A multi-species evaluation of digital wildlife monitoring using the Sigfox IoT network
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
R01 GM131319
NIGMS NIH HHS - United States
PubMed
38800509
PubMed Central
PMC11116194
DOI
10.1186/s40317-023-00326-1
PII: 326
Knihovny.cz E-zdroje
- Klíčová slova
- Animal tracking, Biologging, Embedded systems, LPWAN, LoRa, Movement ecology, Onboard processing, Sigfox, Telemetry, Wireless sensors,
- Publikační typ
- časopisecké články MeSH
Bio-telemetry from small tags attached to animals is one of the principal methods for studying the ecology and behaviour of wildlife. The field has constantly evolved over the last 80 years as technological improvement enabled a diversity of sensors to be integrated into the tags (e.g., GPS, accelerometers, etc.). However, retrieving data from tags on free-ranging animals remains a challenge since satellite and GSM networks are relatively expensive and or power hungry. Recently a new class of low-power communication networks have been developed and deployed worldwide to connect the internet of things (IoT). Here, we evaluated one of these, the Sigfox IoT network, for the potential as a real-time multi-sensor data retrieval and tag commanding system for studying fauna across a diversity of species and ecosystems. We tracked 312 individuals across 30 species (from 25 g bats to 3 t elephants) with seven different device concepts, resulting in more than 177,742 successful transmissions. We found a maximum line of sight communication distance of 280 km (on a flying cape vulture [Gyps coprotheres]), which sets a new documented record for animal-borne digital data transmission using terrestrial infrastructure. The average transmission success rate amounted to 68.3% (SD 22.1) on flying species and 54.1% (SD 27.4) on terrestrial species. In addition to GPS data, we also collected and transmitted data products from accelerometers, barometers, and thermometers. Further, we assessed the performance of Sigfox Atlas Native, a low-power method for positional estimates based on radio signal strengths and found a median accuracy of 12.89 km (MAD 5.17) on animals. We found that robust real-time communication (median message delay of 1.49 s), the extremely small size of the tags (starting at 1.28 g without GPS), and the low power demands (as low as 5.8 µAh per transmitted byte) unlock new possibilities for ecological data collection and global animal observation.
Centre for the Advanced Study of Collective Behaviour University of Konstanz 78464 Constance Germany
Department of Agriculture Land Reform and Rural Development P O Box 12 Skukuza 1350 South Africa
Department of Biology University of Konstanz 78464 Constance Germany
Department of Migration Max Planck Institute of Animal Behavior 78315 Radolfzell Germany
North Carolina Museum of Natural Sciences Raleigh NC 27601 USA
Product Development Group Zurich ETH Zürich Leonhardstr 21 8092 Zurich Switzerland
Scientific Services South African National Parks Skukuza 1350 South Africa
Vulpro NpC Vulture Programme Plot 121 Boekenhoutkloof Road Rietfontein 0216 South Africa
Zobrazit více v PubMed
Ashton K. That ‘internet of things’ thing. RFID J. 2009;22:97–114.
Holler J, Tsiatsis V, Mulligan C, Karnouskos S, Avesand S, Boyle D. Internet of Things. London: Academic Press; 2014.
Kays R, Crofoot MC, Jetz W, Wikelski M. Terrestrial animal tracking as an eye on life and planet. Science. 2015;348:aaa2478. 10.1126/science.aaa2478. PubMed
Antoine-Santoni T, Gualtieri J-S, Manicacci F-M, Aiello A. AMBLoRa: a wireless tracking and sensor system using long range communication to monitor animal behavior. In: Seventh Int. Conf. Smart Cities Syst. Devices Technol., IARIA; 2018. p. 35–40.
Ayele ED, Das K, Meratnia N, Havinga PJM. Leveraging BLE and LoRa in IoT network for wildlife monitoring system (WMS). In: 2018 IEEE 4th World Forum Internet Things WF-IoT; 2018. p. 342–8. 10.1109/WF-IoT.2018.8355223.
Panicker JG, Azman M, Kashyap R. A LoRa wireless mesh network for wide-area animal tracking. In: 2019 IEEE Int. Conf. Electr. Comput. Commun. Technol. ICECCT, IEEE; 2019. p. 1–5. 10.1109/ICECCT.2019.8868958.
Toldov V, Meijers JP, Igual-Pérez R, Wolhuter R, Mitton N, Clavier L. Performance evaluation of LoRa radio solution for PREDNET wildlife animal tracking project. In: LPWAN 2016—1st Int. Conf. IoT M2M Wirel. LPWA Low Power Wide Area Technol.; 2016.
Collotta M, Pau G, Talty T, Tonguz OK. Bluetooth 5: a concrete step forward toward the IoT. IEEE Commun Mag. 2018;56:125–131. doi: 10.1109/MCOM.2018.1700053. DOI
Wild TA, Wikelski M, Tyndel S, Alarcón-Nieto G, Klump BC, Aplin LM, et al. Internet on animals: WiFi-enabled devices provide a solution for big data transmission in biologging. Methods Ecol Evol. 2023;14:87–102. doi: 10.1111/2041-210X.13798. DOI
Curry A. The internet of animals that could help to save vanishing wildlife. Nature. 2018;562:322–326. doi: 10.1038/d41586-018-07036-2. PubMed DOI
Jetz W, Tertitski G, Kays R, Mueller U, Wikelski M, Åkesson S, et al. Biological earth observation with animal sensors. Trends Ecol Evol. 2022;37:293–298. doi: 10.1016/j.tree.2021.11.011. PubMed DOI
Liu X, Yang T, Yan B. Internet of Things for wildlife monitoring. In: 2015 IEEECIC Int. Conf. Commun. China-Workshop CICICCC, IEEE; 2015. p. 62–6. 10.1109/ICCChinaW.2015.7961581.
Lavric A, Petrariu AI, Popa V. Sigfox communication protocol: The new era of IoT? In: 2019 Int. Conf. Sens. Instrum. IoT Era ISSI, IEEE; 2019. p. 1–4. 10.1109/ISSI47111.2019.9043727.
Zuniga JC, Ponsard B. Sigfox system description. LPWAN IETF97 Nov 14th, vol. 25, 2016. p. 14.
Eutelsat LEO Satellite Network | Eutelsat n.d. https://www.eutelsat.com. Accessed November 9, 2022.
Vejlgaard B, Lauridsen M, Nguyen H, Kovács IZ, Mogensen P, Sorensen M. Coverage and capacity analysis of Sigfox, LoRa, GPRS, and NB-IoT. In: 2017 IEEE 85th Veh. Technol. Conf. VTC Spring; 2017. p. 1–5. 10.1109/VTCSpring.2017.8108666.
Maroto-Molina F, Navarro-García J, Príncipe-Aguirre K, Gómez-Maqueda I, Guerrero-Ginel JE, Garrido-Varo A, et al. A low-cost IoT-based system to monitor the location of a whole herd. Sensors. 2019;19:1. 10.3390/s19102298. PubMed PMC
Martín-Vélez V, Montalvo T, Afán I, Sánchez-Márquez A, Aymí R, Figuerola J, et al. Gulls living in cities as overlooked seed dispersers within and outside urban environments. Sci Total Environ. 2022;823:153535. 10.1016/j.scitotenv.2022.153535. PubMed
Sinha RS, Wei Y, Hwang S-H. A survey on LPWA technology: LoRa and NB-IoT. Ict Express. 2017;3:14–21. doi: 10.1016/j.icte.2017.03.004. DOI
Mekki K, Bajic E, Chaxel F, Meyer F. A comparative study of LPWAN technologies for large-scale IoT deployment. ICT Express. 2019;5:1–7. doi: 10.1016/j.icte.2017.12.005. DOI
Kays R, Davidson SC, Berger M, Bohrer G, Fiedler W, Flack A, et al. The Movebank system for studying global animal movement and demography. Methods Ecol Evol. 2022;13:419–431. doi: 10.1111/2041-210X.13767. DOI
Kranstauber B, Cameron A, Weinzerl R, Fountain T, Tilak S, Wikelski M, et al. The Movebank data model for animal tracking. Environ Model Softw. 2011;26:834–835. doi: 10.1016/j.envsoft.2010.12.005. DOI
Wikelski M. ICARUS and Movebank—a new global system to link ecology and remote sensing. AGU Fall Meet Abstr. 2013;2013:IN11C-1540.
Parker DM, Watermeyer JP, Davies-Mostert HT, Beverley G, Marnewick K. Attitudes and tolerance of private landowners shape the African wild dog conservation landscape in the greater Kruger National Park. Endanger Species Res. 2018;36:173–181. doi: 10.3354/esr00905. DOI
Wall J, Wittemyer G, Klinkenberg B, Douglas-Hamilton I. Novel opportunities for wildlife conservation and research with real-time monitoring. Ecol Appl. 2014;24:593–601. doi: 10.1890/13-1971.1. PubMed DOI
Movebank n.d. https://www.movebank.org/cms/movebank-main. Accessed September 29, 2022.
EarthRanger: Protecting Wildlife With Real-Time Data n.d. https://www.earthranger.com/. Accessed November 4, 2022.
SIGFOX.COM n.d. https://www.sigfox.com/en. Accessed August 23, 2022.
Geolocation technologies | Sigfox build n.d. https://build.sigfox.com. Accessed August 23, 2022.
Paxton KL, Baker KM, Crytser ZB, Guinto RMP, Brinck KW, Rogers HS, et al. Optimizing trilateration estimates for tracking fine‐scale movement of wildlife using automated radio telemetry networks. Ecol Evol. 2022;12:e8561. 10.1002/ece3.8561. PubMed PMC
Nuijten RJ, Gerrits T, Shamoun-Baranes J, Nolet BA. Less is more: on-board lossy compression of accelerometer data increases biologging capacity. J Anim Ecol. 2020;89:237–247. doi: 10.1111/1365-2656.13164. PubMed DOI PMC
Dominguez-Morales JP, Duran-Lopez L, Gutierrez-Galan D, Rios-Navarro A, Linares-Barranco A, Jimenez-Fernandez A. Wildlife monitoring on the edge: a performance evaluation of embedded neural networks on microcontrollers for animal behavior classification. Sensors. 2021;21:2975. doi: 10.3390/s21092975. PubMed DOI PMC
Qasem L, Cardew A, Wilson A, Griffiths I, Halsey LG, Shepard ELC, et al. Tri-axial dynamic acceleration as a proxy for animal energy expenditure; should we be summing values or calculating the vector? PLoS ONE. 2012;7:1–8. doi: 10.1371/journal.pone.0031187. PubMed DOI PMC
Seo J, Chiang Y, Laine TH, Khan AM. Step counting on smartphones using advanced zero-crossing and linear regression. In: Proc. 9th Int. Conf. Ubiquitous Inf. Manag. Commun.; 2015. p. 1–7. 10.1145/2701126.2701223.
Vata A, Badescu A. L-band antenna characterization under rain conditions. In: 2021 29th Telecommun. Forum TELFOR, IEEE; 2021. p. 1–4. 10.1109/TELFOR52709.2021.9653216.
Sutherland E. International roaming charges: over-charging and competition law. Telecommun Policy. 2001;25:5–20. doi: 10.1016/S0308-5961(00)00084-7. DOI
Wimbitek. Wimbitek n.d. http://www.wimbitek.com/index.php/en/index/. Accessed September 13, 2022.
Hofman MPG, Hayward MW, Heim M, Marchand P, Rolandsen CM, Mattisson J, et al. Right on track? Performance of satellite telemetry in terrestrial wildlife research. PLoS ONE 2019;14:e0216223. 10.1371/journal.pone.0216223. PubMed PMC
Matos S, Morais R, Araújo P, Tenreiro P, Ferreira P, Reis M. A GSM-based System for the Tracking of Birds. In: Proc. 6th Int. Conf. Sens. Device Technol. Appl. SENSORDEVICES’15; 2015. p. 131–7.
Yildirim MS, Selvı AO, Dandil E. Web based animal tracker system. 2018 2nd Int. Symp. Multidiscip. Stud. Innov. Technol. ISMSIT, IEEE; 2018. p. 1–5. 10.1109/ISMSIT.2018.8567047.
Ayele ED, Meratnia N, Havinga PJM. Towards a new opportunistic IoT network architecture for wildlife monitoring system. In: 2018 9th IFIP Int. Conf. New Technol. Mobil. Secur. NTMS; 2018. p. 1–5. 10.1109/NTMS.2018.8328721.
Dos Reis B, Easton Z, White R, Fuka D. A LoRa sensor network for monitoring pastured livestock location and activity. Transl Anim Sci. 2021;5:txab010. 10.1093/tas/txab010. PubMed PMC
Welscher F, Bulbul R, Scholz J, Lederer P. Optimising Antenna Positioning for Maximum Coverage: The Case Study of Cattle Tracking in Austrian Alps Using Long Range (LoRa) Based Monitoring System. In: Int. Symp. Web Wirel. Geogr. Inf. Syst., Springer; 2022. p. 61–70. 10.1007/978-3-031-06245-2_6.
Zinas N, Kontogiannis S, Kokkonis G, Valsamidis S, Kazanidis I. Proposed open source architecture for Long Range monitoring. The case study of cattle tracking at Pogoniani. In: Proc. 21st Pan-Hell. Conf. Inform.; 2017. p. 1–6. 10.1145/3139367.3139437.
Petajajarvi J, Mikhaylov K, Roivainen A, Hanninen T, Pettissalo M. On the coverage of LPWANs: range evaluation and channel attenuation model for LoRa technology. In: 2015 14th Int. Conf. Its Telecommun. Itst, IEEE; 2015. p. 55–9. 10.1109/ITST.2015.7377400.
Ojo MO, Adami D, Giordano S. Experimental evaluation of a LoRa wildlife monitoring network in a forest vegetation area. Fut Internet. 2021;13:115. doi: 10.3390/fi13050115. DOI
Shah RC, Nachman L, Wan C. On the performance of Bluetooth and IEEE 802.15. 4 radios in a body area network. In: Proc. ICST 3rd Int. Conf. Body Area Netw.; 2008. p. 1–9. 10.4108/ICST.BODYNETS2008.2972.
Durand TG, Visagie L, Booysen MJ. Evaluation of next-generation low-power communication technology to replace GSM in IoT-applications. IET Commun. 2019;13:2533–2540. doi: 10.1049/iet-com.2019.0168. DOI
Martinez B, Adelantado F, Bartoli A, Vilajosana X. Exploring the performance boundaries of NB-IoT. IEEE Internet Things J. 2019;6:5702–5712. doi: 10.1109/JIOT.2019.2904799. DOI
Ratasuk R, Mangalvedhe N, Ghosh A, Vejlgaard B. Narrowband LTE-M system for M2M communication. In: 2014 IEEE 80th Veh. Technol. Conf. VTC2014-Fall, IEEE; 2014. p. 1–5. 10.1109/VTCFall.2014.6966070.
Lauridsen M, Kovács IZ, Mogensen P, Sorensen M, Holst S. Coverage and capacity analysis of LTE-M and NB-IoT in a rural area. In: 2016 IEEE 84th Veh. Technol. Conf. VTC-Fall, IEEE; 2016. p. 1–5. 10.1109/VTCFall.2016.7880946.
Krondorf M, Bittner S, Plettemeier D, Knopp A, Wikelski M. ICARUS—very low power satellite-based IoT. Sensors. 2022;22:6329. doi: 10.3390/s22176329. PubMed DOI PMC
Accelerometer-based detection of African swine fever infection in wild boar