Disease-Induced Mortality Outweighs Hunting in Causing Wild Boar Population Crash After African Swine Fever Outbreak

. 2020 ; 7 () : 378. [epub] 20200728

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32850993

African swine fever (ASF) has been spreading in the Eurasian continent for more than 10 years now. Although the course of ASF in domestic pigs and its negative economic impact on the pork industry are well-known, we still lack a quantitative assessment of the impact of ASF on wild boar (Sus scrofa) populations under natural conditions. Wild boar is not only a reservoir for ASF; it is also one of the key wildlife species affecting structure and functioning of ecosystems. Therefore, knowledge on how ASF affects wild boar populations is crucial to better predict ecosystem response and for the design of scientific-based wild boar management to control ASF. We used a long-term camera trap survey (2012-2017) from the Białowieza Primeval Forest (BPF, Poland), where an ASF outbreak occurred in 2015, to investigate the impact of the disease on wild boar population dynamics under two contrasting management regimes (hunted vs. non-hunted). In the hunted part of BPF ("managed area"), hunting was drastically increased prior and after the first ASF case occurred (March 2015), whereas inside the National Park, hunting was not permitted ("unmanaged area," first detected case in June 2015). Using a random encounter model (REM), we showed that the density and abundance of wild boar dropped by 84 and 95% within 1 year following ASF outbreak in the unmanaged and managed area, respectively. In the managed area, we showed that 11-22% additional mortality could be attributed to hunting. Our study suggests that ASF-induced mortality, by far, outweighs hunting-induced mortality in causing wild boar population decline and shows that intensified hunting in newly ASF-infected areas does not achieve much greater reduction of population size than what is already caused by the ASF virus.

Zobrazit více v PubMed

Rowlands RJ, Michaud V, Heath L, Hutchings G, Oura C, Vosloo W, et al. . African swine fever virus isolate, Georgia, 2007. Emerg Infect Dis. (2008) 14:1870–4. 10.3201/eid1412.080591 PubMed DOI PMC

Sánchez-Vizcaíno JM, Mur L, Martínez-López B. African swine fever (ASF): five years around Europe. Vet Microbiol. (2013) 165:45–50. 10.1016/j.vetmic.2012.11.030 PubMed DOI

Vergne T, Gogin A, Pfeiffer DU. Statistical exploration of local transmission routes for African swine fever in pigs in the Russian federation, 2007–2014. Transb Emerg Dis. (2015) 64:504–12. 10.1111/tbed.12391 PubMed DOI

Smietanka K, Wozniakowski G, Kozak E, Niemczuk K, Fraczyk M, Bocian Ł, et al. . African swine fever epidemic, Poland, 2014–2015. Emerg Infect Dis. (2016) 22:1201–7. 10.3201/eid2207.151708 PubMed DOI PMC

Chenais E, Depner K, Guberti V, Dietze K, Viltrop A, Ståhl K. Epidemiological considerations on African swine fever in Europe 2014–2018. Porc Health Manag. (2019) 5:6. 10.1186/s40813-018-0109-2 PubMed DOI PMC

Linden A, Licoppe A, Volpe R, Paternostre J, Lesenfants C, Cassart D, et al. . Summer 2018: African swine fever virus hits north-western Europe. Transb Emerg Dis. (2019) 66:54–55. 10.1111/tbed.13047 PubMed DOI

Gallardo MC, Reoyo A, de la T, Fernández-Pinero J, Iglesias I, Muñoz MJ, Arias ML. African swine fever: a global view of the current challenge. Porc Health Manag. (2015) 1:21. 10.1186/s40813-015-0013-y PubMed DOI PMC

Andraud M, Halasa T, Boklund A, Rose N. Threat to the french swine industry of African swine fever: surveillance, spread, and control perspectives. Front Vet Sci. (2019) 6:248. 10.3389/fvets.2019.00248 PubMed DOI PMC

Sánchez-Cordón PJ, Montoya M, Reis AL, Dixon LK. African swine fever: A re-emerging viral disease threatening the global pig industry. Vet J. (2018) 233:41–48. 10.1016/j.tvjl.2017.12.025 PubMed DOI PMC

Chenais E, Ståhl K, Guberti V, Depner K. Identification of wild boar-habitat epidemiologic cycle in african swine fever epizootic. Emerg Infect Dis. (2018) 24:810–2. 10.3201/eid2404.172127 PubMed DOI PMC

Burrascano S, Copiz R, Del Vico E, Fagiani S, Giarrizzo E, Mei M, et al. Wild boar rooting intensity determines shifts in understorey composition and functional traits. Commun Ecol. (2015) 16:244–53. 10.1556/168.2015.16.2.12 DOI

Cocquelet A, Mårell A, Bonthoux S, Baltzinger C, Archaux F. Direct and indirect effects of ungulates on forest birds' nesting failure? An experimental test with artificial nests. For Ecol Manag. (2019) 437:148–55. 10.1016/j.foreco.2019.01.025 DOI

Gómez JM, Hódar JA. Wild boars (Sus scrofa) affect the recruitment rate and spatial distribution of holm oak (Quercus ilex). For Ecol Manag. (2008) 256:1384–9. 10.1016/j.foreco.2008.06.045 DOI

Heinken T, Schmidt M, Oheimb G, von Kriebitzsch W-U, Ellenberg H. Soil seed banks near rubbing trees indicate dispersal of plant species into forests by wild boar. Basic Appl Ecol. (2006) 7:31–44. 10.1016/j.baae.2005.04.006 DOI

Jaroszewicz B, Piroznikow E, Sondej I. Endozoochory by the guild of ungulates in Europe's primeval forest. For Ecol Manag. (2013) 305:21–8. 10.1016/j.foreco.2013.05.004 DOI

Sandom CJ, Hughes J, Macdonald DW. Rewilding the scottish highlands: do wild boar, sus scrofa, use a suitable foraging strategy to be effective ecosystem engineers? Restor Ecol. (2013) 21:336–43. 10.1111/j.1526-100X.2012.00903.x DOI

Sondej I, Kwiatkowska-Falinska AJ. Effects of wild boar (sus scrofa L.) rooting on seedling emergence in białowieza forest. Pol J Ecol. (2017) 65:380–9. 10.3161/15052249PJE2017.65.4.007 DOI

Welander J. Spatial and temporal dynamics of wild boar (Sus scrofa) rooting in a mosaic landscape. J Zool. (2000) 252:263–71. 10.1111/j.1469-7998.2000.tb00621.x DOI

Vicente J, Apollonio M, Blanco-Aguiar JA, Borowik T, Brivio F, Casaer J, et al. . Science-based wildlife disease response. Science. (2019) 364:943–4. 10.1126/science.aax4310 PubMed DOI

Schulz K, Conraths FJ, Blome S, Staubach C, Sauter-Louis C. African swine fever: fast and furious or slow and steady? Viruses. (2019) 11:866 10.3390/v11090866 PubMed DOI PMC

Boklund A, Cay B, Depner K, Földi Z, Guberti V, Masiulis M, et al. . Epidemiological analyses of African swine fever in the European union (November 2017 until November 2018). EFSA J. (2018) 16:e05494. 10.2903/j.efsa.2018.5494 PubMed DOI PMC

Choisy M, Rohani P. Harvesting can increase severity of wildlife disease epidemics. Proc Biol Sci. (2006) 273:2025–34. 10.1098/rspb.2006.3554 PubMed DOI PMC

Streicker DG, Recuenco S, Valderrama W, Gomez Benavides J, Vargas I, Pacheco V, et al. . Ecological and anthropogenic drivers of rabies exposure in vampire bats: implications for transmission and control. Proc Roy Soc B Biol Sci. (2012) 279:3384–92. 10.1098/rspb.2012.0538 PubMed DOI PMC

Jedrzejewski W, Schmidt K, Theuerkauf J, Jedrzejewska B, Selva N, Zub K, et al. Kill rates and predation by wolves on ungulate populations in białowieza primeval forest (Poland). Ecology. (2002) 83:1341–56. 10.2307/3071948 DOI

Jedrzejewska B, Jedrzejewski W, Bunevich AN, Milkowski L, Krasinski ZA. Factors shaping population densities and increase rates of ungulates in bialowieza primeval forest (Poland and Belarus) in the 19th and 20th centuries. Acta Theriol. (1997) 42:399–451.

Bubnicki JW, Churski M, Schmidt K, Diserens TA, Kuijper DP. Linking spatial patterns of terrestrial herbivore community structure to trophic interactions. eLife. (2019) 8:e44937. 10.7554/eLife.44937.062 PubMed DOI PMC

Bubnicki JW, Churski M, Kuijper DPJ. Trapper: an open source web-based application to manage camera trapping projects. Methods Ecol Evol. (2016) 7:1209–16. 10.1111/2041-210X.12571 DOI

MacKenzie ND. I. Occupancy Estimation and Modeling. Inferring Patterns and Dynamics of Species Occurrence. Burlington, MA: Academic Press; (2006).

Niedballa J, Sollmann R, Courtiol A, Wilting A. camtrapR: An R package for efficient camera trap data management. Methods Ecol Evol. (2016) 7:1457–62. 10.1111/2041-210X.12600 DOI

Fiske I, Chandler R. Unmarked: an r package for fitting hierarchical models of wildlife occurrence and abundance. J Stat Softw. (2011) 43:1–23. 10.18637/jss.v043.i10 DOI

R Core Team R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing: (2019)

Massei G, Coats J, Lambert MS, Pietravalle S, Gill R, Cowan D. Camera traps and activity signs to estimate wild boar density and derive abundance indices. Pest Manag Sci. (2018) 74:853–60. 10.1002/ps.4763 PubMed DOI

Hebeisen C, Fattebert J, Baubet E, Fischer C. Estimating wild boar (Sus scrofa) abundance and density using capture–resights in canton of Geneva, Switzerland. Eur J Wildlife Res. (2008) 54:391–401. 10.1007/s10344-007-0156-5 DOI

Rowcliffe JM, Field J, Turvey ST, Carbone C. Estimating animal density using camera traps without the need for individual recognition. J Appl Ecol. (2008) 45:1228–36. 10.1111/j.1365-2664.2008.01473.x PubMed DOI

Chauvenet ALM, Gill RMA, Smith GC, Ward AI, Massei G. Quantifying the bias in density estimated from distance sampling and camera trapping of unmarked individuals. Ecol Model. (2017) 350:79–86. 10.1016/j.ecolmodel.2017.02.007 DOI

Thomas L, Buckland ST, Rexstad EA, Laake JL, Strindberg S, Hedley SL, et al. . Distance software: design and analysis of distance sampling surveys for estimating population size. J Appl Ecol. (2010) 47:5–14. 10.1111/j.1365-2664.2009.01737.x PubMed DOI PMC

Cusack JJ, Dickman AJ, Rowcliffe JM, Carbone C, Macdonald DW, Coulson T. Random versus game trail-based camera trap placement strategy for monitoring terrestrial mammal communities. PLoS ONE. (2015) 10:e126373. 10.1371/journal.pone.0126373 PubMed DOI PMC

Podgórski T, Baś G, Jedrzejewska B, Sönnichsen L, Sniezko S, Jedrzejewski W, Okarma H. Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: primeval forest and metropolitan area. J Mammal. (2013) 94:109–19. 10.1644/12-MAMM-A-038.1 DOI

Rowcliffe JM, Jansen PA, Kays R, Kranstauber B, Carbone C. Wildlife speed cameras: measuring animal travel speed and day range using camera traps. Remote Sens Ecol Conserv. (2016) 2:84–94. 10.1002/rse2.17 DOI

Palencia P, Vicente J, Barroso P, Barasona JÁ, Soriguer RC, Acevedo P. Estimating day range from camera-trap data: the animals' behaviour as a key parameter. J Zool. (2019) 309:182–90. 10.1111/jzo.12710 DOI

Hofmeester TR, Rowcliffe JM, Jansen PA. A simple method for estimating the effective detection distance of camera traps. Remote Sens Ecol Conserv. (2017) 3:81–9. 10.1002/rse2.25 DOI

Efron B, Tibshirani R. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Stat Sci. (1986) 1:54–75. 10.1214/ss/1177013815 DOI

Spiess A-N. Propagate: Propagation of Uncertainty. (2018). Available online at: https://CRAN.R-project.org/package=propagate (accessed May 21, 2020).

European Food Safety Authority Evaluation of possible mitigation measures to prevent introduction and spread of African swine fever virus through wild boar. EFSA Jl. (2014) 12:3616 10.2903/j.efsa.2014.3616 DOI

Toïgo C, Servanty S, Gaillard J-M, Brandt S, Baubet E. Disentangling natural from hunting mortality in an intensively hunted wild boar population. J Wildlife Manag. (2008) 72:1532–9. 10.2193/2007-378 DOI

Vetter SG, Ruf T, Bieber C, Arnold W. What is a mild winter? Regional differences in within-species responses to climate change. PLoS ONE. (2015) 10:e0132178. 10.1371/journal.pone.0132178 PubMed DOI PMC

Servanty S, Gaillard J-M, Toigo C, Brandt S, Baubet E. Pulsed resources and climate-induced variation in the reproductive traits of wild boar under high hunting pressure. J Anim Ecol. (2009) 78:1278–90. 10.1111/j.1365-2656.2009.01579.x PubMed DOI

Servanty S, Gaillard J-M, Ronchi F, Focardi S, Baubet É, Gimenez O. Influence of harvesting pressure on demographic tactics: Implications for wildlife management. J Appl Ecol. (2011) 48:835–43. 10.1111/j.1365-2664.2011.02017.x DOI

Gamelon M, Besnard A, Gaillard J-M, Servanty S, Baubet E, Brandt S, et al. . High hunting pressure selects for earlier birth date: wild boar as a case study. Evolution. (2011) 65:3100–12. 10.1111/j.1558-5646.2011.01366.x PubMed DOI

Scillitani L, Monaco A, Toso S. Do intensive drive hunts affect wild boar (Sus scrofa) spatial behaviour in Italy? Some evidences and management implications. Eur J Wildlife Res. (2009) 56:307–18. 10.1007/s10344-009-0314-z DOI

Wearn OR, Glover-Kapfer P. Snap happy: camera traps are an effective sampling tool when compared with alternative methods. Roy Soc Open Sci. (2019) 6:181748. 10.1098/rsos.181748 PubMed DOI PMC

Jedrzejewska B, Jedrzejewski W. Predation in Vertebrate Communities: The Bialowieza Primeval Forest as a Case Study. Berlin: Springer-Verlag; (1998).

Mazur-Panasiuk N, Zmudzki J, Wozniakowski G. African swine fever virus – persistence in different environmental conditions and the possibility of its indirect transmission. J Vet Res. (2019) 63:303–10. 10.2478/jvetres-2019-0058 PubMed DOI PMC

Mysterud A, Rivrud IM, Gundersen V, Rolandsen CM, Viljugrein H. The unique spatial ecology of human hunters. Nat Hum Behav. (2020) 10.1038/s41562-020-0836-7 PubMed DOI

Miteva A, Papanikolaou A, Gogin A, Boklund A, Bøtner A, Linden A, et al. . Epidemiological analyses of african swine fever in the european union (november 2018 to october 2019). EFSA J. (2020) 18:e05996. 10.2903/j.efsa.2020.5996 PubMed DOI

Marcon A, Linden A, Satran P, Gervasi V, Licoppe A, Guberti V. R0 estimation for the African swine fever epidemics in wild boar of czech republic and Belgium. Vet Sci. (2020) 7:2. 10.3390/vetsci7010002 PubMed DOI PMC

Eblé PL, Hagenaars TJ, Weesendorp E, Quak S, Moonen-Leusen HW, Loeffen WLA. Transmission of African swine fever virus via carrier (survivor) pigs does occur. Vet Microbiol. (2019) 237:108345. 10.1016/j.vetmic.2019.06.018 PubMed DOI

Petrov A, Forth JH, Zani L, Beer M, Blome S. No evidence for long-term carrier status of pigs after African swine fever virus infection. Transb Emerg Dis. (2018) 65:1318–28. 10.1111/tbed.12881 PubMed DOI

Ståhl K, Sternberg-Lewerin S, Blome S, Viltrop A, Penrith M-L, Chenais E. Lack of evidence for long term carriers of African swine fever virus - a systematic review. Virus Res. (2019) 272:197725. 10.1016/j.virusres.2019.197725 PubMed DOI

Buck JC, Ripple WJ. Infectious agents trigger trophic cascades. Trends Ecol Evol. (2017) 32:681–94. 10.1016/j.tree.2017.06.009 PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...