Study of structure-dependent chromatographic behavior of glycopeptides using reversed phase nanoLC

. 2017 Sep ; 38 (17) : 2193-2199. [epub] 20170517

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/pmid28444931

Grantová podpora
U01 CA171146 NCI NIH HHS - United States
R21 DE025732 NIDCR NIH HHS - United States
P30 CA051008 NCI NIH HHS - United States
U01 CA168926 NCI NIH HHS - United States
R01 CA135069 NCI NIH HHS - United States

Analysis of glycosylation is challenging due to micro- and macro-heterogeneity of the protein attachment. A combination of LC with MS/MS is one of the most powerful tools for glycopeptide analysis. In this work, we show the effect of various monosaccharide units on the retention time of glycopeptides. Retention behavior of several glycoforms of six peptides obtained from tryptic digest of haptoglobin, hemopexin, and sex hormone-binding globulin was studied on a reversed phase chromatographic column. We observed reduction of the retention time with increasing number of monosaccharide units of glycans attached to the same peptide backbone. Fucosylation of larger glycans provides less significant retention time shift than for smaller ones. Retention times of glycopeptides were expressed as relative retention times. These relative retention times were used for calculation of upper and lower limits of glycopeptide retention time windows under the reversed phase conditions. We then demonstrated on the case of a glycopeptide of haptoglobin that the predicted retention time window boosts confidence of identification and minimizes false-positive identification. Relative retention time, as a qualitative parameter, is expected to improve LC-MS/MS characterization of glycopeptides.

Zobrazit více v PubMed

Schnaar RL. J Leukocyte Biol. 2016;99:825–838. PubMed PMC

Woronowicz A, Amith SR, De Vusser K, Laroy W, Contreras R, Basta S, Szewczuk MR. Glycobiology. 2007;17:10–24. PubMed

Krasnova L, Wong CH, Kornberg RD. Annu Rev Biochem. 2016;85:599–630. PubMed

Varki A. Cold Spring Harbor Perspect Biol. 2011;3:1–14. PubMed PMC

Varki A, Cummings RD, Esko JD, Stanley P, Hart G, Aebi M, Darvill A, Kinoshita T, Packer NH, Prestegard JJ, Schnaar RL, Seeberger PH, editors. Essentials of Glycobiology. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, NY; 2015. PubMed

Song E, Mechref Y. Biomarkers Med. 2015;9:835–844. PubMed PMC

Peracaula R, Sarrats A, Rudd PM. Proteomics: Clin Appl. 2010;4:426–431. PubMed

Zhao JF, Song EW, Zhu R, Mechref Y. Electrophoresis. 2016;37:1420–1430. PubMed PMC

Ghaderi D, Zhang M, Hurtado-Ziola N, Varki A. Biotechnol Genet Eng Rev. 2012;28:147–175. PubMed

Bork K, Horstkorte R, Weidemann W. J Pharm Sci. 2009;98:3499–3508. PubMed

Novotny MV, Alley WR. Curr Opin Chem Biol. 2013;17:832–840. PubMed PMC

Zhao J, Li SY, Li C, Wu SL, Xu W, Chen YT, Shameem M, Richardson D, Li HJ. Anal Chem. 2016;88:7049–7059. PubMed

Marino K, Bones J, Kattla JJ, Rudd PM. Nat Chem Biol. 2010;6:713–723. PubMed

Sanda M, Pompach P, Benicky J, Goldman R. Electrophoresis. 2013;34:2342–2349. PubMed PMC

Medzihradszky KF, Kaasik K, Chalkley RJ. Anal Chem. 2015;87:3064–3071. PubMed PMC

Alley WR, Mann BF, Novotny MV. Chem Rev. 2013;113:2668–2732. PubMed PMC

Benicky J, Sanda M, Pompach P, Wu J, Goldman R. Anal Chem. 2014;86:10716–10723. PubMed PMC

Bruderer R, Bernhardt OM, Gandhi T, Reiter L. Proteomics. 2016;16:2246–2256. PubMed PMC

Tarasova IA, Masselon CD, Gorshkov AV, Gorshkov MV. Analyst. 2016;141:4816–4832. PubMed

Moruz L, Staes A, Foster JM, Hatzou M, Timmerman E, Martens L, Kall L. Proteomics. 2012;12:1151–1159. PubMed

Wang BL, Tsybovsky Y, Palczewski K, Chance MR. J Am Soc Mass Spectrom. 2014;25:729–741. PubMed PMC

Ozohanics O, Turiak L, Puerta A, Vekey K, Drahos L. J Chromatogr A. 2012;1259:200–212. PubMed

Sanda M, Zhang L, Edwards NJ, Goldman R. Anal Bioanal Chem. 2016;406:619–627. PubMed PMC

Geng XD, Regnier FE. J Chromatogr. 1984;296:15–30. PubMed

Dorsey JG, Dill KA. Chem Rev. 1989;89:331–346.

Chalkley RJ, Baker PR. Anal Bioanal Chem. 2016 doi: 10.1007/s00216-016-9981-2. PubMed DOI

Chen R, Cheng K, Ning Z, Figeys D. Anal Chem. 2016 doi: 10.1021/acs.analchem.6b03531. PubMed DOI

Wohlgemuth J, Karas M, Jiang W, Hendriks R, Andrecht S. J Sep Sci. 2010;33:880–890. PubMed

Zacharias LG, Hartmann AK, Song E, Zhao J, Zhu R, Mirzaei P, Mechref Y. J Proteome Res. 2016;15:3624–3634. PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Liquid chromatography and capillary electrophoresis in glycomic and glycoproteomic analysis

. 2022 ; 153 (9) : 659-686. [epub] 20220621

Prediction of Intact N-Glycopeptide Retention Time Windows in Hydrophilic Interaction Liquid Chromatography

. 2022 Jun 09 ; 27 (12) : . [epub] 20220609

Analysis of site and structure specific core fucosylation in liver cirrhosis using exoglycosidase-assisted data-independent LC-MS/MS

. 2021 Dec 02 ; 11 (1) : 23273. [epub] 20211202

Comparison of human IgG glycopeptides separation using mixed-mode hydrophilic interaction/ion-exchange liquid chromatography and reversed-phase mode

. 2021 Jul ; 413 (16) : 4321-4328. [epub] 20210517

Comparison of Different HILIC Stationary Phases in the Separation of Hemopexin and Immunoglobulin G Glycopeptides and Their Isomers

. 2020 Oct 13 ; 25 (20) : . [epub] 20201013

Glycan-specific precipitation of glycopeptides in high organic content sample solvents used in HILIC

. 2020 Aug 01 ; 1150 () : 122196. [epub] 20200528

Nano reversed phase versus nano hydrophilic interaction liquid chromatography on a chip in the analysis of hemopexin glycopeptides

. 2017 Oct 13 ; 1519 () : 152-155. [epub] 20170826

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...