Using Waste Sulfur from Biogas Production in Combination with Nitrogen Fertilization of Maize (Zea mays L.) by Foliar Application
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TH04030142
Technology Agency of the Czech Republic
PubMed
34685997
PubMed Central
PMC8538973
DOI
10.3390/plants10102188
PII: plants10102188
Knihovny.cz E-zdroje
- Klíčová slova
- chlorophyll content, fluorescence parameters, nitrogen use efficiency, plant nutrient content, plant weight,
- Publikační typ
- časopisecké články MeSH
In Europe, mainly due to industrial desulfurization, the supply of soil sulfur (S), an essential nutrient for crops, has been declining. One of the currently promoted sources of renewable energy is biogas production, which produces S as a waste product. In order to confirm the effect of the foliar application of waste elemental S in combination with liquid urea ammonium nitrate (UAN) fertilizer, a vegetation experiment was conducted with maize as the main crop grown for biogas production. The following treatments were included in the experiment: 1. Control (no fertilization), 2. UAN, 3. UANS1 (N:S ratio, 2:1), 4. UANS2 (1:1), 5. UANS3 (1:2). The application of UAN increased the N content in the plant and significantly affected the chlorophyll content (N-tester value). Despite the lower increase in nitrogen (N) content and uptake by the plant due to the application of UANS, these combinations had a significant effect on the quantum yield of PSII. The application of UANS significantly increased the S content of the plant. The increase in the weight of plants found on the treatment fertilized with UANS can be explained by the synergistic relationship between N and S, which contributed to the increase in crop nitrogen use efficiency. This study suggests that the foliar application of waste elemental S in combination with UAN at a 1:1 ratio could be an effective way to optimize the nutritional status of maize while reducing mineral fertilizer consumption.
Zobrazit více v PubMed
European Commission . The European Green Deal. COM(2019) 640 Final. European Commission; Brussels, Belgium: 2019. [(accessed on 13 September 2021)]. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=COM%3A2019%3A640%3AFIN.
Arnau Á.S., Pflüger S., Giacomazzi M., Decorte M., Genua M. Annual Report 2020; European Biogas Association: Brussels, Belgium. [(accessed on 7 September 2021)]. Available online: https://www.europeanbiogas.eu/eba-annual-report-2020/
European Biogas Association—EBA . European Biogas Association Statistical Report 2020. European Biogas Association; Brussels, Belgium: 2021.
Fontaine D., Eriksen J., Sørensen P. Sulfur from biogas desulfurization: Fate of S during storage in manure and after application to plants. Sci. Total Environ. 2021;754:142180. doi: 10.1016/j.scitotenv.2020.142180. PubMed DOI
Okoro O.V., Sun Z. Desulphurisation of biogas: A systematic qualitative and economic-based quantitative review of alternative strategies. Chem. Eng. 2019;3:76. doi: 10.3390/chemengineering3030076. DOI
Allegue L.B., Hinge J.H. Biogas Upgrading Evaluation for H2S Removal. Danish Technology Institute; Taastrup, Denmark: 2014.
Fernández-Delgado J.M., Mostbauer P., Knapp A., Müller W., Tertsch S., Bockreis A., Insam H. Biogas purification with biomass ash. Waste Manag. 2018;71:224–232. doi: 10.1016/j.wasman.2017.09.043. PubMed DOI
Pacheco da Costa T., Quinteiro P., Tarelho L.A.C., Arroja L., Dias A.C. Life cycle assessment of woody biomass ash for soil amelioration. Waste Manag. 2020;101:126–140. doi: 10.1016/j.wasman.2019.10.006. PubMed DOI
Degryse F., Ajiboye B., Baird R., da Silva R.C., McLaughlin M.J. Oxidation of elemental sulfur in granular fertilizers depends on the soil-exposed surface area. Soil Sci. Soc. Am. J. 2016;80:294–305. doi: 10.2136/sssaj2015.06.0237. DOI
Hoesly R.M., Smith S.J., Feng L., Klimont Z., Janssens-Maenhout G., Pitkanen T., Seibert J.J., Vu L., Andres R.J., Bolt R.M., et al. Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emission Data System (CEDS) Geosci. Model Dev. 2017;11:369–408. doi: 10.5194/gmd-11-369-2018. DOI
Engardt M., Simpson D., Schwikowski M., Granat L. Deposition of sulphur and nitrogen in Europe 1900–2050. Model calculations and comparison to historical observations. Tellus B Chem. Phys. Meteorol. 2017;69:1328945. doi: 10.1080/16000889.2017.1328945. DOI
Czech Hydrometeorological Institute, IX Atmospheric Deposition in the Territory of the Czech Republic. 2019. [(accessed on 11 September 2021)]. Available online: https://www.chmi.cz/files/portal/docs/uoco/isko/grafroc/19groc/gr19cz/09_depozice_v1.pdf. (In Czech)
Eriksen J. Gross sulfur mineralisation-immobilisation turnover in soil amended with plant residues. Soil Biol. Biochem. 2005;37:2216–2224. doi: 10.1016/j.soilbio.2005.04.003. DOI
Lehman J., Solomon D., Zhao F.J., McGrath S.P. Atmospheric SO2 emissions since the late 1800s change organic sulfur forms in humic substance extracts of soils. Environ. Sci. Technol. 2008;42:3550–3555. doi: 10.1021/es702315g. PubMed DOI
Balík J., Kulhánek M., Černý J., Száková J., Pavlíková D., Čermák P. Differences in soil sulfur fractions due to limitation of atmospheric deposition. Plant Soil Environ. 2009;55:344–352. doi: 10.17221/101/2009-PSE. DOI
Kulhánek M., Balík J., Černý J., Sedlář O., Vašák F. Evalu-ating of soil sulfur forms changes under different fertilizing systems during long-term field experiments. Plant Soil Environ. 2016;62:408–415. doi: 10.17221/236/2016-PSE. DOI
Scherer H.W. Sulfur in soils. J. Plant Nutr. Soil Sci. 2009;172:326–335. doi: 10.1002/jpln.200900037. DOI
Feinberg A., Stenke A., Peter T., Hinckley E.L.S., Driscoll C.T., Winkel L.H.E. Reductions in the deposition of sulfur and selenium to agricultural soils pose risk of future nutrient deficiencies. Commun Earth Environ. 2021;2:101. doi: 10.1038/s43247-021-00172-0. DOI
Zbíral J., Smatanová M., Němec P. Sulphur status in agricultural soil determined using the Mehlich 3 method. Plant Soil Environ. 2018;64:255–259.
Eriksen J. Soil sulfur cycling in temperate agricultural systems. Adv. Agron. 2009;102:55–89.
Schoenau J.J., Malhi S.S., Jez J. Sulfur Forms and Cycling Processes in Soil and Their Relationship to Sulfur Fertility. In: Jez J., editor. Sulfur: A Missing Link between Soils, Crops, and Nutrition. American Society of Agronomy; Masidon, WI, USA: 2008. pp. 1–10.
Sutar R.K., Pujar A.M., Aravinda Kumar B.N., Hebsur N.S. Sulphur nutrition in maize—A critical review. Int. J. Pure Appl. Biosci. 2017;5:1582–1596. doi: 10.18782/2320-7051.6092. DOI
Fishmes J., Vong P.C., Guckert A., Frossard E. Influence of sulfur on apparent N-use efficiency, yield and quality of oilseed rape (Brassica napus L.) grown on a calcareous soil. Eur. J. Agron. 2000;12:127–141. doi: 10.1016/S1161-0301(99)00052-0. DOI
Tabak M., Lepiarczyk A., Filipek-Mazur B., Lisowska A. Efficiency of Nitrogen Fertilization of Winter Wheat Depending on Sulfur Fertilization. Agronomy. 2020;10:1304. doi: 10.3390/agronomy10091304. DOI
Salvagiotti F., Miralles D.J. Radiation interception, biomass production and grain yield as affected by the interaction of nitrogen and sulfur fertilization in wheat. Eur. J. Agron. 2008;28:282–290. doi: 10.1016/j.eja.2007.08.002. DOI
Carciochi W.D., Divito G.A., Fernández L.A., Echeverría H.E. Sulfur affects root growth and improves nitrogen recovery and internal efficiency in wheat. J. Plant Nutr. 2017;40:1231–1242. doi: 10.1080/01904167.2016.1187740. DOI
Swamy U., Wang M., Tripathy J.N., Kim S.K., Hirasawa M., Knaff D.B., Allen J.P. Structure of spinach nitrite reductase: Implications for multi-electron reactions by the iron-sulfur: Siroheme cofactor. Biochemistry. 2005;44:16054–16063. doi: 10.1021/bi050981y. PubMed DOI
Mendel R. Molybdenum cofactor of higher plants: Biosynthesis and molecular biology. Planta. 1997;203:399–405. doi: 10.1007/s004250050206. PubMed DOI
Salvagiotti F., Castellarín J., Miralles D.J., Pedrol H.M. Sulfur efficiency in wheat by increasing nitrogen uptake. Field Crop. Res. 2009;113:170–177. doi: 10.1016/j.fcr.2009.05.003. DOI
Haneklaus S., Bloem E., Schnug E. Sulfur. In: La R., editor. Encyclopedia of Soil Science. Marcel Dekker, Inc.; New York, NY, USA: 2002. pp. 1282–1288.
Sutradhar A.K., Kaiser D.E., Fernández F.G. Does total nitrogen/sulfur ratiopredict nitrogen or sulfur requirement for corn? Soil Sci. Soc. Am. J. 2017;81:564–577. doi: 10.2136/sssaj2016.10.0352. DOI
Carciochi W.D., Wyngaard N., Divito G.A., Reussi Calvo N.I., Cabrera M.L., Echeverría H.E. Diagnosis of sulfur availability for corn based on soil analysis. Biol. Fertil. Soils. 2016;52:917–926. doi: 10.1007/s00374-016-1130-8. DOI
Wilhelm W., McMaster G., Harrell D.M. Nitrogen and dry matter distribution by culm and leaf position at two stages of vegetative growth in winter wheat. Agron. J. 2002;94:1078–1086. doi: 10.2134/agronj2002.1078. DOI
Smoleń S. Foliar Nutrition: Current State of Knowledge and Opportunities. In: Srivastava A.K., editor. Advances in Citrus Nutrition. Springer Science & Business Media; Dordrecht, The Netherlands: 2012. pp. 41–58.
Baloch N., Buriro M., Jato G.H., Ali K., Khaskheli D.M.A., Nahiyoon S.A., Hou P., Li. S. Effect of foliar application of nitrogen on growth, yield and grain quality parameters of wheat (Triticum aestivum L.) Biocell. 2019;43:261–267.
Mortate R.K., Nascimento E.F., Goncalves E.G.D., Lima M.W.D. Response of maize (Zea mays L.) to nitrogen fertilizer application in the soil and foliar. Rev. Agric. Neotrop. 2018;5:1–6. doi: 10.32404/rean.v5i1.2202. DOI
Dong S., Neilsen D., Neilsen G.H., Fuchigami L.H. Foliar N application reduces soil NO3−—N leaching loss in apple orchards. Plant Soil. 2005;268:357–366. doi: 10.1007/s11104-004-0333-1. DOI
Niu J., Liu C., Huang M., Liu K., Yan D. Effect of Foliar Fertilization: A Review of Current and Future Perspectives. J. Soil Sci. Plant Nutr. 2021;21:104–118. doi: 10.1007/s42729-020-00346-3. DOI
Voogt W., Blok C., Eveleens-Clark B., Marcelis L.F.M., Bindraban P.S. Foliar Fertilizer Application. VFRC Report 2013/2; Virtual Fertilizer Research Center; Washington, DC, USA: 2013. p. 43.
Fernández V., Brown P.H. From plant surface to plant metabolism: The uncertain fate of foliar-applied nutrients. Front. Plant Sci. 2013;4:289. doi: 10.3389/fpls.2013.00289. PubMed DOI PMC
Mahmoodi P., Yarnia M., Amirnia R., Benam M.B.K. Effect of nitrogen foliar application on grain filling rate and period in 3 cultivars of corn (Zea mays L.) Afr. J. Agric. Res. 2011;81:783–786.
Islam M.S., Akter H., Aktar S., Miah M.J., Farazi M. Effect of foliar and soil application of nitrogen on the growth and yield of wheat. Progress. Agric. 2017;28:287–294. doi: 10.3329/pa.v28i4.36368. DOI
Ercoli L., Mariotti M., Masoni A., Massantini F. Relationship between nitrogen and chlorophyll content and spectral properties in maize leaves. Eur. J. Agron. 1993;2:113–117. doi: 10.1016/S1161-0301(14)80141-X. DOI
Li C. Effects of Enhanced Ammonium Nutrition on Growth and Development of Maize. J. Northeast. Agric. Univ. 2002;33:313–318.
Schlemmer M., Gitelson A., Schepers J., Ferguson R., Peng Y., Shanahan J., Rundquist D. Remote estimation of nitrogen and chlorophyll contents in maize at leaf and canopy levels. Int. J. Appl. Earth Obs. Geoinf. 2013;25:47–54. doi: 10.1016/j.jag.2013.04.003. DOI
Mu X., Chen Q., Chen F., Yuan L., Mi G. A RNA-seq Analysis of the Response of Photosynthetic System to Low Nitrogen Supply in Maize Leaf. Int. J. Mol. Sci. 2017;18:2624. doi: 10.3390/ijms18122624. PubMed DOI PMC
Yue K., Li L., Xie J., Fudjoe S.K., Zhang R., Luo Z., Anwar S. Nitrogen Supply Affects Grain Yield by Regulating Antioxidant Enzyme Activity and Photosynthetic Capacity of Maize Plant in the Loess Plateau. Agronomy. 2021;11:1094. doi: 10.3390/agronomy11061094. DOI
Chapman S.C., Barreto H.J. Using a chlorophyll meter to estimate specific leaf nitrogen of tropical maize during vegetative growth. Agron. J. 1997;89:557–562. doi: 10.2134/agronj1997.00021962008900040004x. DOI
Lacroux F., Tregoat O., van Leeuwen C., Pons A., Tominaga T., Lavigne-Cruége V., Dubourdieu D. Effect of Foliar Nitrogen and Sulphur Application on Aromatic Expression of Vitis Vinifera L. cv. Sauvignon Blanc. J. Int. Sci. Vigne Vin. 2008;42:125–132. doi: 10.20870/oeno-one.2008.42.3.816. DOI
Rascher U., Liebig M., Luttge U. Evaluation of instant light-response curves of chlorophyll fluorescence parameters obtained with a portable chlorophyll fluorometer on site in the field. Plant Cell Environ. 2000;23:1397–1405. doi: 10.1046/j.1365-3040.2000.00650.x. DOI
Ciompi S., Gentili E., Guidi L., Soldatini G.E. The effect of nitrogen deficiency on leaf gas exchange and chlorophyll fluorescence parameters in sunflower. Plant Sci. 1996;118:177–184. doi: 10.1016/0168-9452(96)04442-1. DOI
Jin X., Yang G., Tan C., Zhao C. Effects of nitrogen stress on the photosynthetic CO2 assimilation, chlorophyll fluorescence and sugar-nitrogen ratio in corn. Sci. Rep. 2015;5:9311. doi: 10.1038/srep09311. PubMed DOI PMC
Ahmad I., Ahmad S., Kamran M., Yang X.N., Hou F.J., Yang B.P., Ding R.X., Liu T., Han Q.F. Uniconazole and nitrogen fertilization trigger photosynthesis and chlorophyll fluorescence, and delay leaf senescence in maize at a high population density. Photosynthetica. 2021;59:192–202. doi: 10.32615/ps.2021.011. DOI
Nunes M.A., Ramalho J.C., Dias M.A. Effect of nitrogen supply on the photosynthetic performance of leaves from coffee plants exposed to bright light. J. Exp. Bot. 1993;262:893–899. doi: 10.1093/jxb/44.5.893. DOI
Verhoeven A.S., Demmig-Adams B., Adams W.W., III Enhanced employment of the xanthophyll cycle and thermal energy dissipation in spinach exposed to high light and N stress. Plant Physiol. 1997;113:817–824. doi: 10.1104/pp.113.3.817. PubMed DOI PMC
Fryer M.J., Andrews J.R., Oxborough K., Blowers D.A., Baker N.R. Relationship between CO2 assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol. 1998;116:571–580. doi: 10.1104/pp.116.2.571. PubMed DOI PMC
Palta J.A., Kumari S., Spring C., Turner N.C. Foliar nitrogen applications increase the seed yield and protein content in chickpea (Cicer arietinum L.) subject to terminal drought. Aust. J. Agric. Res. 2005;56:105–112. doi: 10.1071/AR04118. DOI
Gholami A., Akhlaghi S., Shahsavani S., Farrokhi N. Effects of Urea Foliar Application on Grain Yield and Quality of Winter Wheat. Commun. Soil Sci. 2011;42:719–727. doi: 10.1080/00103624.2011.550377. DOI
Mbangcolo M.M., Pieterse P.J. Effect of soil- and foliar-applied nitrogen fertiliser on growth, yield and protein content of spring wheat (Triticum aestivum L.) under glasshouse conditions. S. Afr. J. Plant Soil. 2018;35:237–239. doi: 10.1080/02571862.2017.1360949. DOI
Perveen S., Iqbal N., Saeed M., Zafar S., Arshad Z. Role of foliar application of sulfur-containing compounds on maize (Zea mays L. var. Malka and hybrid DTC) under salt stress. Rev. Bras. Bot. 2018;41:805–815. doi: 10.1007/s40415-018-0506-4. DOI
Grzebisz W., Przygocka-Cyna K. Spring malt barley response to elemental sulphur—The prognostic value of N and S concentrations in malt barley leaves. Plant Soil Environ. 2007;53:338–394. doi: 10.17221/2295-PSE. DOI
Khalid S., Afridi M.Z., Munsif F., Imranuddin I., Ullah N., Ullah I. Effect of Sulphur Foliar Application on Yield and Yield Components of Brassica Napus. Int. J. Agric. Environ. Res. 2016;2:232–236.
Carciochi W.D., Nahuel I., Calvo R., Wyngaard N., Divito G.A. Prognosis and diagnosis of sulfur status in maize by plant analysis. Eur. J. Agron. 2019;108:1–10. doi: 10.1016/j.eja.2019.04.008. DOI
Tea I., Genter T., Naulet N., Lummerzheim M., Kleiber D. Interaction between nitrogen and sulfur by foliar application and its effects on flour bread-making quality. J. Sci. Food Agric. 2007;87:2853–2859. doi: 10.1002/jsfa.3044. DOI
Rossini F., Provenzano M.E., Sestili F., Ruggeri R. Synergistic Effect of Sulfur and Nitrogen in the Organic and Mineral Fertilization of Durum Wheat: Grain Yield and Quality Traits in the Mediterranean Environment. Agronomy. 2018;8:189. doi: 10.3390/agronomy8090189. DOI
Rehm G.W., Clapp J.G. Sulfur in a Fertilizer Program for Corn. In: Jez J., editor. Sulfur: A Missing Link Between Soils, Crops, and Nutrition. American Society of Agronomy; Masidon, WI, USA: 2008. pp. 143–152.
Haneklaus S., Bloem E., Schnug E. Sulfur Interactions in Crop Ecosystems. In: Hawkesford M.J., De Kok L.J., editors. Sulfur in Plants an Ecological Perspective. Springer; Dordrecht, The Netherlands: 2007. pp. 16–58.
Reussi Calvo N.I., Echeverría H.E., Sainz Rozas H. Usefulness of foliar nitrogen-sulfur ratio in spring red wheat. J. Plant Nutr. 2008;31:1612–1623. doi: 10.1080/01904160802244829. DOI
Reussi Calvo N.I., Echeverría H.E., Sainz Rozas H.R. Stability of foliar nitrogen: Sulfur ratio in spring red wheat and sulfur dilution curve. J. Plant Nutr. 2012;35:990–1003. doi: 10.1080/01904167.2012.671403. DOI
Scherer H.W. Sulphur in crop production. Eur. J. Agron. 2001;14:81–111. doi: 10.1016/S1161-0301(00)00082-4. DOI
Reussi Calvo N.I., Echeverŕia H., Rozas H.S. Diagnosing sulfur deficiency in spring red wheat: Plant analysis. J. Plant Nutr. 2011;34:573–589. doi: 10.1080/01904167.2011.538118. DOI
Zenda T., Liu S., Dong A., Duan H. Revisiting Sulphur—The Once Neglected Nutrient: It’s Roles in Plant Growth, Metabolism, Stress Tolerance and Crop Production. Agriculture. 2021;11:626. doi: 10.3390/agriculture11070626. DOI
Kaiser D.E., Kim K.I. Soybean response to sulfur fertilizer applied as a broadcast or starter using replicated strip trials. Agron. J. 2013;105:1189–1198. doi: 10.2134/agronj2013.0023. DOI
Kaur J., Chatterjee A., Franzen D., Cihacek L. Corn Response to Sulfur Fertilizer in the Red River Valley. Agron. J. 2019;111:2378–2386. doi: 10.2134/agronj2018.05.0313. DOI
Till A.R. Sulphur and Sustainable Agriculture. 1st ed. International Fertilizer Industry Association; Paris, France: 2010. pp. 1–70.
Kacjan Maršić N., Može K.S., Mihelič R., Nečemer M., Hudina M., Jakopič J. Nitrogen and Sulphur Fertilisation for Marketable Yields of Cabbage (Brassica oleracea L. var. Capitata), Leaf Nitrate and Glucosinolates and Nitrogen Losses Studied in a Field Experiment in Central Slovenia. Plants. 2021;10:1304. doi: 10.3390/plants10071304. PubMed DOI PMC
Yu Z., She M., Zheng T., Diepeveen D., Islam S., Zhao Y., Zhang Y., Tang G., Zhang Y., Zhang J., et al. Impact and mechanism of sulphur-deficiency on modern wheat farming nitrogen-related sustainability and gliadin content. Commun. Biol. 2021;4:945. doi: 10.1038/s42003-021-02458-7. PubMed DOI PMC
Hawkesford M., Horst W., Kichey T., Lambers H., Schjoerring J., Skrumsager I., White P. Functions of Macronutrients. In: Marschner H., editor. Marschner’s Mineral Nutrition of Higher Plants. 3rd ed. Academic Press; London, UK: 2012. pp. 135–189.
Jamal A., Moon Y., Abdin M.Z. Sulphur—A general overview and interaction with nitrogen. Aust. J. Crop Sci. 2010;4:523–529.
Ali A., Iqbal Z., Hassan S.W., Yasin M., Khaliq T., Ahmed S. Effect of nitrogen and sulphur on phenology, growth and yield parameters of maize crop. Sci. Int. 2013;25:363–366.
Sarfaraz Q., Perveen S., Shahab Q., Muhammad D., Bashir S., Ahmed N., Ahmed S., Shahid-Ul-Islam M., Asghar I. Comparative Effect of Soil and Foliar Application of Sulfur on Maize. IOSR J. Agric. Vet. Sci. 2014;7:32–37. doi: 10.9790/2380-07413237. DOI
Zbíral J., Malý S., Váňa M., editors. Soil Analysis III. 3rd ed. Central Institute for Supervising and Testing in Agriculture; Brno, Czech Republic: 2011. pp. 18–52. (In Czech)
Schumacher B.A. Methods for the Determination of Total Organic Carbon (TOC) in Soils and Sediments. United States Environmental Protection Agency, Environmental Sciences Division National, Exposure Research Laboratory; Las Vegas, NV, USA: 2002.
Gee G.W., Bauder J.W. Particle-Size Analysis. In: Klute A., editor. Methods of Soil Analysis Part 1—Physical and Mineralogical Methods. ASA and SSSA; Madison, WI, USA: 1986. pp. 383–411.
Netto A.L., Campostrini E., Goncalves de Oliverira J., Bressan-Smith R.E. Photosynthetic pigments, nitrogen, chlorophyll a fluorescence and SPAD-502 readings in coffee leaves. Sci. Hortic. 2005;104:199–209. doi: 10.1016/j.scienta.2004.08.013. DOI
Škarpa P., Klofáč D., Krčma F., Šimečková J., Kozáková Z. Effect of Plasma Activated Water Foliar Application on Selected Growth Parameters of Maize (Zea mays L.) Water. 2020;12:3545. doi: 10.3390/w12123545. DOI
Kalaji H.M., Schansker G., Ladle R.J., Goltsev V., Bosa K., Allakhverdiev S.I., Brestic M., Bussotti F., Calatayud A., Dabrowski P. Frequently asked questions about in vivo chlorophyll fluorescence: Practical issues. Photosynth. Res. 2014;122:121–158. doi: 10.1007/s11120-014-0024-6. PubMed DOI PMC
Genty B., Briantais J.M., Baker N.R. The relationship between quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta. 1989;990:87–92. doi: 10.1016/S0304-4165(89)80016-9. DOI
Lichtenthaler H.K., Buschmann C., Knapp M. How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio RFd of leaves with the PAM fluorometer. Photosynthetica. 2005;43:379–393. doi: 10.1007/s11099-005-0062-6. DOI
Zbíral J. Plant Analysis: Integrated Work Procedures. Central Institute for Supervising and Testing in Agriculture; Brno, Czech Republic: 2005. p. 192. (In Czech)
Martinez-Feria R.A., Castellano M.J., Dietzel R.N., Helmers M.J., Liebman M., Huber I., Archontoulis S.V. Linking crop- and soil-based approaches to evaluate system nitrogen-use efficiency and tradeoffs. Agric. Ecosyst. Environ. 2018;256:131–143. doi: 10.1016/j.agee.2018.01.002. DOI
Mlejnkova V., Horky P., Kominkova M., Skladanka J., Hodulikova L., Adam V., Mlcek J., Jurikova T., Sochor J. Biogenic amines and hygienic quality of lucerne silage. Open Life Sci. 2016;11:280–286. doi: 10.1515/biol-2016-0037. DOI
Zhao F., McGrath S.P., Crosland A.R. Comparison of three wet digestion methods for the determination of plant sulphur by inductively coupled plasma atomic emission spectroscopy (ICP-AES) Commun. Soil Sci. 1994;25:407–418. doi: 10.1080/00103629409369047. DOI
StatSoft, Inc. STATISTICA (Data Analysis Software System), Version 12. 2013. [(accessed on 14 September 2021)]. Available online: www.statsoft.com.