Melatonin treatment improves ventricular conduction via upregulation of Nav1.5 channel proteins and sodium current in the normal rat heart

. 2022 Aug ; 73 (1) : e12798. [epub] 20220413

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35384053

Grantová podpora
Russian Science Foundation

Melatonin treatment was reported to reduce the risk of cardiac arrhythmias, and crucial for this antiarrhythmic action was the effect of melatonin on activation spread. The aim of the present study was evaluation of the mechanisms of this activation enhancement. Experiments were performed in a total of 123 control and melatonin-treated (10 mg/kg, daily, for 7 days) male Wistar rats. In epicardial mapping studies (64 leads, interlead distance 0.5 mm) in the anesthetized animals, activation times (ATs) were determined in each lead as dV/dt minimum during QRS complex under sinus rhythm. Epicardial pacing was performed to measure conduction velocity (CV) across the mapped area. Average left ventricular ATs were shorter in the treated animals as compared to the controls, whereas the minimal epicardial ATs indicating the duration of activation propagation via the ventricular conduction system did not differ between the groups. CV was higher in the treated groups indicating that melatonin affected conduction via contractile myocardium The area of Cx43-derived fluorescence, as well as the expression of Cx43 protein, was similar in ventricles in the control and melatonin-treated groups. Expression of Gja1 gene transcripts encoding Cx43, was increased in the last group. An uncoupling agent octanol modified myocardial conduction properties (time of activation, action potential upstroke velocity, passive electrotonic phase duration) similarly in both groups. On the other hand, the expression of both Scn5a gene transcripts encoding Nav1.5 proteins, as well as peak density of transmembrane sodium current were increased in the ventricular myocytes from the melatonin-treated animals. Thus, a week-long melatonin treatment caused the increase of conduction velocity via enhancement of sodium channel proteins expression and increase of sodium current in the ventricular myocytes.

Zobrazit více v PubMed

Janse MJ, Wit AL. Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol Rev. 1989;69:1049-1169. doi:10.1152/physrev.1989.69.4.1049

Diez ER, Prados LV, Carrion A, Ponce ZA, Miatello RM. A novel electrophysiologic effect of melatonin on ischemia/reperfusion-induced arrhythmias in isolated rat hearts. J Pineal Res. 2009;46:155-160. doi:10.1111/j.1600-079X.2008.00643.x

Diez ER, Renna NF, Prado NJ, et al. Melatonin, given at the time of reperfusion, prevents ventricular arrhythmias in isolated hearts from fructose-fed rats and spontaneously hypertensive rats. J Pineal Res. 2013;55:166-173. doi:10.1111/jpi.12059

Sedova KA, Bernikova OG, Cuprova JI, et al. Association between antiarrhythmic, electrophysiological, and antioxidative effects of melatonin in ischemia/reperfusion. Int J Mol Sci. 2019;20:6331. doi:10.3390/ijms20246331

Tsvetkova AS, Bernikova OG, Mikhaleva NJ, et al. Melatonin prevents early but not delayed ventricular fibrillation in the experimental porcine model of acute ischemia. Int J Mol Sci. 2020;22:328. doi:10.3390/ijms22010328

Durkina AV, Bernikova OG, Mikhaleva NJ, et al. Melatonin pretreatment does not modify extrasystolic burden in the rat ischemia-reperfusion model. J Physiol Pharmacol. 2021;72:141-148. doi:10.26402/jpp.2021.1.15

Yeleswaram K, McLaughlin LG, Knipe JO, Schabdach D. Pharmacokinetics and oral bioavailability of exogenous melatonin in preclinical animal models and clinical implications. J Pineal Res. 1997;22:45-51. doi:10.1111/j.1600-079x.1997.tb00302.x

Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402-408. doi:10.1006/meth.2001.1262

Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL. Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinform. 2012;13:134. doi:10.1186/1471-2105-13-134

Ivanova AD, Samoilova DV, Razumov AA, Kuzmin VS. Rat caval vein myocardium undergoes changes in conduction characteristics during postnatal ontogenesis. Pflugers Arch. 2019;471:1493-1503. doi:10.1007/s00424-019-02320-0

Weingart R, Bukauskas FF. Long-chain n-alkanols and arachidonic acid interfere with the Vm-sensitive gating mechanism of gap junction channels. Pflugers Arch. 1998;435:310-319. doi:10.1007/s004240050517

Rozental R, Srinivas M, Spray DC. How to close a gap junction channel. Efficacies and potencies of uncoupling agents.Methods Mol Biol. 2001;154:447-476. doi:10.1385/1-59259-043-8:447

Sims JJ, Schoff KL, Loeb JM, Wiegert NA. Regional gap junction inhibition increases defibrillation thresholds. Am J Physiol Heart Circ Physiol. 2003;285:H10-H16. doi:10.1152/ajpheart.01074.2002

Hsieh YC, Lin JC, Hung CY, et al. Gap junction modifier rotigaptide decreases the susceptibility to ventricular arrhythmia by enhancing conduction velocity and suppressing discordant alternans during therapeutic hypothermia in isolated rabbit hearts. Heart Rhythm. 2016;13:251-261. doi:10.1016/j.hrthm.2015.07.023

Prado NJ, Egan Beňová T, Diez ER, et al. Melatonin receptor activation protects against low potassium-induced ventricular fibrillation by preserving action potentials and connexin-43 topology in isolated rat hearts. J Pineal Res. 2019;67:12605. doi:10.1111/jpi.12605

Benova T, Viczenczova C, Radosinska J, et al. Melatonin attenuates hypertension-related proarrhythmic myocardial maladaptation of connexin-43 and propensity of the heart to lethal arrhythmias. Can J Physiol Pharmacol. 2013;91:633-639. doi:10.1139/cjpp-2012-0393

Liu DD, Ren Z, Yang G, Zhao QR, Mei YA. Melatonin protects rat cerebellar granule cells against electromagnetic field-induced increases in Na + currents through intracellular Ca 2. J Cell Mol Med. 2014;18:1060-1070. doi:10.1111/jcmm.12250

Rich A, Farrugia G, Rae JL. Effects of melatonin on ionic currents in cultured ocular tissues. Am J Physiol. 1999;276:C923-C929. doi:10.1152/ajpcell.1999.276.4.C923

Dobsak P, Siegelova J, Eicher JC, et al. Melatonin protects against ischemia-reperfusion injury and inhibits apoptosis in isolated working rat heart. Pathophysiology. 2003;9:179-187.

Lagneux C, Joyeux M, Demenge P, Ribuot C, Godin-Ribuot D. Protective effects of melatonin against ischemia-reperfusion injury in the isolated rat heart. Life Sci. 2000;66:503-509.

Lee YM, Chen HR, Hsiao G, Sheu JR, Wang JJ, Yen MH. Protective effects of melatonin on myocardial ischemia/reperfusion injury in vivo. J Pineal Res. 2002;33:72-80.

Tan DX, Manchester LC, Reiter RJ, Qi W, Kim SJ, El-Sokkary GH. Ischemia/reperfusion-induced arrhythmias in the isolated rat heart: prevention by melatonin. J Pineal Res. 1998;25:184-191.

Vazan R, Pancza D, Beder I, Styk J. Ischemia-reperfusion injury--antiarrhythmic effect of melatonin associated with reduced recovering of contractility. Gen Physiol Biophys. 2005;24:355-359.

Aras KK, Faye NR, Cathey B, Efimov IR. Critical volume of human myocardium necessary to maintain ventricular fibrillation. Circulation. 2018;11:e006692. doi:10.1161/circep.118.006692

Schroder EA, Burgess DE, Zhang X, et al. The cardiomyocyte molecular clock regulates the circadian expression of Kcnh2 and contributes to ventricular repolarization. Heart Rhythm. 2015;12:1306-1314. doi:10.1016/j.hrthm.2015.02.019

Peliciari-Garcia RA, Zanquetta MM, Andrade-Silva J, Gomes DA, Barreto-Chaves ML, Cipolla-Neto J. Expression of circadian clock and melatonin receptors within cultured rat cardiomyocytes. Chronobiol Int. 2011;28:21-30. doi:10.3109/07420528.2010.525675

Mundey K, Benloucif S, Harsanyi K, Dubocovich ML, Zee PC. Phase-dependent treatment of delayed sleep phase syndrome with melatonin. Sleep. 2005;28:1271-1278. doi:10.1093/sleep/28.10.1271

Dubocovich ML, Hudson RL, Sumaya IC, Masana MI, Manna E. Effect of MT1 melatonin receptor deletion on melatonin-mediated phase shift of circadian rhythms in the C57BL/6 mouse. J Pineal Res. 2005;39:113-120. doi:10.1111/j.1600-079x.2005.00230.x

Hablitz LM, et al. GIRK channels mediate the nonphotic effects of exogenous melatonin. J Neurosci. 2015;35:14957-14965. doi:10.1523/jneurosci.1597-15.2015

Giudice A, Crispo A, Grimaldi M, et al. The effect of light exposure at night (LAN) on carcinogenesis via decreased nocturnal melatonin synthesis. Molecules. 2018;23:1308. doi:10.3390/molecules23061308

Ouyang JQ, Davies S, Dominoni D. Hormonally mediated effects of artificial light at night on behavior and fitness: linking endocrine mechanisms with function. J Exp Biol. 2018;221:jeb156893. doi:10.1242/jeb.156893

Gaspar LS, Hesse J, Yalçin M, et al. Long-term continuous positive airway pressure treatment ameliorates biological clock disruptions in obstructive sleep apnea. EBioMedicine. 2021;65:103248. doi:10.1016/j.ebiom.2021.103248

Yin J, Jin X, Shan Z, et al. Relationship of sleep duration with all-cause mortality and cardiovascular events: a systematic review and dose-response meta-analysis of prospective cohort studies. J Am Heart Assoc. 2017;6(9):e005947. doi:10.1161/jaha.117.005947

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...