Study of structure-dependent chromatographic behavior of glycopeptides using reversed phase nanoLC
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural
Grantová podpora
U01 CA171146
NCI NIH HHS - United States
R21 DE025732
NIDCR NIH HHS - United States
P30 CA051008
NCI NIH HHS - United States
U01 CA168926
NCI NIH HHS - United States
R01 CA135069
NCI NIH HHS - United States
PubMed
28444931
PubMed Central
PMC5581245
DOI
10.1002/elps.201600547
Knihovny.cz E-zdroje
- Klíčová slova
- Glycoform-dependent retention prediction, Glycopeptide chromatography, Glycoproteomics, LC-MS/MS, Reversed phase chromatography,
- MeSH
- chromatografie s reverzní fází metody MeSH
- glykopeptidy krev chemie metabolismus MeSH
- glykosylace MeSH
- lidé MeSH
- nanotechnologie metody MeSH
- peptidové fragmenty analýza chemie metabolismus MeSH
- proteomika MeSH
- senzitivita a specificita MeSH
- trypsin metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- glykopeptidy MeSH
- peptidové fragmenty MeSH
- trypsin MeSH
Analysis of glycosylation is challenging due to micro- and macro-heterogeneity of the protein attachment. A combination of LC with MS/MS is one of the most powerful tools for glycopeptide analysis. In this work, we show the effect of various monosaccharide units on the retention time of glycopeptides. Retention behavior of several glycoforms of six peptides obtained from tryptic digest of haptoglobin, hemopexin, and sex hormone-binding globulin was studied on a reversed phase chromatographic column. We observed reduction of the retention time with increasing number of monosaccharide units of glycans attached to the same peptide backbone. Fucosylation of larger glycans provides less significant retention time shift than for smaller ones. Retention times of glycopeptides were expressed as relative retention times. These relative retention times were used for calculation of upper and lower limits of glycopeptide retention time windows under the reversed phase conditions. We then demonstrated on the case of a glycopeptide of haptoglobin that the predicted retention time window boosts confidence of identification and minimizes false-positive identification. Relative retention time, as a qualitative parameter, is expected to improve LC-MS/MS characterization of glycopeptides.
Department of Analytical Chemistry Faculty of Science Charles University Czech Republic
Department of Oncology Lombardi Comprehensive Cancer Center Georgetown University Washington DC USA
Zobrazit více v PubMed
Schnaar RL. J Leukocyte Biol. 2016;99:825–838. PubMed PMC
Woronowicz A, Amith SR, De Vusser K, Laroy W, Contreras R, Basta S, Szewczuk MR. Glycobiology. 2007;17:10–24. PubMed
Krasnova L, Wong CH, Kornberg RD. Annu Rev Biochem. 2016;85:599–630. PubMed
Varki A. Cold Spring Harbor Perspect Biol. 2011;3:1–14. PubMed PMC
Varki A, Cummings RD, Esko JD, Stanley P, Hart G, Aebi M, Darvill A, Kinoshita T, Packer NH, Prestegard JJ, Schnaar RL, Seeberger PH, editors. Essentials of Glycobiology. Cold Spring Harbor Laboratory Press; Cold Spring Harbor, NY; 2015. PubMed
Song E, Mechref Y. Biomarkers Med. 2015;9:835–844. PubMed PMC
Peracaula R, Sarrats A, Rudd PM. Proteomics: Clin Appl. 2010;4:426–431. PubMed
Zhao JF, Song EW, Zhu R, Mechref Y. Electrophoresis. 2016;37:1420–1430. PubMed PMC
Ghaderi D, Zhang M, Hurtado-Ziola N, Varki A. Biotechnol Genet Eng Rev. 2012;28:147–175. PubMed
Bork K, Horstkorte R, Weidemann W. J Pharm Sci. 2009;98:3499–3508. PubMed
Novotny MV, Alley WR. Curr Opin Chem Biol. 2013;17:832–840. PubMed PMC
Zhao J, Li SY, Li C, Wu SL, Xu W, Chen YT, Shameem M, Richardson D, Li HJ. Anal Chem. 2016;88:7049–7059. PubMed
Marino K, Bones J, Kattla JJ, Rudd PM. Nat Chem Biol. 2010;6:713–723. PubMed
Sanda M, Pompach P, Benicky J, Goldman R. Electrophoresis. 2013;34:2342–2349. PubMed PMC
Medzihradszky KF, Kaasik K, Chalkley RJ. Anal Chem. 2015;87:3064–3071. PubMed PMC
Alley WR, Mann BF, Novotny MV. Chem Rev. 2013;113:2668–2732. PubMed PMC
Benicky J, Sanda M, Pompach P, Wu J, Goldman R. Anal Chem. 2014;86:10716–10723. PubMed PMC
Bruderer R, Bernhardt OM, Gandhi T, Reiter L. Proteomics. 2016;16:2246–2256. PubMed PMC
Tarasova IA, Masselon CD, Gorshkov AV, Gorshkov MV. Analyst. 2016;141:4816–4832. PubMed
Moruz L, Staes A, Foster JM, Hatzou M, Timmerman E, Martens L, Kall L. Proteomics. 2012;12:1151–1159. PubMed
Wang BL, Tsybovsky Y, Palczewski K, Chance MR. J Am Soc Mass Spectrom. 2014;25:729–741. PubMed PMC
Ozohanics O, Turiak L, Puerta A, Vekey K, Drahos L. J Chromatogr A. 2012;1259:200–212. PubMed
Sanda M, Zhang L, Edwards NJ, Goldman R. Anal Bioanal Chem. 2016;406:619–627. PubMed PMC
Geng XD, Regnier FE. J Chromatogr. 1984;296:15–30. PubMed
Dorsey JG, Dill KA. Chem Rev. 1989;89:331–346.
Chalkley RJ, Baker PR. Anal Bioanal Chem. 2016 doi: 10.1007/s00216-016-9981-2. PubMed DOI
Chen R, Cheng K, Ning Z, Figeys D. Anal Chem. 2016 doi: 10.1021/acs.analchem.6b03531. PubMed DOI
Wohlgemuth J, Karas M, Jiang W, Hendriks R, Andrecht S. J Sep Sci. 2010;33:880–890. PubMed
Zacharias LG, Hartmann AK, Song E, Zhao J, Zhu R, Mirzaei P, Mechref Y. J Proteome Res. 2016;15:3624–3634. PubMed PMC
Liquid chromatography and capillary electrophoresis in glycomic and glycoproteomic analysis
Glycan-specific precipitation of glycopeptides in high organic content sample solvents used in HILIC