Cationic Emulsion-Based Artificial Tears as a Mimic of Functional Healthy Tear Film for Restoration of Ocular Surface Homeostasis in Dry Eye Disease
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, přehledy
PubMed
32493105
PubMed Central
PMC7404832
DOI
10.1089/jop.2020.0011
Knihovny.cz E-zdroje
- Klíčová slova
- artificial tear, cationic emulsion, dry eye, polar lipid, tear film lipid layer,
- MeSH
- dospělí MeSH
- emulze chemie farmakologie MeSH
- homeostáza MeSH
- lidé MeSH
- oči - fyziologické jevy účinky léků MeSH
- povrchové vlastnosti účinky léků MeSH
- slzy fyziologie MeSH
- syndromy suchého oka farmakoterapie MeSH
- zdraví dobrovolníci pro lékařské studie statistika a číselné údaje MeSH
- zvlhčující oční kapky aplikace a dávkování chemie terapeutické užití MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- srovnávací studie MeSH
- Názvy látek
- emulze MeSH
- zvlhčující oční kapky MeSH
Dry eye disease (DED) is a complex multifactorial disease that affects an increasing number of patients worldwide. Close to 30% of the population has experienced dry eye (DE) symptoms and presented with some signs of the disease during their lifetime. The significant heterogeneity in the medical background of patients with DEs and in their sensitivity to symptoms renders a clear understanding of DED complicated. It has become evident over the past few years that DED results from an impairment of the ocular surface homeostasis. Hence, a holistic treatment approach that concomitantly addresses the different mechanisms that result in the destabilization of the tear film (TF) and the ocular surface would be appropriate. The goal of the present review is to compile the different types of scientific evidence (from in silico modeling to clinical trials) that help explain the mechanism of action of cationic emulsion (CE)-based eye drop technology for the treatment of both the signs and the symptoms of DED. These CE-based artificial tear (AT) eye drops designed to mimic, from a functional point of view, a healthy TF contribute to the restoration of a healthy ocular surface environment and TF that leads to a better management of DE patients. The CE-based AT eye drops help restore the ocular surface homeostasis in patients who have unstable TF or no tears.
Department of Clinical Pharmacology Medical University of Vienna Vienna Austria
Department of Neuroscience Ophthalmology Unit University of Padua Padua Italy
J Heyrovsky Institute of Physical Chemistry Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Baudouin C. The pathology of dry eye. Surv. Ophthalmol. 45 Suppl 2:S211–S220, 2001 PubMed
Bron A.J. The Biology of Eye Disease. 2010
Wei Y., and Asbell P.A.. The core mechanism of dry eye disease is inflammation. Eye Contact Lens. 40:248–256, 2014 PubMed PMC
Baudouin C. A new approach for better comprehension of diseases of the ocular surface. J. Fr. Ophtalmol. 30:239–246, 2007 PubMed
Bron A.J., de Paiva C.S., Chauhan S.K., Bonini S., Gabison E.E., Jain S., Knop E., Markoulli M., Ogawa Y., Perez V., Uchino Y., Yokoi N., Zoukhri D., and Sullivan D.A.. TFOS DEWS II pathophysiology report. Ocul. Surf. 15:438–510, 2017 PubMed
Yokoi N., and Georgiev G.A.. Tear film–oriented diagnosis and tear film–oriented therapy for dry eye based on tear film dynamics TFOD and TFOT. Invest. Ophthalmol. Vis. Sci. 59:DES13–DES22, 2018 PubMed
Tsubota K., Yokoi N., Watanabe H., Dogru M., Kojima T., Yamada M., Kinoshita S., Kim H.M., Tchah H.W., Hyon J.Y., Yoon K.C., Seo K.Y., Sun X., Chen W., Liang L., Li M., Tong L., Hu F.R., Puangsricharern V., Lim-Bon-Siong R., Yong T.K., Liu Z., Shimazaki J., and Members of The Asia Dry Eye, Society. A new perspective on dry eye classification: proposal by the Asia Dry Eye Society. Eye Contact Lens. 46 Suppl 1:S2–S13, 2020 PubMed PMC
Lallemand F., Daull P., Benita S., Buggage R., and Garrigue J.S.. Successfully improving ocular drug delivery using the cationic nanoemulsion Novasorb. J. Drug Deliv. 2012:604204, 2012 PubMed PMC
Daull P., Lallemand F., and Garrigue J.S.. Benefits of cetalkonium chloride cationic oil-in-water nanoemulsions for topical ophthalmic drug delivery. J. Pharm. Pharmacol. 66:531–541, 2014 PubMed PMC
Robert P.-Y., Cochener B., Amrane M., Ismail D., Garrigue J.-S., Pisella P.-J., and Baudouin C.. Efficacy and safety of a cationic emulsion in the treatment of moderate to severe dry eye disease: a randomized controlled study. Eur. J. Ophthalmol. 26:546–555, 2016 PubMed
Leonardi A., Van Setten G., Amrane M., Ismail D., Garrigue J.-S., Figueiredo F.C., and Baudouin C.. Efficacy and safety of 0.1% cyclosporine A cationic emulsion in the treatment of severe dry eye disease: a multicenter randomized trial. Eur. J. Ophthalmol. 26:287–296, 2016 PubMed
Hwang S.B., Park J.H., Kang S.S., Kang D.H., Lee J.H., Oh S.J., Lee J.Y., Kim J.Y., and Tchah H.. Protective effects of cyclosporine A emulsion versus cyclosporine A cationic emulsion against desiccation stress in human corneal epithelial cells. Cornea. 39:508–513, 2020 PubMed
Leonardi A., Doan S., Amrane M., Ismail D., Montero J., Németh J., Aragona P., and Bremond-Gignac D.. A randomized, controlled trial of cyclosporine A cationic emulsion in pediatric vernal keratoconjunctivitis: the VEKTIS Study. Ophthalmology. 126:671–681, 2019b PubMed
Willcox M.D.P., Argueso P., Georgiev G.A., Holopainen J.M., Laurie G.W., Millar T.J., Papas E.B., Rolland J.P., Schmidt T.A., Stahl U., Suarez T., Subbaraman L.N., Ucakhan O.O., and Jones L.. TFOS DEWS II tear film report. Ocul. Surf. 15:366–403, 2017 PubMed PMC
Georgiev G.A., Eftimov P., and Yokoi N.. Structure-function relationship of tear film lipid layer: a contemporary perspective. Exp. Eye Res. 163:17–28, 2017 PubMed
Yokoi N., Takehisa Y., and Kinoshita S.. Correlation of tear lipid layer interference patterns with the diagnosis and severity of dry eye. Am. J. Ophthalmol. 122:818–824, 1996 PubMed
Butovich I.A. Tear film lipids. Exp. Eye Res. 117:4–27, 2013 PubMed PMC
Lam S.M., Tong L., Duan X., Petznick A., Wenk M.R., and Shui G.. Extensive characterization of human tear fluid collected using different techniques unravels the presence of novel lipid amphiphiles. J. Lipid Res. 55:289–298, 2014 PubMed PMC
Brown S.H., Kunnen C.M., Duchoslav E., Dolla N.K., Kelso M.J., Papas E.B., Lazon de la Jara P., Willcox M.D., Blanksby S.J., and Mitchell T.W.. A comparison of patient matched meibum and tear lipidomes. Invest. Ophthalmol. Vis. Sci. 54:7417–7424, 2013 PubMed
Butovich I.A. Meibomian glands, meibum, and meibogenesis. Exp. Eye Res. 163:2–16, 2017 PubMed PMC
Garrigue J.S., Amrane M., Faure M.O., Holopainen J.M., and Tong L.. Relevance of lipid-based products in the management of dry eye disease. J. Ocul. Pharmacol. Ther. 33:647–661, 2017 PubMed PMC
Cwiklik L. Tear film lipid layer: a molecular level view. Biochim. Biophys. Acta. 1858:2421–2430, 2016 PubMed
Wizert A., Iskander D.R., and Cwiklik L.. Organization of lipids in the tear film: a molecular-level view. PLoS One. 9:e92461, 2014 PubMed PMC
Lam S.M., Tong L., Yong S.S., Li B., Chaurasia S.S., Shui G., and Wenk M.R.. Meibum lipid composition in Asians with dry eye disease. PLoS One. 6:e24339, 2011 PubMed PMC
Nencheva Y., Olzynska A., Melcrova A., As Georgiev G., Daull P., Garrigue J.-S., and Cwiklik L.. Improving stability of tear film lipid layer via concerted action of two drug molecules: a biophysical view. Biophys. J. 114:104a, 2018 PubMed PMC
Georgiev G.A., Yokoi N., Nencheva Y., Peev N., and Daull P.. Surface chemistry interactions of cationorm with films by human meibum and tear film compounds. Int. J. Mol. Sci. 18:E1558, 2017 PubMed PMC
Georgiev G.A., Yokoi N., Ivanova S., Tonchev V., and Daull P.. Surface chemistry of the interactions of cationic nanoemulsions with human meibum films. ARVO poster 6188-A0091, Seattle, 2016
Cwiklik L., Melcrova A., Daull P., and Garrigue J.. Tear film break-up: a molecular level view by employing in silico approach. ARVO poster 472-A0397, Baltimore, 2017
Cwiklik L., Melcrova A., Daull P., and Garrigue J.S.. A proposed mechanism for tear film breakup: a molecular level view by employing in-silico approach. J. Model. Ophthalmol. 1:19–23, 2018
Wizert A., Iskander D.R., and Cwiklik L.. Interaction of lysozyme with a tear film lipid layer model: a molecular dynamics simulation study. Biochim. Biophys. Acta Biomembr. 1859:2289–2296, 2017 PubMed
Garhofer G., Werkmeister R., Messmer A., Dos Santos V., Stegmann H., Schmidl D., Fondi K., and Schmetterer L.. Short-term reproducibility of interferometry based tear film lipid layer thickness measurements in humans. ARVO poster 4398-A0237, Baltimore, 2017
Aranha dos Santos V., Schmetterer L., Stegmann H., Garhofer G., Schmidl D., and Werkmeister R.M.. Quantification of the tear film lipid layer using optical coherence tomography. Invest. Ophthalmol. Vis. Sci. 59:271, 2018
Mochizuki H., Yamada M., Hatou S., and Tsubota K.. Turnover rate of tear-film lipid layer determined by fluorophotometry. Br. J. Ophthalmol. 93:1535–1538, 2009 PubMed PMC
Amrane M., Creuzot-Garcher C., Robert P.Y., Ismail D., Garrigue J.S., Pisella P.J., and Baudouin C.. Ocular tolerability and efficacy of a cationic emulsion in patients with mild to moderate dry eye disease—a randomised comparative study. J. Fr. Ophtalmol. 37:589–598, 2014 PubMed
Leonardi A., Messmer E.M., Labetoulle M., Amrane M., Garrigue J.S., Ismail D., Sainz-de-la-Maza M., Figueiredo F.C., and Baudouin C.. Efficacy and safety of 0.1% ciclosporin A cationic emulsion in dry eye disease: a pooled analysis of two double-masked, randomised, vehicle-controlled phase III clinical studies. Br. J. Ophthalmol. 103:125–131, 2019a PubMed PMC
Baudouin C., Aragona P., Messmer E.M., Tomlinson A., Calonge M., Boboridis K.G., Akova Y.A., Geerling G., Labetoulle M., and Rolando M.. Role of hyperosmolarity in the pathogenesis and management of dry eye disease: proceedings of the OCEAN group meeting. Ocul. Surf. 11:246–258, 2013 PubMed
Lemp M.A., Bron A.J., Baudouin C., Del Castillo J.M., Geffen D., Tauber J., Foulks G.N., Pepose J.S., and Sullivan B.D.. Tear osmolarity in the diagnosis and management of dry eye disease. Am. J. Ophthalmol. 151:792–798.e1, 2011 PubMed
Li D.Q., Chen Z., Song X.J., Luo L., and Pflugfelder S.C.. Stimulation of matrix metalloproteinases by hyperosmolarity via a JNK pathway in human corneal epithelial cells. Invest. Ophthalmol. Vis. Sci. 45:4302–4311, 2004 PubMed
Luo L., Li D.Q., Corrales R.M., and Pflugfelder S.C.. Hyperosmolar saline is a proinflammatory stress on the mouse ocular surface. Eye Contact Lens. 31:186–193, 2005 PubMed
Potvin R., Makari S., and Rapuano C.J.. Tear film osmolarity and dry eye disease: a review of the literature. Clin. Ophthalmol. 9:2039–2047, 2015 PubMed PMC
Craig J.P., Nelson J.D., Azar D.T., Belmonte C., Bron A.J., Chauhan S.K., de Paiva C.S., Gomes J.A.P., Hammitt K.M., Jones L., Nichols J.J., Nichols K.K., Novack G.D., Stapleton F.J., Willcox MDP, Wolffsohn J.S., and Sullivan D.A.. TFOS DEWS II report executive summary. Ocul. Surf. 15:802–812, 2017 PubMed
Suzuki M., Massingale M.L., Ye F., Godbold J., Elfassy T., Vallabhajosyula M., and Asbell P.A.. Tear osmolarity as a biomarker for dry eye disease severity. Invest. Ophthalmol. Vis. Sci. 51:4557–4561, 2010 PubMed
Gilbard J.P. Human tear film electrolyte concentrations in health and dry-eye disease. Int. Ophthalmol. Clin. 34:27–36, 1994 PubMed
Beck R., Stachs O., Koschmieder A., Mueller-Lierheim Wolfgang G.K., Peschel S., and van Setten G.-B.. Hyaluronic acid as an alternative to autologous human serum eye drops: initial clinical results with high-molecular-weight hyaluronic acid eye drops. Case Rep. Ophthalmol. 10:244–255, 2019 PubMed PMC
Holly F.J., and Lamberts D.W.. Effect of nonisotonic solutions on tear film osmolality. Invest. Ophthalmol. Vis. Sci. 20:236–245, 1981 PubMed
Corrales R.M., Luo L., Chang E.Y., and Pflugfelder S.C.. Effects of osmoprotectants on hyperosmolar stress in cultured human corneal epithelial cells. Cornea. 27:574–579, 2008 PubMed
Chen W., Zhang X., Li J., Wang Y., Chen Q., Hou C., and Garrett Q.. Efficacy of osmoprotectants on prevention and treatment of murine dry eye. Invest. Ophthalmol. Vis. Sci. 54:6287–6297, 2013 PubMed
van Setten G.B. Osmokinetics: a new dynamic concept in dry eye disease. J. Fr. Ophtalmol. 42:221–225, 2019 PubMed
Simmons P., Chang-Lin J.-E., Chung Q., Vehige J., and Welty D.. Effect of compatible solutes on transepithelial electrical resistance and uptake in primary rabbit corneal epithelial cell layers model. Invest. Ophthalmol. Vis. Sci. 48:428, 2007
Warcoin E., Clouzeau C., Roubeix C., Raveu A.L., Godefroy D., Riancho L., Baudouin C., and Brignole-Baudouin F.. Hyperosmolarity and benzalkonium chloride differently stimulate inflammatory markers in conjunctiva-derived epithelial cells in vitro. Ophthalmic Res. 58:40–48, 2017 PubMed
Bron A.J., Evans V.E., and Smith J.A.. Grading of corneal and conjunctival staining in the context of other dry eye tests. Cornea. 22:640–650, 2003 PubMed
Daull P., Feraille L., Barabino S., Cimbolini N., Antonelli S., Mauro V., and Garrigue J.S.. Efficacy of a new topical cationic emulsion of cyclosporine A on dry eye clinical signs in an experimental mouse model of dry eye. Exp. Eye Res. 153:159–164, 2016 PubMed
Quentric Y., Daull P., Feraille L., Elena P.P., and Garrigue J.S.. Efficacy of a preservative-free cationic emulsion vehicle eye drop in a mouse model of dry eye. ARVO poster 422-D0131, Seattle, 2016
Liang H., Baudouin C., Daull P., Garrigue J.S., and Brignole-Baudouin F.. In vitro and in vivo evaluation of a preservative-free cationic emulsion of latanoprost in corneal wound healing models. Cornea. 31:1319–1329, 2012 PubMed
Daull P., Feraille L., Elena P.P., and Garrigue J.S.. Comparison of the anti-inflammatory effects of artificial tears in a rat model of corneal scraping. J. Ocul. Pharmacol. Ther. 32:109–118, 2016 PubMed PMC
Daull P., Guenin S., and Garrigue J.-S.. Mechanism of action of cationic emulsions in the management of ocular surface inflammation and wound healing. ARVO poster 5053-B0259, Seattle, 2016
Daull P., Guenin S., Hamon de Almeida V., and Garrigue J.S.. Anti-inflammatory activity of CKC-containing cationic emulsion eye drop vehicles. Mol. Vis. 24:459–470, 2018 PubMed PMC
Liang H., Brignole-Baudouin F., Rabinovich-Guilatt L., Mao Z., Riancho L., Faure M.O., Warnet J.M., Lambert G., and Baudouin C.. Reduction of quaternary ammonium-induced ocular surface toxicity by emulsions: an in vivo study in rabbits. Mol. Vis. 14:204–216, 2008 PubMed PMC
Liang H., Baudouin C., Faure M.O., Lambert G., and Brignole-Baudouin F.. Comparison of the ocular tolerability of a latanoprost cationic emulsion versus conventional formulations of prostaglandins: an in vivo toxicity assay. Mol. Vis. 15:1690–1699, 2009 PubMed PMC
Liang H., Baudouin C., Daull P., Garrigue J.S., and Brignole-Baudouin F.. Ocular safety of cationic emulsion of cyclosporine in an in vitro corneal wound healing model and an acute in vivo rabbit model. Mol. Vis. 18:2195–2204, 2012 PubMed PMC
Daull P., Raymond E., Feraille L., and Garrigue J.S.. Safety and tolerability of overdosed artificial tears by abraded rabbit corneas. J. Ocul. Pharmacol. Ther. 34:670–676, 2018 PubMed PMC
Chen Z., Li Z., Basti S., Farley W.J., and Pflugfelder S.C.. Altered morphology and function of the lacrimal functional unit in protein kinase C{alpha} knockout mice. Invest. Ophthalmol. Vis. Sci. 51:5592–5600, 2010 PubMed PMC
Antal J.M., Divis L.T., Erzurum S.C., Wiedemann H.P., and Thomassen M.J.. Surfactant suppresses NF-kappa B activation in human monocytic cells. Am. J. Respir. Cell Mol. Biol. 14:374–379, 1996 PubMed
Thomassen M.J., Antal J.M., Divis L.T., and Wiedemann H.P.. Regulation of human alveolar macrophage inflammatory cytokines by tyloxapol: a component of the synthetic surfactant Exosurf. Clin. Immunol. Immunopathol. 77:201–205, 1995 PubMed
Kuo J.H., Lin Y.L., and Tseng J.W.. Interactions between U-937 human macrophages and tyloxapol. Colloids Surf. B Biointerfaces. 64:208–215, 2008 PubMed
Wolffsohn J.S., Arita R., Chalmers R., Djalilian A., Dogru M., Dumbleton K., Gupta P.K., Karpecki P., Lazreg S., Pult H., Sullivan B.D., Tomlinson A., Tong L., Villani E., Yoon K.C., Jones L., and Craig J.P.. TFOS DEWS II Diagnostic Methodology report. Ocul. Surf. 15:539–574, 2017 PubMed
Labetoulle M., Rolando M., Baudouin C., and van Setten G.. Patients' perception of DED and its relation with time to diagnosis and quality of life: an international and multilingual survey. Br. J. Ophthalmol. 101:1100–1105, 2017 PubMed
Tuisku I.S., Konttinen Y.T., Konttinen L.M., and Tervo T.M.. Alterations in corneal sensitivity and nerve morphology in patients with primary Sjogren's syndrome. Exp. Eye Res. 86:879–885, 2008 PubMed
Bron A.J., Yokoi N., Gafney E., and Tiffany J.M.. Predicted phenotypes of dry eye: proposed consequences of its natural history. Ocul. Surf. 7:78–92, 2009 PubMed
Benitez-Del-Castillo J.M., Acosta M.C., Wassfi M.A., Diaz-Valle D., Gegundez J.A., Fernandez C., and Garcia-Sanchez J.. Relation between corneal innervation with confocal microscopy and corneal sensitivity with noncontact esthesiometry in patients with dry eye. Invest. Ophthalmol. Vis. Sci. 48:173–181, 2007 PubMed
Xu K.P., Yagi Y., and Tsubota K.. Decrease in corneal sensitivity and change in tear function in dry eye. Cornea. 15:235–239, 1996 PubMed
Labbe A., Liang Q., Zhang Y., Wang Z., Xu L., Baudouin C., and Sun X.. Corneal nerve structure and function in patients with non-Sjogren dry eye: clinical correlations. Invest. Ophthalmol. Vis. Sci. 54:5144–5150, 2013 PubMed
Adatia F.A., Michaeli-Cohen A., Naor J., Caffery B., Bookman A., and Slomovic A.. Correlation between corneal sensitivity, subjective dry eye symptoms and corneal staining in Sjogren's syndrome. Can. J. Ophthalmol. 39:767–771, 2004 PubMed