108-pS channel in brown fat mitochondria might Be identical to the inner membrane anion channel
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
9235923
PII: S0021-9258(18)38955-5
Knihovny.cz E-zdroje
- MeSH
- hnědá tuková tkáň metabolismus MeSH
- iontové kanály účinky léků fyziologie MeSH
- koncentrace vodíkových iontů MeSH
- křečci praví MeSH
- křeček rodu Mesocricetus MeSH
- mitochondrie metabolismus MeSH
- nifedipin farmakologie MeSH
- propranolol farmakologie MeSH
- triaziny farmakologie MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Cibacron Blue F 3GA MeSH Prohlížeč
- iontové kanály MeSH
- nifedipin MeSH
- propranolol MeSH
- triaziny MeSH
Single-channel and whole-mitoplast patch-clamp recordings were employed to characterize the 108-pS (Cl-) channel in brown fat mitochondrial mitoplasts. We demonstrated the ability of this channel to conduct di- and trivalent anions, such as sulfate, phosphate, and benzenetricarboxylates, and its blockage by propranolol, 1,4-dihydropyridine-type Ca2+ antagonists, and Cibacron blue. Moreover, we have revealed its pH dependence for the first time. As a basis for the characteristic potential dependence of the whole-mitoplast current, we identified an open probability, increasing with depolarizing (positive) potentials, Eh, and being almost zero in the hyperpolarizing range. Events at negative Eh exhibit a short flickering behavior, whereas at positive Eh, they become much longer. This voltage dependence is influenced by pH in such a way that, at acidic pH, the 108-pS channel possesses a low open probability throughout the observed potential range, whereas at alkaline pH, the channel switches to long openings, even at a negative potential. All these properties lead us to conclude that the inner membrane anion channel, which has been characterized only by light scattering studies, and the 108-pS inner membrane channel, which has been characterized electrophysiologically, are one and the same process.
Redox Signaling from Mitochondria: Signal Propagation and Its Targets
Mitochondrial Uncoupling Proteins: Subtle Regulators of Cellular Redox Signaling