Accelerometer-based detection of African swine fever infection in wild boar

. 2023 Aug 30 ; 290 (2005) : 20231396. [epub] 20230830

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37644835

Infectious wildlife diseases that circulate at the interface with domestic animals pose significant threats worldwide and require early detection and warning. Although animal tracking technologies are used to discern behavioural changes, they are rarely used to monitor wildlife diseases. Common disease-induced behavioural changes include reduced activity and lethargy ('sickness behaviour'). Here, we investigated whether accelerometer sensors could detect the onset of African swine fever (ASF), a viral infection that induces high mortality in suids for which no vaccine is currently available. Taking advantage of an experiment designed to test an oral ASF vaccine, we equipped 12 wild boars with an accelerometer tag and quantified how ASF affects their activity pattern and behavioural fingerprint, using overall dynamic body acceleration. Wild boars showed a daily reduction in activity of 10-20% from the healthy to the viremia phase. Using change point statistics and comparing healthy individuals living in semi-free and free-ranging conditions, we show how the onset of disease-induced sickness can be detected and how such early detection could work in natural settings. Timely detection of infection in animals is crucial for disease surveillance and control, and accelerometer technology on sentinel animals provides a viable complementary tool to existing disease management approaches.

Zobrazit více v PubMed

Morens DM, Folkers GK, Fauci AS. 2004. The challenge of emerging and re-emerging infectious diseases. Nature 430, 242-249. (10.1038/nature02759) PubMed DOI PMC

Terrestrial Code Online Access. 2023. WOAH: World Organization for Animal Health. See https://www.woah.org/en/what-we-do/standards/codes-and-manuals/terrestrial-code-online-access/ (accessed 12 June 2023).

Brückner G, et al. . 2014. Guide to terrestrial animal health surveillance. Paris, France: OIE. See https://agritrop.cirad.fr/578667/ (accessed 24 February 2022).

Licoppe A, De Waele V, Malengreaux C, Paternostre J, Van Goethem A, Desmecht D, Herman M, Linden A. 2023. Management of a focal introduction of ASF virus in wild boar: the Belgian experience. Pathogens 12, 152. (10.3390/pathogens12020152) PubMed DOI PMC

Rietz J, et al. 2023. Drone-based thermal imaging in the detection of wildlife carcasses and disease management. Transbound. Emerg. Dis. 2023, e5517000. (10.1155/2023/5517000) DOI

Allepuz A, Hovari M, Masiulis M, Ciaravino G, Beltrán-Alcrudo D. 2022. Targeting the search of African swine fever-infected wild boar carcasses: a tool for early detection. Transbound. Emer. Dis. 69, e1682-e1692. (10.1111/tbed.14504) PubMed DOI PMC

Halliday JEB, Meredith AL, Knobel DL, Shaw DJ, Bronsvoort BdC, Cleaveland S. 2007. A framework for evaluating animals as sentinels for infectious disease surveillance. J. R. Soc. Interface 4, 973-984. (10.1098/rsif.2007.0237) PubMed DOI PMC

Committee on Animals as Monitors of Environmental Hazards. 1991. Animals as sentinels of environmental health hazards. Washington, DC: National Academies Press. See http://www.ncbi.nlm.nih.gov/books/NBK234944/ (accessed 2 June 2022). PubMed

McCluskey BJ. 2003. Use of sentinel herds in monitoring and surveillance systems. In Animal disease surveillance and survey systems (ed. Salman MD), pp. 119-133. Ames, IA: Blackwell. See https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470344866.ch8.

Wikelski M, et al. 2020. Potential short-term earthquake forecasting by farm animal monitoring. Ethology 126, 931-941. (10.1111/eth.13078) DOI

Kays R, Crofoot MC, Jetz W, Wikelski M. 2015. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478. (10.1126/science.aaa2478) PubMed DOI

Williams HJ, Shipley JR, Rutz C, Wikelski M, Wilkes M, Hawkes LA. 2021. Future trends in measuring physiology in free-living animals. Phil. Trans. R. Soc. B 376, 20200230. (10.1098/rstb.2020.0230) PubMed DOI PMC

Brown DD, Kays R, Wikelski M, Wilson R, Klimley AP. 2013. Observing the unwatchable through acceleration logging of animal behavior. Anim. Biotelemetry 1, 20. (10.1186/2050-3385-1-20) DOI

Williams HJ, et al. 2020. Optimizing the use of biologgers for movement ecology research. J. Anim. Ecol. 89, 186-206. (10.1111/1365-2656.13094) PubMed DOI PMC

Adelman JS, Córdoba-Córdoba S, Spoelstra K, Wikelski M, Hau M. 2010. Radiotelemetry reveals variation in fever and sickness behaviours with latitude in a free-living passerine. Funct. Ecol. 24, 813-823. (10.1111/j.1365-2435.2010.01702.x) DOI

Chapa JM, Maschat K, Iwersen M, Baumgartner J, Drillich M. 2020. Accelerometer systems as tools for health and welfare assessment in cattle and pigs: a review. Behav. Processes 181, 104262. (10.1016/j.beproc.2020.104262) PubMed DOI

Tobin C, Bailey DW, Trotter MG, O'Connor L. 2020. Sensor based disease detection: a case study using accelerometers to recognize symptoms of Bovine Ephemeral Fever. Comput. Electron. Agric. 175, 105605. (10.1016/j.compag.2020.105605) DOI

Wilson RP, et al. 2014. Wild state secrets: ultra-sensitive measurement of micro-movement can reveal internal processes in animals. Front. Ecol. Environ. 12, 582-587. (10.1890/140068) DOI

Hart BL. 1988. Biological basis of the behavior of sick animals. Neurosci. Biobehav. Rev. 12, 123-137. (10.1016/S0149-7634(88)80004-6) PubMed DOI

Benjamin M, Yik S. 2019. Precision livestock farming in swine welfare: a review for swine practitioners. Animals (Basel) 9, 133. (10.3390/ani9040133) PubMed DOI PMC

Stachowicz J, Umstätter C. 2021. Do we automatically detect health- or general welfare-related issues? A framework. Proc. R. Soc. B 288, 20210190. (10.1098/rspb.2021.0190) PubMed DOI PMC

Virgilio Ad, Morales JM, Lambertucci SA, Shepard ELC, Wilson RP. 2018. Multi-dimensional precision livestock farming: a potential toolbox for sustainable rangeland management. PeerJ 6, e4867. (10.7717/peerj.4867) PubMed DOI PMC

Rabinowitz PM, Gordon Z, Holmes R, Taylor B, Wilcox M, Chudnov D, Nadkarni P, Dein FJ. 2005. Animals as sentinels of human environmental health hazards: an evidence-based analysis. EcoHealth 2, 26-37. (10.1007/s10393-004-0151-1) DOI

Netherton CL, Connell S, Benfield CTO, Dixon LK. 2019. The genetics of life and death: virus-host interactions underpinning resistance to African swine fever, a viral hemorrhagic disease. Front. Genetics 10, 402. (10.3389/fgene.2019.00402) PubMed DOI PMC

Morelle K, Bubnicki J, Churski M, Gryz J, Podgórski T, Kuijper DPJ. 2020. Disease-induced mortality outweighs hunting in causing wild boar population crash after African swine fever outbreak. Front. Vet. Sci. 7, 378. (10.3389/fvets.2020.00378) PubMed DOI PMC

Berthe F. 2020. The global economic impact of ASF. Paris, France: World Organization for Animal Health.

Kivumbi CC, Yona C, Hakizimana JN, Misinzo G. 2021. An assessment of the epidemiology and socioeconomic impact of the 2019 African swine fever outbreak in Ngara district, western Tanzania. Veterinary Anim. Sci. 14, 100198. (10.1016/j.vas.2021.100198) PubMed DOI PMC

Gavier-Widén D, Ståhl K, Neimanis AS, Hård av Segerstad C, Gortázar C, Rossi S, Kuiken T. 2015. African swine fever in wild boar in Europe: a notable challenge. Vet. Rec. 176, 199-200. (10.1136/vr.h699) PubMed DOI

Rodríguez-Bertos A, et al. 2020. Clinical course and gross pathological findings in wild boar infected with a highly virulent strain of African swine fever virus genotype II. Pathogens 9, 688. (10.3390/pathogens9090688) PubMed DOI PMC

Halsey LG, Shepard ELC, Wilson RP. 2011. Assessing the development and application of the accelerometry technique for estimating energy expenditure. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 158, 305-314. (10.1016/j.cbpa.2010.09.002) PubMed DOI

Gleiss AC, Wilson RP, Shepard ELC. 2011. Making overall dynamic body acceleration work: on the theory of acceleration as a proxy for energy expenditure. Methods Ecol. Evol. 2, 23-33. (10.1111/j.2041-210X.2010.00057.x) DOI

Wilson RP, McMahon CR. 2006. Measuring devices on wild animals: what constitutes acceptable practice? Front. Ecol. Environ. 4, 147-154. (10.1890/1540-9295(2006)004[0147:MDOWAW]2.0.CO;2) DOI

Muggeo VMR. 2003. Estimating regression models with unknown break-points. Stat. Med. 22, 3055-3071. (10.1002/sim.1545) PubMed DOI

Lindeløv JK. 2020. mcp: an R package for regression with multiple change points. (10.31219/osf.io/fzqxv) DOI

Heck DW. 2019. A caveat on the Savage–Dickey density ratio: the case of computing Bayes factors for regression parameters. Br. J. Math. Stat. Psychol. 72, 316-333. (10.1111/bmsp.12150) PubMed DOI

Verdinelli I, Wasserman L. 1995. Computing Bayes factors using a generalization of the Savage-Dickey density ratio. J. Am. Stat. Assoc. 90, 614-618. (10.1080/01621459.1995.10476554) DOI

Chenais E, Depner K, Guberti V, Dietze K, Viltrop A, Ståhl K. 2019. Epidemiological considerations on African swine fever in Europe 2014–2018. Porcine Health Manage. 5, 6. (10.1186/s40813-018-0109-2) PubMed DOI PMC

Schulz K, Masiulis M, Staubach C, Malakauskas A, Pridotkas G, Conraths FJ, Sauter-Louis C. 2021. African swine fever and its epidemiological course in Lithuanian wild boar. Viruses 13, 1276. (10.3390/v13071276) PubMed DOI PMC

Binning SA, Shaw AK, Roche DG. 2017. Parasites and host performance: incorporating infection into our understanding of animal movement. Integr. Comp. Biol. 57, 267-280. (10.1093/icb/icx024) PubMed DOI

Fernández-Carrión E, Barasona JÁ, Sánchez Á, Jurado C, Cadenas-Fernández E, Sánchez-Vizcaíno JM. 2020. Computer vision applied to detect lethargy through animal motion monitoring: a trial on African swine fever in wild boar. Animals 10, 2241. (10.3390/ani10122241) PubMed DOI PMC

Martínez-Avilés M, Fernández-Carrión E, García-Baones JML, Sánchez-Vizcaíno JM. 2017. Early detection of infection in pigs through an online monitoring system. Transbound. Emerg. Dis. 64, 364-373. (10.1111/tbed.12372) PubMed DOI

Arkwright AC, et al. 2020. Behavioral biomarkers for animal health: a case study using animal-attached technology on loggerhead turtles. Front. Ecol. Evol. 7, 504. (10.3389/fevo.2019.00504) DOI

Greenwood EC, Plush KJ, van Wettere WHEJ, Hughes PE. 2014. Hierarchy formation in newly mixed, group housed sows and management strategies aimed at reducing its impact. Appl. Anim. Behav. Sci. 160, 1-11. (10.1016/j.applanim.2014.09.011) DOI

Wolfson DW, Andersen DE, Fieberg JR. 2022. Using piecewise regression to identify biological phenomena in biotelemetry datasets. J. Anim. Ecol. 91, 1755-1769. (10.1111/1365-2656.13779) PubMed DOI PMC

Oczak M, Bayer F, Vetter S, Maschat K, Baumgartner J. 2022. Comparison of the automated monitoring of the sow activity in farrowing pens using video and accelerometer data. Comput. Electron. Agric. 192, 106517. (10.1016/j.compag.2021.106517) DOI

Scheel C, Traulsen I, Auer W, Müller K, Stamer E, Krieter J. 2017. Detecting lameness in sows from ear tag-sampled acceleration data using wavelets. Animal 11, 2076-2083. (10.1017/S1751731117000726) PubMed DOI

Dougherty ER, Seidel DP, Carlson CJ, Spiegel O, Getz WM. 2018. Going through the motions: incorporating movement analyses into disease research. Ecol. Lett. 21, 588-604. (10.1111/ele.12917) PubMed DOI

McElroy EJ, Buron Id. 2014. Host performance as a target of manipulation by parasites: a meta-analysis. J. Parasitol. 100, 399-410. (10.1645/13-488.1) PubMed DOI

Thomas F, Schmidt-Rhaesa A, Martin G, Manu C, Durand P, Renaud F. 2002. Do hairworms (Nematomorpha) manipulate the water seeking behaviour of their terrestrial hosts? J. Evol. Biol. 15, 356-361. (10.1046/j.1420-9101.2002.00410.x) DOI

Stafford CA, Walker GP, Ullman DE. 2011. Infection with a plant virus modifies vector feeding behavior. Proc. Natl Acad. Sci. USA 108, 9350-9355. (10.1073/pnas.1100773108) PubMed DOI PMC

Wild TA, Wikelski M, Tyndel S, Alarcón-Nieto G, Klump BC, Aplin LM, Meboldt M, Williams HJ. et al. 2023. Internet on animals: Wi-Fi-enabled devices provide a solution for big data transmission in biologging. Methods Ecol. Evol. 14, 87-102. (10.1111/2041-210X.13798) DOI

Yu H, Deng J, Leen T, Li G, Klaassen M. 2022. Continuous on-board behaviour classification using accelerometry: a case study with a new GPS-3G-Bluetooth system in Pacific black ducks. Methods Ecol. Evol. 13, 1429-1435. (10.1111/2041-210X.13878) DOI

Kosowska A, Cadenas-Fernández E, Barroso S, Sánchez-Vizcaíno JM, Barasona JA. 2020. Distinct African swine fever virus shedding in wild boar infected with virulent and attenuated isolates. Vaccines 8, 767. (10.3390/vaccines8040767) PubMed DOI PMC

Thumbi SM, Njenga MK, Otiang E, Otieno L, Munyua P, Eichler S, Widdowson MA, McElwain TF, Palmer GH. 2019. Mobile phone-based surveillance for animal disease in rural communities: implications for detection of zoonoses spillover. Phil. Trans. R. Soc. B 374, 20190020. (10.1098/rstb.2019.0020) PubMed DOI PMC

Lawson B, Petrovan SO, Cunningham AA. 2015. Citizen science and wildlife disease surveillance. EcoHealth 12, 693-702. (10.1007/s10393-015-1054-z) PubMed DOI

Kays R, Wikelski M. 2023. The Internet of Animals: what it is, what it could be. Trends Ecol. Evol. 38, 859-869. (10.1016/j.tree.2023.04.007) PubMed DOI

de Knegt HJ, Eikelboom JAJ, van Langevelde F, Spruyt WF, Prins HHT. 2021. Timely poacher detection and localization using sentinel animal movement. Sci. Rep. 11, 4596. (10.1038/s41598-021-83800-1) PubMed DOI PMC

Wild TA, et al. 2023. A multi-species evaluation of digital wildlife monitoring using the Sigfox IoT network. Anim. Biotelemetry 11, 13. (10.1186/s40317-023-00326-1) PubMed DOI PMC

Morelle K. 2023. Wild boar accelerometer sensors data. See https://datadryad.org/stash/share/rlAe9c47aD4VOUy_qMTblezVZCw7qoTW2t0rHYzA7Ic.

Morelle K, et al. . 2023. Accelerometer-based detection of African swine fever infection in wild boar. Figshare. (10.6084/m9.figshare.c.6778105) PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Accelerometer-based detection of African swine fever infection in wild boar

. 2023 Aug 30 ; 290 (2005) : 20231396. [epub] 20230830

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...