Omacor Protects Normotensive and Hypertensive Rats Exposed to Continuous Light from Increased Risk to Malignant Cardiac Arrhythmias

. 2021 Nov 24 ; 19 (12) : . [epub] 20211124

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34940658

Grantová podpora
2/0002/20, 2/0158/19 VEGA
18-0548, 19-0317 APVV
26230120009 EU ITMS
SVV-260571/2020 the Ministry of Education, Youth and Sport of the Czech Republic

Light pollution disturbs circadian rhythm, and this can also be deleterious to the heart by increased susceptibility to arrhythmias. Herein, we investigated if rats exposed to continuous light had altered myocardial gene transcripts and/or protein expression which affects arrhythmogenesis. We then assessed if Omacor® supplementation benefitted affected rats. Male and female spontaneously hypertensive (SHR) and normotensive Wistar rats (WR) were housed under standard 12 h/12 h light/dark cycles or exposed to 6-weeks continuous 300 lux light for 24 h. Half the rats were then treated with 200 mg/100 g b.w. Omacor®. Continuous light resulted in higher male rat vulnerability to malignant ventricular fibrillation (VF). This was linked with myocardial connexin-43 (Cx43) down-regulation and deteriorated intercellular electrical coupling, due in part to increased pro-inflammatory NF-κB and iNOS transcripts and decreased sarcoplasmic reticulum Ca2+ATPase transcripts. Omacor® treatment increased the electrical threshold to induce the VF linked with amelioration of myocardial Cx43 mRNA and Cx43 protein levels and the suppression of NF-κB and iNOS. This indicates that rat exposure to continuous light results in deleterious cardiac alterations jeopardizing intercellular Cx43 channel-mediated electrical communication, thereby increasing the risk of malignant arrhythmias. The adverse effects were attenuated by treatment with Omacor®, thus supporting its potential benefit and the relevance of monitoring omega-3 index in human populations at risk.

Zobrazit více v PubMed

Witte K., Grebmer W., Scalbert E., Delagrange P., Guardiola-Lemaître B., Lemmer B. Effects of melatoninergic agonists on light-suppressed circadian rhythms in rats. Physiol. Behav. 1998;65:219–224. doi: 10.1016/S0031-9384(98)00040-7. PubMed DOI

Briaud S.A., Zhang B.L., Sannajust F. Continuous light exposure and sympathectomy suppress circadian rhythm of blood pressure in rats. J. Cardiovasc. Pharmacol. Ther. 2004;9:97–105. doi: 10.1177/107424840400900205. PubMed DOI

Brown G.M., Bar-Or A., Grossi D., Kashur S., Johannson E., Yie S.M. Urinary 6-sulphatoxymelatonin, an index of pineal function in the rat. J. Pineal Res. 1991;10:141–147. doi: 10.1111/j.1600-079X.1991.tb00831.x. PubMed DOI

Jeyaraj D., Haldar S.M., Wan X., McCauley M.D., Ripperger J.A., Hu K., Lu Y., Eapen B.L., Sharma N., Ficker E., et al. Circadian rhythms govern cardiac repolarization and arrhythmogenesis. Nature. 2012;483:96–101. doi: 10.1038/nature10852. PubMed DOI PMC

Molcan L., Teplan M., Vesela A., Zeman M. The long-term effects of phase advance shifts of photoperiod on cardiovascular parameters as measured by radiotelemetry in rats. Physiol. Meas. 2013;34:1623–1632. doi: 10.1088/0967-3334/34/12/1623. PubMed DOI

Schlingmann F., De Rijk S., Pereboom W., Remie R. “Avoidance” as a behavioural parameter in the determination of distress amongst albino and pigmented rats at various light intensities. Anim. Technol. 1993;44:87.

Matsuo M., Tsuji K. Strain differences of the light-dark preference in inbred rats. Behav. Genet. 1989;19:457–466. doi: 10.1007/BF01066171. PubMed DOI

Fernando H.A., Chin H.F., Ton S.H., Abdul Kadir K. Stress and its effects on glucose metabolism and 11 β-HSD activities in rats fed on a combination of high-fat and high-sucrose diet with glycyrrhizic acid. J. Diabetes Res. 2013;2013:190395. doi: 10.1155/2013/190395. PubMed DOI PMC

Paulis L., Važan R., Šimko F., Pecháňová O., Styk J., Babál P., Janega P. Morphological alterations and NO-synthase expression in the heart after continuous light exposure of rats. Physiol. Res. 2007;56:S71. PubMed

Simko F., Pechanova O. Remodelling of the heart and vessels in experimental hypertension: Advances in protection. J. Hypertens. 2010;28:S1–S6. doi: 10.1097/01.hjh.0000388487.43460.db. PubMed DOI

Važan R., Janega P., Hojná S., Zicha J., Šimko F., Pecháňová O., Styk J., Paulis L. The effect of continuous light exposure of rats on cardiac response to ischemia-reperfusion and NO-synthase activity. Physiol. Res. 2007;56:S63. PubMed

Severs N.J. Gap junction remodeling and cardiac arrhythmogenesis: Cause or coincidence? J. Cell. Mol. Med. 2001;5:355–366. doi: 10.1111/j.1582-4934.2001.tb00170.x. PubMed DOI PMC

Gutstein D.E., Morley G.E., Tamaddon H., Vaidya D., Schneider M.D., Chen J., Chien K.R., Stuhlmann H., Fishman G.I. Conduction slowing and sudden arrhythmic death in mice with cardiac-restricted inactivation of connexin43. Circ. Res. 2001;88:333–339. doi: 10.1161/01.RES.88.3.333. PubMed DOI PMC

Tribulova N., Bacova B.S., Benova T., Viczenczova C. Can we protect from malignant arrhythmias by modulation of cardiac cell-to-cell coupling? J. Electrocardiol. 2015;48:434–440. doi: 10.1016/j.jelectrocard.2015.02.006. PubMed DOI

Andelova K., Benova T.E., Bacova B.S., Sykora M., Prado N.J., Diez E.R., Hlivak P., Tribulova N. Cardiac connexin-43 hemichannels and pannexin1 channels: Provocative antiarrhythmic targets. Int. J. Mol. Sci. 2021;22:260. doi: 10.3390/ijms22010260. PubMed DOI PMC

Baum J.R., Dolmatova E., Tan A., Duffy H.S. Omega 3 fatty acid inhibition of inflammatory cytokine-mediated Connexin43 regulation in the heart. Front. Physiol. 2012;3:272. doi: 10.3389/fphys.2012.00272. PubMed DOI PMC

Kirca M., Kleinbongard P., Soetkamp D., Heger J., Csonka C., Ferdinandy P., Schulz R. Interaction between Connexin 43 and nitric oxide synthase in mice heart mitochondria. J. Cell. Mol. Med. 2015;19:815–825. doi: 10.1111/jcmm.12499. PubMed DOI PMC

Landstrom A.P., Dobrev D., Wehrens X.H.T. Calcium Signaling and Cardiac Arrhythmias. Circ. Res. 2017;120:1969–1993. doi: 10.1161/CIRCRESAHA.117.310083. PubMed DOI PMC

Sovari A.A., Bonini M.G., Dudley S.C. Effective antioxidant therapy for the management of arrhythmia. Expert Rev. Cardiovasc. Ther. 2011;9:797–800. doi: 10.1586/erc.11.85. PubMed DOI PMC

Tribulova N., Bacova B.S., Benova T.E., Knezl V., Barancik M., Slezak J. Omega-3 index and anti-arrhythmic potential of omega-3 PUFAs. Nutrients. 2017;9:1191. doi: 10.3390/nu9111191. PubMed DOI PMC

Pronova, BioPharma. [(accessed on 20 November 2021)]. Available online: https://www.norwayexports.no/listing/pronova-biopharma-norge-as/

Bhatnagar D., Hussain F. Omega-3 fatty acid ethyl esters (Omacor®) for the treatment of hypertriglyceridemia. Future Lipidol. 2007;2:263–270. doi: 10.2217/17460875.2.3.263. DOI

Kar S. Omacor and omega-3 fatty acids for treatment of coronary artery disease and the pleiotropic effects. Am. J. Ther. 2014;21:56–66. doi: 10.1097/MJT.0b013e31822b5603. PubMed DOI

Bacova B.S., Radosinska J., Wallukat G., Barancik M., Wallukat A., Knezl V., Sykora M., Paulis L., Tribulova N. Suppression of β1-adrenoceptor autoantibodies is involved in the antiarrhythmic effects of omega-3 fatty acids in male and female hypertensive rats. Int. J. Mol. Sci. 2020;21:526. doi: 10.3390/ijms21020526. PubMed DOI PMC

Tribulova N., Knezl V., Bacova B.S., Benova T.E., Viczenczova C., Gonçalvesova E., Slezak J. Disordered myocardial Ca2+ homeostasis results in substructural alterations that may promote occurrence of malignant arrhythmias. Physiol. Res. 2016;65:S139–S148. doi: 10.33549/physiolres.933388. PubMed DOI

Tribulová N., Dupont E., Soukup T., Okruhlicová L., Severs N.J. Sex differences in connexin-43 expression in left ventricles of aging rats. Physiol. Res. 2005;54:705–708. PubMed

Stauffer B.L., Sobus R.D., Sucharov C.C. Sex differences in cardiomyocyte connexin43 expression. J. Cardiovasc. Pharmacol. 2011;58:32–39. doi: 10.1097/FJC.0b013e31821b70b4. PubMed DOI PMC

Gellert S., Schuchardt J.P., Hahn A. Low long chain omega-3 fatty acid status in middle-aged women. Prostaglandins Leukot. Essent. Fat. Acids. 2017;117:54–59. doi: 10.1016/j.plefa.2017.01.009. PubMed DOI

Bačová B., Seč P., Radošinská J., Čertík M., Vachulová A., Tribulová N. Lower Omega-3 index is a marker of increased propensity of hypertensive rat heart to malignant arrhythmias. Physiol. Res. 2013;62:201–208. doi: 10.33549/physiolres.932626. PubMed DOI

Lin H., Ogawa K., Imanaga I., Tribulova N. Remodeling of connexin 43 in the diabetic rat heart. Mol. Cell. Biochem. 2006;290:69–78. doi: 10.1007/s11010-006-9166-y. PubMed DOI

Lin H., Mitasikova M., Dlugosova K., Okruhlicova L., Imanaga I., Ogawa K., Weismann P., Tribulova N., Republic S. Thyroid hormones suppress ε-pkc signalling, down-regulate connexin-43 and increase lethal arrhythmia susceptibility in non-diabetic and diabetic rat hearts. J. Physiol. Pharmacol. 2008;59:271–285. PubMed

Bacova B.S., Viczenczova C., Andelova K., Sykora M., Chaudagar K., Barancik M., Adamcova M., Knezl V., Benova T.E., Weismann P., et al. Antiarrhythmic effects of melatonin and omega-3 are linked with protection of myocardial cx43 topology and suppression of fibrosis in catecholamine stressed normotensive and hypertensive rats. Antioxidants. 2020;9:546. doi: 10.3390/antiox9060546. PubMed DOI PMC

Albert C.M., Cook N.R., Pester J., Moorthy M.V., Ridge C., Danik J.S., Gencer B., Siddiqi H.K., Ng C., Gibson H., et al. Effect of Marine Omega-3 Fatty Acid and Vitamin D Supplementation on Incident Atrial Fibrillation: A Randomized Clinical Trial. JAMA. 2021;325:1061–1073. doi: 10.1001/jama.2021.1489. PubMed DOI PMC

Benova T.E., Viczenczova C., Bacova B.S., Knezl V., Dosenko V., Rauchova H., Zeman M., Reiter R.J., Tribulova N. Obesity-associated alterations in cardiac connexin-43 and PKC signaling are attenuated by melatonin and omega-3 fatty acids in female rats. Mol. Cell. Biochem. 2019;454:191–202. doi: 10.1007/s11010-018-3463-0. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...