A25. doi: 10.1111/1750-3841.12101. PubMed DOI

Badimon L., Vilahur G., Padro T. Nutraceuticals and atherosclerosis: Human trials. Cardiovasc. Ther. 2010;28:202–215. doi: 10.1111/j.1755-5922.2010.00189.x. PubMed DOI

Zuchi C., Ambrosio G., Lüscher T.F., Landmesser U. Nutraceuticals in cardiovascular prevention: Lessons from studies on endothelial function. Cardiovasc. Ther. 2010;28:187–201. doi: 10.1111/j.1755-5922.2010.00165.x. PubMed DOI

Lacroix I.M., Li-Chan E.C. Overview of food products and dietary constituents with antidiabetic properties and their putative mechanisms of action: A natural approach to complement pharmacotherapy in the management of diabetes. Mol. Nutr. Food Res. 2014;58:61–78. doi: 10.1002/mnfr.201300223. PubMed DOI

Hung H.Y., Qian K., Morris-Natschke S.L., Hsu C.S., Lee K.H. Recent discovery of plant-derived anti-diabetic natural products. Nat. Prod. Rep. 2012;29:580–606. doi: 10.1039/c2np00074a. PubMed DOI

Gautam R., Jachak S.M. Recent developments in anti-inflammatory natural products. Med. Res. Rev. 2009;29:767–820. doi: 10.1002/med.20156. PubMed DOI

Hermansen K., Dinesen B., Hoie L.H., Morgenstern E., Gruenwald J. Effects of soy and other natural products on LDL:HDL ratio and other lipid parameters: A literature review. Adv. Ther. 2003;20:50–78. doi: 10.1007/BF02850119. PubMed DOI

Vasanthi H.R., ShriShriMal N., Das D.K. Phytochemicals from plants to combat cardiovascular disease. Curr. Med. Chem. 2012;19:2242–2251. doi: 10.2174/092986712800229078. PubMed DOI

Hardie D.G. AMPK: A target for drugs and natural products with effects on both diabetes and cancer. Diabetes. 2013;62:2164–2172. doi: 10.2337/db13-0368. PubMed DOI PMC

Yuan T., Nahar P., Sharma M., Liu K., Slitt A., Aisa H.A., Seeram N.P. Indazole-type alkaloids from Nigella sativa seeds exhibit antihyperglycemic effects via AMPK activation in vitro. J. Nat. Prod. 2014;77:2316–2320. doi: 10.1021/np500398m. PubMed DOI PMC

Nguyen P.H., Nguyen T.N., Dao T.T., Kang H.W., Ndinteh D.T., Mbafor J.T., Oh W.K. AMP-activated protein kinase (AMPK) activation by benzofurans and coumestans isolated from Erythrina abyssinica. J. Nat. Prod. 2010;73:598–602. doi: 10.1021/np900745g. PubMed DOI

Zimmermann K., Baldinger J., Mayerhofer B., Atanasov A.G., Dirsch V.M., Heiss E.H. Activated AMPK boosts the Nrf2/HO-1 signaling axis—A role for the unfolded protein response. Free Radic. Biol. Med. 2015;88:417–426. doi: 10.1016/j.freeradbiomed.2015.03.030. PubMed DOI PMC

Chen S. Natural products triggering biological targets—A review of the anti-inflammatory phytochemicals targeting the arachidonic acid pathway in allergy asthma and rheumatoid arthritis. Curr. Drug Targets. 2011;12:288–301. doi: 10.2174/138945011794815347. PubMed DOI

Jachak S.M. Cyclooxygenase inhibitory natural products: Current status. Curr. Med. Chem. 2006;13:659–678. doi: 10.2174/092986706776055698. PubMed DOI

Chi Y.S., Jong H.G., Son K.H., Chang H.W., Kang S.S., Kim H.P. Effects of naturally occurring prenylated flavonoids on enzymes metabolizing arachidonic acid: Cyclooxygenases and lipoxygenases. Biochem. Pharmacol. 2001;62:1185–1191. doi: 10.1016/S0006-2952(01)00773-0. PubMed DOI

Gao Y., Zhang Y., Zhu J., Li B., Li Z., Zhu W., Shi J., Jia Q., Li Y. Recent progress in natural products as DPP-4 inhibitors. Future Med. Chem. 2015;7:1079–1089. doi: 10.4155/fmc.15.49. PubMed DOI

Abe M., Akiyama T., Nakamura H., Kojima F., Harada S., Muraoka Y. First synthesis and determination of the absolute configuration of sulphostin, a novel inhibitor of dipeptidyl peptidase IV. J. Nat. Prod. 2004;67:999–1004. doi: 10.1021/np030491b. PubMed DOI

Saleem S., Jafri L., ul Haq I., Chang L.C., Calderwood D., Green B.D., Mirza B. Plants Fagonia cretica L. and Hedera nepalensis K. Koch contain natural compounds with potent dipeptidyl peptidase-4 (DPP-4) inhibitory activity. J. Ethnopharmacol. 2014;156:26–32. doi: 10.1016/j.jep.2014.08.017. PubMed DOI

Schmitt C.A., Dirsch V.M. Modulation of endothelial nitric oxide by plant-derived products. Nitric Oxide. 2009;21:77–91. doi: 10.1016/j.niox.2009.05.006. PubMed DOI

Waldbauer K., Seiringer G., Nguyen D.L., Winkler J., Blaschke M., McKinnon R., Urban E., Ladurner A., Dirsch V.M., Zehl M., et al. Triterpenoic acids from apple pomace enhance the activity of the endothelial nitric oxide synthase (eNOS) J. Agric. Food Chem. 2016;64:185–194. doi: 10.1021/acs.jafc.5b05061. PubMed DOI

Xia N., Pautz A., Wollscheid U., Reifenberg G., Förstermann U., Li H. Artichoke, cynarin and cyanidin downregulate the expression of inducible nitric oxide synthase in human coronary smooth muscle cells. Molecules. 2014;19:3654–3668. doi: 10.3390/molecules19033654. PubMed DOI PMC

Shen K., Leung S.W., Ji L., Huang Y., Hou M., Xu A., Wang Z., Vanhoutte P.M. Notoginsenoside Ft1 activates both glucocorticoid and estrogen receptors to induce endothelium-dependent, nitric oxide-mediated relaxations in rat mesenteric arteries. Biochem. Pharmacol. 2014;88:66–74. doi: 10.1016/j.bcp.2014.01.007. PubMed DOI

Auger C., Chaabi M., Anselm E., Lobstein A., Schini-Kerth V.B. The red wine extract-induced activation of endothelial nitric oxide synthase is mediated by a great variety of polyphenolic compounds. Mol. Nutr. Food Res. 2010;54(Suppl. 2):S171–S183. doi: 10.1002/mnfr.200900602. PubMed DOI

Leung K.W., Cheng Y.K., Mak N.K., Chan K.K., Fan T.P., Wong R.N. Signaling pathway of ginsenoside-Rg1 leading to nitric oxide production in endothelial cells. FEBS Lett. 2006;580:3211–3216. doi: 10.1016/j.febslet.2006.04.080. PubMed DOI

Ndiaye M., Chataigneau M., Lobysheva I., Chataigneau T., Schini-Kerth V.B. Red wine polyphenol-induced, endothelium-dependent NO-mediated relaxation is due to the redox-sensitive PI3-kinase/Akt-dependent phosphorylation of endothelial NO-synthase in the isolated porcine coronary artery. FASEB J. 2005;19:455–457. doi: 10.1096/fj.04-2146fje. PubMed DOI

Golan-Goldhirsh A., Gopas J. Plant derived inhibitors of NF-κB. Phytochem. Rev. 2014;13:107–121. doi: 10.1007/s11101-013-9293-5. DOI

Chan M.M. Inhibition of tumor necrosis factor by curcumin, a phytochemical. Biochem. Pharmacol. 1995;49:1551–1556. doi: 10.1016/0006-2952(95)00171-U. PubMed DOI

Siedle B., Garcia-Pineres A.J., Murillo R., Schulte-Mönting J., Castro V., Rüngeler P., Klaas C.A., da Costa F.B., Kisiel W., Merfort I. Quantitative structure-activity relationship of sesquiterpene lactones as inhibitors of the transcription factor NF-κB. J. Med. Chem. 2004;47:6042–6054. doi: 10.1021/jm049937r. PubMed DOI

Fakhrudin N., Waltenberger B., Cabaravdic M., Atanasov A.G., Malainer C., Schachner D., Heiss E.H., Liu R., Noha S.M., Grzywacz A.M., et al. Identification of plumericin as a potent new inhibitor of the NF-κB pathway with anti-inflammatory activity in vitro and in vivo. Br. J. Pharmacol. 2014;171:1676–1686. doi: 10.1111/bph.12558. PubMed DOI PMC

Kopp E., Ghosh S. Inhibition of NF-κB by sodium salicylate and aspirin. Science. 1994;265:956–959. doi: 10.1126/science.8052854. PubMed DOI

Kumar H., Kim I.S., More S.V., Kim B.W., Choi D.K. Natural product-derived pharmacological modulators of Nrf2/ARE pathway for chronic diseases. Nat. Prod. Rep. 2014;31:109–139. doi: 10.1039/C3NP70065H. PubMed DOI

Balogun E., Hoque M., Gong P., Killeen E., Green C.J., Foresti R., Alam J., Motterlini R. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem. J. 2003;371:887–895. doi: 10.1042/bj20021619. PubMed DOI PMC

Heiss E.H., Tran T.V., Zimmermann K., Schwaiger S., Vouk C., Mayerhofer B., Malainer C., Atanasov A.G., Stuppner H., Dirsch V.M. Identification of chromomoric acid C-I as an Nrf2 activator in Chromolaena odorata. J. Nat. Prod. 2014;77:503–508. doi: 10.1021/np400778m. PubMed DOI PMC

Ahn Y.H., Hwang Y., Liu H., Wang X.J., Zhang Y., Stephenson K.K., Boronina T.N., Cole R.N., Dinkova-Kostova A.T., Talalay P., et al. Electrophilic tuning of the chemoprotective natural product sulforaphane. Proc. Natl. Acad. Sci. USA. 2010;107:9590–9595. doi: 10.1073/pnas.1004104107. PubMed DOI PMC

Wang L., Waltenberger B., Pferschy-Wenzig E.M., Blunder M., Liu X., Malainer C., Blazevic T., Schwaiger S., Rollinger J.M., Heiss E.H., et al. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARgamma): A review. Biochem. Pharmacol. 2014;92:73–89. doi: 10.1016/j.bcp.2014.07.018. PubMed DOI PMC

Atanasov A.G., Blunder M., Fakhrudin N., Liu X., Noha S.M., Malainer C., Kramer M.P., Cocic A., Kunert O., Schinkovitz A., et al. Polyacetylenes from Notopterygium incisum—New selective partial agonists of peroxisome proliferator-activated receptor-gamma. PLoS ONE. 2013;8:e61755. doi: 10.1371/journal.pone.0061755. PubMed DOI PMC

Atanasov A.G., Wang J.N., Gu S.P., Bu J., Kramer M.P., Baumgartner L., Fakhrudin N., Ladurner A., Malainer C., Vuorinen A., et al. Honokiol: A non-adipogenic PPARgamma agonist from nature. Biochim. Biophys. Acta. 2013;1830:4813–4819. doi: 10.1016/j.bbagen.2013.06.021. PubMed DOI PMC

Fakhrudin N., Ladurner A., Atanasov A.G., Heiss E.H., Baumgartner L., Markt P., Schuster D., Ellmerer E.P., Wolber G., Rollinger J.M., et al. Computer-aided discovery, validation, and mechanistic characterization of novel neolignan activators of peroxisome proliferator-activated receptor gamma. Mol. Pharmacol. 2010;77:559–566. doi: 10.1124/mol.109.062141. PubMed DOI PMC

Puhl A.C., Bernardes A., Silveira R.L., Yuan J., Campos J.L., Saidemberg D.M., Palma M.S., Cvoro A., Ayers S.D., Webb P., et al. Mode of peroxisome proliferator-activated receptor gamma activation by luteolin. Mol. Pharmacol. 2012;81:788–799. doi: 10.1124/mol.111.076216. PubMed DOI

Weidner C., de Groot J.C., Prasad A., Freiwald A., Quedenau C., Kliem M., Witzke A., Kodelja V., Han C.T., Giegold S., et al. Amorfrutins are potent antidiabetic dietary natural products. Proc. Natl. Acad. Sci. USA. 2012;109:7257–7262. doi: 10.1073/pnas.1116971109. PubMed DOI PMC

Wang L.-J., Jiang B., Wu N., Wang S.-Y., Shi D.-Y. Natural and semisynthetic protein tyrosine phosphatase 1B (PTP1B) inhibitors as anti-diabetic agents. RSC Adv. 2015;5:48822–48834. doi: 10.1039/C5RA01754H. DOI

Jiang C.S., Liang L.F., Guo Y.W. Natural products possessing protein tyrosine phosphatase 1B (PTP1B) inhibitory activity found in the last decades. Acta Pharmacol. Sin. 2012;33:1217–1245. doi: 10.1038/aps.2012.90. PubMed DOI PMC

Heiss E.H., Baumgartner L., Schwaiger S., Heredia R.J., Atanasov A.G., Rollinger J.M., Stuppner H., Dirsch V.M. Ratanhiaphenol III from Ratanhiae radix is a PTP1B inhibitor. Planta Med. 2012;78:678–681. doi: 10.1055/s-0031-1298242. PubMed DOI PMC

Feng Y., Carroll A.R., Addepalli R., Fechner G.A., Avery V.M., Quinn R.J. Vanillic acid derivatives from the green algae Cladophora socialis as potent protein tyrosine phosphatase 1B inhibitors. J. Nat. Prod. 2007;70:1790–1792. doi: 10.1021/np070225o. PubMed DOI

Yoon G., Lee W., Kim S.N., Cheon S.H. Inhibitory effect of chalcones and their derivatives from Glycyrrhiza inflata on protein tyrosine phosphatase 1B. Bioorg. Med. Chem. Lett. 2009;19:5155–5157. doi: 10.1016/j.bmcl.2009.07.054. PubMed DOI

Werz O. Inhibition of 5-lipoxygenase product synthesis by natural compounds of plant origin. Planta Med. 2007;73:1331–1357. doi: 10.1055/s-2007-990242. PubMed DOI

Oettl S.K., Gerstmeier J., Khan S.Y., Wiechmann K., Bauer J., Atanasov A.G., Malainer C., Awad E.M., Uhrin P., Heiss E.H., et al. Imbricaric acid and perlatolic acid: Multi-targeting anti-inflammatory depsides from Cetrelia monachorum. PLoS ONE. 2013;8:e76929. doi: 10.1371/journal.pone.0076929. PubMed DOI PMC

De la Puerta R., Ruiz Gutierrez V., Hoult J.R. Inhibition of leukocyte 5-lipoxygenase by phenolics from virgin olive oil. Biochem. Pharmacol. 1999;57:445–449. doi: 10.1016/S0006-2952(98)00320-7. PubMed DOI

Winekenstädde D., Angelis A., Waltenberger B., Schwaiger S., Tchoumtchoua J., König S., Werz O., Aligiannis N., Skaltsounis A.-L., Stuppner H. Phytochemical profile of the aerial parts of Sedum sediforme and anti-inflammatory activity of myricitrin. Nat. Prod. Commun. 2015;10:83–88. PubMed

Endo A. A historical perspective on the discovery of statins. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2010;86:484–493. doi: 10.2183/pjab.86.484. PubMed DOI PMC

Tanzawa K., Kuroda M., Endo A. Time-dependent, irreversible inhibition of 3-hydroxy-3-methylglutaryl-coenzyme A reductase by the antibiotic citrinin. Biochim. Biophys. Acta. 1977;488:97–101. PubMed

Endo A., Kuroda M. Citrinin, an inhibitor of cholesterol synthesis. J. Antibiot. Tokyo. 1976;29:841–843. doi: 10.7164/antibiotics.29.841. PubMed DOI

Endo A., Kuroda M., Tsujita Y. ML-236A, ML-236B, and ML-236C, new inhibitors of cholesterogenesis produced by Penicillium citrinium. J. Antibiot. Tokyo. 1976;29:1346–1348. doi: 10.7164/antibiotics.29.1346. PubMed DOI

Endo A., Kuroda M., Tanzawa K. Competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by ML-236A and ML-236B fungal metabolites, having hypocholesterolemic activity. FEBS Lett. 1976;72:323–326. doi: 10.1016/0014-5793(76)80996-9. PubMed DOI

Endo A., Tsujita Y., Kuroda M., Tanzawa K. Inhibition of cholesterol synthesis in vitro and in vivo by ML-236A and ML-236B, competitive inhibitors of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. Eur. J. Biochem. 1977;77:31–36. doi: 10.1111/j.1432-1033.1977.tb11637.x. PubMed DOI

Alberts A.W., Chen J., Kuron G., Hunt V., Huff J., Hoffman C., Rothrock J., Lopez M., Joshua H., Harris E., et al. Mevinolin: A highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc. Natl. Acad. Sci. USA. 1980;77:3957–3961. doi: 10.1073/pnas.77.7.3957. PubMed DOI PMC

Endo A. Monacolin K, a new hypocholesterolemic agent produced by a Monascus species. J. Antibiot. Tokyo. 1979;32:852–854. doi: 10.7164/antibiotics.32.852. PubMed DOI

Endo A. A gift from nature: The birth of the statins. Nat. Med. 2008;14:1050–1052. doi: 10.1038/nm1008-1050. PubMed DOI

Grundy S.M. Dyslipidaemia in 2015: Advances in treatment of dyslipidaemia. Nat. Rev. Cardiol. 2016;13:74–75. doi: 10.1038/nrcardio.2015.208. PubMed DOI

Bailey C., Day C. Metformin: Its botanical background. Pract. Diab. Int. 2004;21:115–117. doi: 10.1002/pdi.606. DOI

Müller H., Reinwein H. Pharmacology of galegin. Arch. Exp. Pathol. Pharmakol. 1927;125:212–228. doi: 10.1007/BF01862957. DOI

Tanret G. An alkaloid extracted from Galega officinalis. Compt. Rend. 1914;158:1182–1184.

Barger G., White F.D. The constitution of galegine. Biochem. J. 1923;17:827–835. doi: 10.1042/bj0170827. PubMed DOI PMC

Watanabe C.K. Studies in the metabolic changes induced by administration of guanidine bases. I. The influence of injected guanidine hydrochloride upon blood sugar content. J. Biol. Chem. 1918;33:253–265.

Bailey C., Campbell I., Chan J., Davidson J., Howlett H., Ritz P. Metformin: The Gold Standard. A Scientific Handbook. Wiley; Chichester, UK: 2007.

Cusi K., DeFronzo R.A. Metformin: A review of its metabolic effects. Diabetes Rev. 1998;6:89–131.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...