Improving Stability of Tear Film Lipid Layer via Concerted Action of Two Drug Molecules: A Biophysical View
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
839315
Horizon 2020
18-26751S
Czech Science Foundation
РД-22-804/06.04.2020
Bulgarian Ministry of Science and Education
PubMed
33327408
PubMed Central
PMC7764870
DOI
10.3390/ijms21249490
PII: ijms21249490
Knihovny.cz E-zdroje
- Klíčová slova
- Langmuir trough, dilatation rheology, fluorescence microscopy, meibum, molecular dynamics, tear film, tear film lipid layer,
- MeSH
- fluorescenční mikroskopie * metody MeSH
- kvartérní amoniové sloučeniny chemie MeSH
- lidé MeSH
- lipidy * chemie MeSH
- mastné alkoholy chemie MeSH
- meibomské žlázky metabolismus MeSH
- poloxamer chemie MeSH
- simulace molekulární dynamiky * MeSH
- slzy * chemie MeSH
- teoretické modely MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cetalkonium chloride MeSH Prohlížeč
- kvartérní amoniové sloučeniny MeSH
- lipidy * MeSH
- mastné alkoholy MeSH
- poloxamer MeSH
The tear film at the ocular surface is covered by a thin layer of lipids. This oily phase stabilizes the film by decreasing its surface tension and improving its viscoelastic properties. Clinically, destabilization and rupture of the tear film are related to dry eye disease and are accompanied by changes in the quality and quantity of tear film lipids. In dry eye, eye drops containing oil-in-water emulsions are used for the supplementation of lipids and surface-active components to the tear film. We explore in detail the biophysical aspects of interactions of specific surface-active compounds, cetalkonium chloride and poloxamer 188, which are present in oil-in-water emulsions, with tear lipids. The aim is to better understand the macroscopically observed eye drops-tear film interactions by rationalizing them at the molecular level. To this end, we employ a multi-scale approach combining experiments on human meibomian lipid extracts, measurements using synthetic lipid films, and in silico molecular dynamics simulations. By combining these methods, we demonstrate that the studied compounds specifically interact with the tear lipid film enhancing its structure, surfactant properties, and elasticity. The observed effects are cooperative and can be further modulated by material packing at the tear-air interface.
Zobrazit více v PubMed
Willcox M.D., Argüeso P., Georgiev G.A., Holopainen J.M., Laurie G.W., Millar T.J., Papas E.B., Rolland J.P., Schmidt T.A., Stahl U. Tfos dews ii tear film report. Ocul. Surf. 2017;15:366–403. doi: 10.1016/j.jtos.2017.03.006. PubMed DOI PMC
Cwiklik L. Tear film lipid layer: A molecular level view. BBA-Biomembranes. 2016;1858:2421–2430. doi: 10.1016/j.bbamem.2016.02.020. PubMed DOI
Georgiev G.A., Eftimov P., Yokoi N. Structure-function relationship of tear film lipid layer: A contemporary perspective. Exp. Eye Res. 2017;163:17–28. doi: 10.1016/j.exer.2017.03.013. PubMed DOI
Baudouin C. The vicious circle in dry eye syndrome: A mechanistic approach. J. Fr. Ophtalmol. 2007;30:239–246. doi: 10.1016/S0181-5512(07)89584-2. PubMed DOI
Bron A.J., de Paiva C.S., Chauhan S.K., Bonini S., Gabison E.E., Jain S., Knop E., Markoulli M., Ogawa Y., Perez V. Tfos dews ii pathophysiology report. Ocul. Surf. 2017;15:438–510. doi: 10.1016/j.jtos.2017.05.011. PubMed DOI
Yokoi N., Takehisa Y., Kinoshita S. Correlation of tear lipid layer interference patterns with the diagnosis and severity of dry eye. Am. J. Ophthalmol. 1996;122:818–824. doi: 10.1016/S0002-9394(14)70378-2. PubMed DOI
Baudouin C., Messmer E.M., Aragona P., Geerling G., Akova Y.A., Benítez-del-Castillo J., Boboridis K.G., Merayo-Lloves J., Rolando M., Labetoulle M. Revisiting the vicious circle of dry eye disease: A focus on the pathophysiology of meibomian gland dysfunction. Br. J. Ophthalmol. 2016;100:300–306. doi: 10.1136/bjophthalmol-2015-307415. PubMed DOI PMC
Chan T.C.Y., Chow S.S.W., Wan K.H.N., Yuen H.K.L. Update on the association between dry eye disease and meibomian gland dysfunction. Hong Kong Med. J. 2019;25:38–47. doi: 10.12809/hkmj187331. PubMed DOI
Llorens-Quintana C., Rico-Del-Viejo L., Syga P., Madrid-Costa D., Iskander D.R. Meibomian gland morphology: The influence of structural variations on gland function and ocular surface parameters. Cornea. 2019;38:1506–1512. doi: 10.1097/ICO.0000000000002141. PubMed DOI
Garrigue J.-S., Amrane M., Faure M.-O., Holopainen J.M., Tong L. Relevance of lipid-based products in the management of dry eye disease. J. Ocul. Pharmacol. Ther. 2017;33:647–661. doi: 10.1089/jop.2017.0052. PubMed DOI PMC
Robert P.-Y., Cochener B., Amrane M., Ismail D., Garrigue J.-S., Pisella P.-J., Baudouin C. Efficacy and safety of a cationic emulsion in the treatment of moderate to severe dry eye disease: A randomized controlled study. Eur. J. Ophthalmol. 2016;26:546–555. doi: 10.5301/ejo.5000830. PubMed DOI
Daull P., Amrane M., Ismail D., Georgiev G., Cwiklik L., Baudouin C., Leonardi A., Garhofer G., Garrigue J.-S. Cationic emulsion-based artificial tears as a mimic of functional healthy tear film for restoration of ocular surface homeostasis in dry eye disease. J. Ocul. Pharmacol. Ther. 2020 doi: 10.1089/jop.2020.0011. PubMed DOI PMC
Amrane M., Creuzot-Garcher C., Robert P.-Y., Ismail D., Garrigue J.-S., Pisella P.-J., Baudouin C. Ocular tolerability and efficacy of a cationic emulsion in patients with mild to moderate dry eye disease–a randomised comparative study. J. Fr. Ophtalmol. 2014;37:589–598. doi: 10.1016/j.jfo.2014.05.001. PubMed DOI
Georgiev G.A., Yokoi N., Nencheva Y., Peev N., Daull P. Surface chemistry interactions of cationorm with films by human meibum and tear film compounds. Int. J. Mol. Sci. 2017;18:1558. doi: 10.3390/ijms18071558. PubMed DOI PMC
Tiffany J., Winter N., Bliss G. Tear film stability and tear surface tension. Curr. Eye Res. 1989;8:507–515. doi: 10.3109/02713688909000031. PubMed DOI
Nagyova B., Tiffany J.M. Components responsible for the surface tension of human tears. Curr. Eye Res. 1999;19:4–11. doi: 10.1076/ceyr.19.1.4.5341. PubMed DOI
Miller D. Measurement of the surface tension of tears. Arch. Ophthalmol. 1969;82:368–371. doi: 10.1001/archopht.1969.00990020370014. PubMed DOI
Zhao J., Wollmer P. Surface activity of tear fluid in normal subjects. Acta Ophthalmol. Scand. 1998;76:438–441. doi: 10.1034/j.1600-0420.1998.760409.x. PubMed DOI
Tiffany J. Tears in health and disease. Eye. 2003;17:923–926. doi: 10.1038/sj.eye.6700566. PubMed DOI
Zhao J., Wollmer P. Air pollutants and tear film stability–a method for experimental evaluation. Clin. Physiol. 2001;21:282–286. doi: 10.1046/j.1365-2281.2001.00329.x. PubMed DOI
Georgiev G.A., Yokoi N., Koev K., Kutsarova E., Ivanova S., Kyumurkov A., Jordanova A., Krastev R., Lalchev Z. Surface chemistry study of the interactions of benzalkonium chloride with films of meibum, corneal cells lipids, and whole tears. Investig. Ophthalmol. Vis. Sci. 2011;52:4645–4654. doi: 10.1167/iovs.10-6271. PubMed DOI
Georgiev G.A., Yokoi N., Ivanova S., Krastev R., Lalchev Z. Surface chemistry study of the interactions of pharmaceutical ingredients with human meibum films. Investig. Ophthalmol. Vis. Sci. 2012;53:4605–4615. doi: 10.1167/iovs.12-9907. PubMed DOI
Georgiev G.A., Yokoi N., Ivanova S., Dimitrov T., Andreev K., Krastev R., Lalchev Z. Surface chemistry study of the interactions of hyaluronic acid and benzalkonium chloride with meibomian and corneal cell lipids. Soft Matter. 2013;9:10841–10856. doi: 10.1039/c3sm51849c. DOI
Borchman D., Foulks G.N., Yappert M.C., Milliner S.E. Differences in human meibum lipid composition with meibomian gland dysfunction using nmr and principal component analysis. Investig. Ophthalmol. Vis. Sci. 2012;53:337–347. doi: 10.1167/iovs.11-8551. PubMed DOI PMC
Leiske D.L., Miller C.E., Rosenfeld L., Cerretani C., Ayzner A., Lin B., Meron M., Senchyna M., Ketelson H.A., Meadows D., et al. Molecular structure of interfacial human meibum films. Langmuir. 2012;28:11858–11865. doi: 10.1021/la301321r. PubMed DOI
Olżyńska A., Wizert A., Štefl M., Iskander D.R., Cwiklik L. Mixed polar-nonpolar lipid films as minimalistic models of tear film lipid layer: A langmuir trough and fluorescence microscopy study. BBA-Biomembranes. 2020:183300. PubMed
Wizert A., Iskander D.R., Cwiklik L. Organization of lipids in the tear film: A molecular-level view. PLoS ONE. 2014;9:e92461. doi: 10.1371/journal.pone.0092461. PubMed DOI PMC
Olżyńska A., Cwiklik L. Behavior of sphingomyelin and ceramide in a tear film lipid layer model. Ann. Anat. 2017;210:128–134. doi: 10.1016/j.aanat.2016.10.005. PubMed DOI
Wizert A., Iskander D.R., Cwiklik L. Interaction of lysozyme with a tear film lipid layer model: A molecular dynamics simulation study. BBA-Biomembranes. 2017;1859:2289–2296. doi: 10.1016/j.bbamem.2017.08.015. PubMed DOI
Bland H., Moilanen J., Ekholm F.S., Paananen R. Investigating the role of specific tear film lipids connected to dry eye syndrome: A study on o-acyl-ω-hydroxy-fatty acids and diesters. Langmuir. 2019;35:3545–3552. doi: 10.1021/acs.langmuir.8b04182. PubMed DOI
Paananen R.O., Viitaja T., Olżyńska A., Ekholm F.S., Moilanen J., Cwiklik L. Interactions of polar lipids with cholesteryl ester multilayers elucidate tear film lipid layer structure. Ocul. Surf. 2020;18:545–553. doi: 10.1016/j.jtos.2020.06.001. PubMed DOI
Humphrey W., Dalke A., Schulten K. Vmd: Visual molecular dynamics. J. Mol. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5. PubMed DOI
Skrzypiec M., Georgiev G.A., Rojewska M., Prochaska K. Interaction of polyhedral oligomeric silsesquioxanes and dipalmitoylphosphatidylcholine at the air/water interface: Thermodynamic and rheological study. BBA-Biomembranes. 2017;1859:1838–1850. doi: 10.1016/j.bbamem.2017.06.012. PubMed DOI
Roylance D. Engineering Viscoelasticity. Volume 2139. Department of Materials Science and Engineering–Massachusetts Institute of Technology; Cambridge, MA, USA: 2001. pp. 1–37.
Rantamaki A.H., Seppanen-Laakso T., Oresic M., Jauhiainen M., Holopainen J.M. Human tear fluid lipidome: From composition to function. PLoS ONE. 2011;6:e19553. doi: 10.1371/journal.pone.0019553. PubMed DOI PMC
Hezaveh S., Samanta S., De Nicola A., Milano G., Roccatano D. Understanding the interaction of block copolymers with dmpc lipid bilayer using coarse-grained molecular dynamics simulations. J. Phys. Chem. B. 2012;116:14333–14345. doi: 10.1021/jp306565e. PubMed DOI
Abraham M.J., Murtola T., Schulz R., Páll S., Smith J.C., Hess B., Lindahl E. Gromacs: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 2015;1:19–25. doi: 10.1016/j.softx.2015.06.001. DOI
Leonardi A., Van Setten G., Amrane M., Ismail D., Garrigue J.S., Figueiredo F.C., Baudouin C. Efficacy and safety of 0.1% cyclosporine a cationic emulsion in the treatment of severe dry eye disease: A multicenter randomized trial. Eur. J. Ophthalmol. 2016;26:287–296. doi: 10.5301/ejo.5000779. PubMed DOI