Slow-Release Nitrogen Fertilizers with Biodegradable Poly(3-hydroxybutyrate) Coating: Their Effect on the Growth of Maize and the Dynamics of N Release in Soil
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
FV40095
Ministry of Industry and Trade of the Czech Republic
AF-IGA2020-TP007
Internal Grant Agency
PubMed
36297901
PubMed Central
PMC9610826
DOI
10.3390/polym14204323
PII: polym14204323
Knihovny.cz E-resources
- Keywords
- ammonium nitrate, biodegradable, biomass, coating, control-release, dioxolane, maize, nitrogen fertilizers, poly(3-hydroxybutyrate), slow-release,
- Publication type
- Journal Article MeSH
Fertilizers play an essential role in agriculture due to the rising food demand. However, high input fertilizer concentration and the non-controlled leaching of nutrients cause an unwanted increase in reactive, unassimilated nitrogen and induce environmental pollution. This paper investigates the preparation and properties of slow-release fertilizer with fully biodegradable poly(3-hydroxybutyrate) coating that releases nitrogen gradually and is not a pollutant for soil. Nitrogen fertilizer (calcium ammonium nitrate) was pelletized with selected filler materials (poly(3-hydroxybutyrate), struvite, dried biomass). Pellets were coated with a solution of poly(3-hydroxybutyrate) in dioxolane that formed a high-quality and thin polymer coating. Coated pellets were tested in aqueous and soil environments. Some coated pellets showed excellent resistance even after 76 days in water, where only 20% of the ammonium nitrate was released. Pot experiments in Mitscherlich vegetation vessels monitored the effect of the application of coated fertilizers on the development and growth of maize and the dynamics of N release in the soil. We found that the use of our coated fertilizers in maize nutrition is a suitable way to supply nutrients to plants concerning their needs and that the poly(3-hydroxybutyrate) that was used for the coating does not adversely affect the growth of maize plants.
See more in PubMed
Smil V. Nitrogen Cycle and World Food Production. World Agric. 2011;2:9–13.
United Nations, Department of Economic and Social Affairs, Population Division World Population Prospects 2019: Highlights (ST/ESA/SER.A/423) 2019. [(accessed on 1 July 2022)]. Available online: https://population.un.org/wpp/publications/files/wpp2019_highlights.pdf.
Adam D. How Far Will Global Population Rise. Nature. 2021;597:462–465. doi: 10.1038/d41586-021-02522-6. PubMed DOI
Lawrencia D., Wong S.K., Low D.Y.S., Goh B.H., Goh J.K., Ruktanonchai U.R., Soottitantawat A., Lee L.H., Tang S.Y. Controlled Release Fertilizers: A Review on Coating Materials and Mechanism of Release. Plants. 2021;10:238. doi: 10.3390/plants10020238. PubMed DOI PMC
Galloway J.N., Townsend A.R., Erisman J.W., Bekunda M., Cai Z., Freney J.R., Martinelli L.A., Seitzinger S.P., Sutton M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science. 2008;320:889–892. doi: 10.1126/science.1136674. PubMed DOI
Zhang X., Davidson E., Mauzerall D., Searchinger T.D., Dumas P., Shen Y. Managing nitrogen for sustainable development. Nature. 2015;528:51–59. doi: 10.1038/nature15743. PubMed DOI
Bisht N., Chauhan P.S. Excessive and Disproportionate Use of Chemicals Cause Soil Contamination and Nutritional Stress. In: Larramendy M.L., Soloneski S., editors. Soil Contamination—Threats and Sustainable Solutions. IntechOpen; London, UK: 2020. DOI
Fan L.-T., Singh S.K. Introduction. In: Fan L.-T., Singh S.K., editors. Controlled Release: A Quantitative Treatment. 1st ed. Volume 13. Springer Science & Business Media; Berlin/Heidelberg, Germany: 2012. pp. 1–8.
Gil-Ortiz R., Naranjo M.Á., Ruiz-Navarro A., Atares S., García C., Zotarelli L., San Bautista A., Vicente O. Enhanced Agronomic Efficiency Using a New Controlled-Released, Polymeric-Coated Nitrogen Fertilizer in Rice. Plants. 2020;9:1183. doi: 10.3390/plants9091183. PubMed DOI PMC
Wang Y., Liu M., Ni B., Xie L. κ-Carrageenan–sodium alginate beads and superabsorbent coated nitrogen fertilizer with slow-release, water-retention, and anticompaction properties. Ind. Chem. Eng. Res. 2012;51:1413–1422. doi: 10.1021/ie2020526. DOI
Cole J.C., Smith M.W., Penn C.J., Cheary B.S., Conaghan K.J. Nitrogen, phosphorus, calcium, and magnesium applied individually or as a slow release or controlled release fertilizer increase growth and yield and affect macronutrient and micronutrient concentration and content of field-grown tomato plants. Sci. Hortic. 2016;211:420–430. doi: 10.1016/j.scienta.2016.09.028. DOI
Cong Z., Yazhen S., Changwen D., Jianmin Z., Huoyan W., Xiaoqin C. Evaluation of waterborne coating for controlled-release fertilizer using Wurster fluidized bed. Ind. Eng. Chem. Res. 2010;49:9644–9647. doi: 10.1021/ie101239m. DOI
Trenkel M.E. Slow- and Controlled-Release and Stabilized Fertilizers: An Option for Enhancing Nutrient Efficiency in Agriculture. 2nd ed. IFA; Paris, France: 2010. p. 160.
Shaviv A. Controlled release fertilizers; Proceedings of the IFA International Workshop on Enhanced-Efficiency Fertilizers; Frankfurt, Germany. 28–30 June 2005.
AAPFCO . Official Publication No. 48. Association of American Plant Food Control Officials, Inc.; West Lafayette, IA, USA: 1995.
Lubkowski K., Smorowska A., Grzmil B., Kozłowska A. Controlled-release fertilizer prepared using a biodegradable aliphatic copolyester of poly (butylene succinate) and dimerized fatty acid. J. Agric. Food. Chem. 2015;63:2597–2605. doi: 10.1021/acs.jafc.5b00518. PubMed DOI
Fertilizers Europe. 2019/2020 Overview. [(accessed on 16 July 2022)]. Available online: https://www.fertilizerseurope.com/wp-content/uploads/2020/07/AR-2019_20_32-pager-screen.pdf.
Obruca S., Benesova P., Oborna J., Marova I. Application of protease-hydrolyzed whey as a complex nitrogen source to increase poly(3-hydroxybutyrate) production from oils by Cupriavidus necator. Biotechnol. Lett. 2014;36:775–781. doi: 10.1007/s10529-013-1407-z. PubMed DOI
Silva L.F., Taciro M.K., Raicher G., Piccoli R.A.M., Mendonça T.T., Lopes M.S.G., Gomez J.G.C. Perspectives on the production of polyhydroxyalkanoates in biorefineries associated with the production of sugar and ethanol. Int. J. Biol. Macromol. 2014;71:2–7. doi: 10.1016/j.ijbiomac.2014.06.065. PubMed DOI
Dietrich K., Dumont M.-J., Rio L.F.D., Orsat V. Producing PHAs in the bioeconomy—Towards a sustainable bioplastic. Sustain. Prod. Consum. 2017;9:58–70. doi: 10.1016/j.spc.2016.09.001. DOI
Surendran A., Lakshmanan M., Chee J.Y., Sulaiman A.M., Thuoc D.V., Sudesh K. Can Polyhydroxyalkanoates Be Produced Efficiently From Waste Plant and Animal Oils? Front. Bioeng. Biotechnol. 2020;8:169. doi: 10.3389/fbioe.2020.00169. PubMed DOI PMC
Nuttipon Y., Suchada C.N. Toward non-toxical and simple recovery process of poly(3-hydroxybutyrate) using the green solvent 1,3-dioxolane. Process Biochem. 2018;69:197–207. doi: 10.1016/j.procbio.2018.02.025. DOI
Boyandin A.N., Kazantseva E.A., Varygina D.E., Volova T.G. Constructing Slow-Release Formulations of Ammonium Nitrate Fertilizer Based on Degradable Poly(3-hydroxybutyrate) J. Agric. Food Chem. 2017;65:6745–6752. doi: 10.1021/acs.jafc.7b01217. PubMed DOI
Lovochemie, a.s. [(accessed on 26 July 2022)]. Available online: https://www.lovochemie.cz/en.
TianAn Biopolymer. [(accessed on 26 July 2022)]. Available online: www.tianan-enmat.com.
Nafigate Corporation. [(accessed on 26 July 2022)]. Available online: https://www.nafigate.com/
Merck. [(accessed on 26 July 2022)]. Available online: https://www.sigmaaldrich.com/CZ/en.
SPECAC. [(accessed on 26 July 2022)]. Available online: https://specac.com/
Lach:ner. [(accessed on 26 July 2022)]. Available online: https://www.lach-ner.cz/en.
PENTA Chemicals Unlimited. [(accessed on 26 July 2022)]. Available online: https://www.pentachemicals.eu/en/
AvantorTM Delivered by VWRTM. [(accessed on 26 July 2022)]. Available online: https://www.vwr.com/
Panara. [(accessed on 26 July 2022)]. Available online: https://panaraplast.com/
STU. [(accessed on 26 July 2022)]. Available online: https://www.stuba.sk/english.html?page_id=132.
PubChem: Ammonium Nitrate. [(accessed on 26 July 2022)]; Available online: https://pubchem.ncbi.nlm.nih.gov/compound/Ammonium-nitrate.
Miller R.L., Bradford W.L., Peters N.E. Specific Conductance: Theoretical Considerations and Application to Analytical Quality Control. US Government Printing Office; Washington, DC, USA: 1988.
Metex Corporation Limited. [(accessed on 26 July 2022)]. Available online: https://www.metexcorporation.com/hand-held-instruments.html.
OriginLab. [(accessed on 26 July 2022)]. Available online: https://www.originlab.com/
Oseva. [(accessed on 26 July 2022)]. Available online: https://oseva.com/about-oseva/
Gee G.W., Bauder J.W. Particle-size analysis. In: Klute A., editor. Methods of Soil Analysis Part 1—Physical and Mineralogical Methods. ASA and SSSA; Madison, WI, USA: 1986. pp. 383–411.
Schumacher B.A. Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments. United States Environmental Protection Agency, Environmental Sciences Division National, Exposure Research Laboratory; Las Vegas, NV, USA: 2002.
Zbíral J., Malý S., Váňa M., editors. Soil Analysis III. 3rd ed. Central Institute for Supervising and Testing in Agriculture; Brno, Czech Republic: 2011. pp. 18–52. (In Czech)
Zbíral J. Analysis of Soils I. Unified Techniques. 2nd ed. Central Institute for Supervising and Testing in Agriculture; Brno, Czech Republic: 2002. p. 197. (In Czech)
Netto A.L., Campostrini E., Goncalves de Oliverira J., Bressan-Smith R.E. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Sci. Hortic. 2005;104:199–209. doi: 10.1016/j.scienta.2004.08.013. DOI
Škarpa P., Klofáč D., Krčma F., Šimečková J., Kozáková Z. Effect of Plasma Activated Water Foliar Application on Selected Growth Parameters of Maize (Zea mays L.) Water. 2020;12:3545. doi: 10.3390/w12123545. DOI
Zbíral J. Plant Analysis: Integrated Work Procedures. Central Institute for Supervising and Testing in Agriculture; Brno, Czech Republic: 2005. p. 192. (In Czech)
StatSoft, Inc. STATISTICA (Data Analysis Software System), Version 12. 2013. [(accessed on 13 May 2021)]. Available online: http://www.statsoft.com/
Rashidzadeh A., Olad A. Slow-released NPK fertilizer encapsulated by NaAlg-g-poly(AA-co-AAm)/MMT superabsorbent nanocomposite. Carbohydr. Polym. 2014;114:269–278. doi: 10.1016/j.carbpol.2014.08.010. PubMed DOI
Grubbs J.B., III, Locklin J.J. PLA/PHA Biodegradable Coatings for Seeds and Fertilizers. Application Number 16/880083. U.S. Patent. 2020 November 26;
Liu C., Chen F., Li Z., Cocq K.L., Liu Y., Wu L. Impact of nitrogen practices on yield, grain quality, and nitrogen-use efficiencyof crops and soil fertility in three paddy-upland cropping systems. J. Sci. Food Agric. 2021;101:2218–2226. doi: 10.1002/jsfa.10841. PubMed DOI
Zhu S., Liu L., Yang Y., Shi R. Application of controlled release urea improved grain yield and nitrogen use efficiency: Ameta-analysis. PLoS ONE. 2020;15:e0241481. doi: 10.1371/journal.pone.0241481. PubMed DOI PMC
Zhang K., Wang Z., Yu Q., Liu B., Duan M., Wang L. Effect of controlled-release urea fertilizers for oilseed rape (Brassica napus L.) on soil carbon storage and CO2 emission. Environ. Sci. Pollut. Res. 2020;27:31983–31994. doi: 10.1007/s11356-020-09440-6. PubMed DOI
Liao J., Liu X., Song H., Chen X., Zhang Z. Effects of biochar-based controlled release nitrogen fertilizer on nitrogen-use efficiency of oilseed rape (Brassica napus L.) Sci. Rep. 2020;10:11063. doi: 10.1038/s41598-020-67528-y. PubMed DOI PMC
Zhu Z.L. Loss of fertilizer N from plants-soil system and the strategies and techniques for its reduction. Soil Environ. Sci. 2000;9:1–6.
Zvomuya F., Rosen C.J., Russelle M.P., Gupta S.C. Nitrate leaching and nitrogen recovery following application of polyolefin-coated urea to potato. J. Environ. Qual. 2003;32:480–489. doi: 10.2134/jeq2003.4800. PubMed DOI
Mikkelsen R.L., Williams H.M., Behel A.D., Jr. Nitrogen leaching and plant uptake from controlled-release fertilizers. Fertil. Res. 1994;37:43–50. doi: 10.1007/BF00750672. DOI
Cabrera R.I. Comparative evaluation of nitrogen release patterns from controlled-release fertilizers by nitrogen leaching analysis. Hort. Sci. 1997;32:669–673. doi: 10.21273/HORTSCI.32.4.669. DOI
Zheng W., Wan Y., Li Y., Liu Z., Chen J., Zhou H., Gao Y., Chen B., Zhang M. Developing water and nitrogen budgets of a wheat-maize rotation system using auto-weighing lysimeter: Effects of blended application of controlled-release an un-coated urea. Environ. Pollut. 2020;263:114383. doi: 10.1016/j.envpol.2020.114383. PubMed DOI PMC
Zheng W., Zhang M., Liu Z., Zhou H., Lu H., Zhang W., Yang Y., Li C., Chen B. Combining controlled-release urea and normal urea to improve the nitrogen use efficiency and yield under wheat-maize double cropping system. Field Crops Res. 2016;197:52–62. doi: 10.1016/j.fcr.2016.08.004. DOI
Xiao Y., Peng F., Zhang Y., Wang J., Zhuge Y., Zhang S., Gao H. Effect of bag-controlled release fertilizer on nitrogen loss, greenhouse gas emissions, and nitrogen applied amount in peach production. J. Clean. Prod. 2019;234:258–274. doi: 10.1016/j.jclepro.2019.06.219. DOI
Škarpa P., Mikušová D., Antošovský J., Kučera M., Ryant P. Oil-Based Polymer Coatings on CAN Fertilizer in Oilseed Rape (Brassica napus L.) Nutrition. Plants. 2021;10:1605. doi: 10.3390/plants10081605. PubMed DOI PMC
Tian C., Zhou X., Liu O., Peng J., Wang W., Zhang Z., Yang Y., Song H., Guan C. Effects of a controlled-release fertilizer on yield, nutrient uptake, and fertilizer usage efficiency in early ripening rapeseed (Brassica napus L.) J. Zhejiang Univ. Sci. 2016;17:775–786. doi: 10.1631/jzus.B1500216. PubMed DOI PMC
Wei H., Chen Z., Xing Z., Zhou L., Liu Q., Zhang Z., Jiang Y., Hu Y., Zhu J., Cui P., et al. Effects of slow or controlled release fertilizer types and fertilization modes on yield and quality of rice. J. Integr. Agric. 2018;17:2222–2234. doi: 10.1016/S2095-3119(18)62052-0. DOI
Ma Q., Wang M., Zheng G., Yao Y., Tao R., Zhu M., Ding J., Li C., Guo W., Zhu X. Twice-split application of controlled-release nitrogen fertilizer met the nitrogen demand of winter wheat. Field Crops Res. 2021;267:108163. doi: 10.1016/j.fcr.2021.108163. DOI
Ye Y., Liang X., Chen Y., Liu J., Gu J., Guo R., Li L. Alternate wetting and drying irrigation and controlled-release nitrogen fertilizer in late-season rice. Effects on dry matter accumulation, yield, water and nitrogen use. Field Crops Res. 2013;144:212–224. doi: 10.1016/j.fcr.2012.12.003. DOI
Lu Y., Sun Y., Liao Y., Nie J., Yie J., Yang Z., Zhoiu X. Effects of the application of controlled release nitrogen fertilizer on rapeseed yield, agronomic characters and soil fertility. Agric. Sci. Technol. 2015;16:1226.
Murugan P., Ong S.Y., Hashim R., Kosugi A., Arai T., Sudesh K. Development and evaluation of controlled release fertilizer using P(3HB-co-3HHx) on oil palm plants (nursery stage) and soil microbes. Biocatal. Agric. Biotechnol. 2020;28:101710. doi: 10.1016/j.bcab.2020.101710. DOI
Koning L.A., Veste M., Freese D., Lebzien S. Effects of nitrogen and phosphate fertilization on leaf nutrient content, photosynthesis, and growth of the novel bioenergy crop Fallopia sachalinensis cv. ‘Igniscum Candy’. J. Appl. Bot. Food Qual. 2015;88:22–28.
Gianquinto G., Goffart J.P., Olivier M., Guarda G., Colauzzi M., Dalla Costa L., Delle Vedove G., Vos J., Mackerron D.K.L. The Use of Hand-held Chlorophyll Meters As a Tool to Assess the Nitrogen Status and to Guide Nitrogen Fertilization of Potato Crop. Potato Res. 2004;47:35–80. doi: 10.1007/BF02731970. DOI