Prediction of Intact N-Glycopeptide Retention Time Windows in Hydrophilic Interaction Liquid Chromatography

. 2022 Jun 09 ; 27 (12) : . [epub] 20220609

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35744847

Grantová podpora
19-18005Y Czech Science Foundation

Analysis of protein glycosylation is challenging due to micro- and macro-heterogeneity of the attached glycans. Hydrophilic interaction liquid chromatography (HILIC) is a mode of choice for separation of intact glycopeptides, which are inadequately resolved by reversed phase chromatography. In this work, we propose an easy-to-use model to predict retention time windows of glycopeptides in HILIC. We constructed this model based on the parameters derived from chromatographic separation of six differently glycosylated peptides obtained from tryptic digests of three plasma proteins: haptoglobin, hemopexin, and sex hormone-binding globulin. We calculated relative retention times of different glycoforms attached to the same peptide to the bi-antennary form and showed that the character of the peptide moiety did not significantly change the relative retention time differences between the glycoforms. To challenge the model, we assessed chromatographic behavior of fetuin glycopeptides experimentally, and their retention times all fell within the calculated retention time windows, which suggests that the retention time window prediction model in HILIC is sufficiently accurate. Relative retention time windows provide complementary information to mass spectrometric data, and we consider them useful for reliable determination of protein glycosylation in a site-specific manner.

Zobrazit více v PubMed

Gutierrez Reyes C.D., Jiang P., Donohoo K., Atashi M., Mechref Y.S. Glycomics and glycoproteomics: Approaches to address isomeric separation of glycans and glycopeptides. J. Sep. Sci. 2021;44:403–425. doi: 10.1002/jssc.202000878. PubMed DOI

Chang D., Zaia J. Methods to improve quantitative glycoprotein coverage from bottom-up LC-MS data. Mass Spectrom. Rev. 2021 doi: 10.1002/mas.21692. PubMed DOI

Chernykh A., Kawahara R., Thaysen-Andersen M. Towards structure-focused glycoproteomics. Biochem. Soc. Trans. 2021;49:161–186. doi: 10.1042/BST20200222. PubMed DOI PMC

Ruhaak L.R., Xu G., Li Q., Goonatilleke E., Lebrilla C.B. Mass Spectrometry Approaches to Glycomic and Glycoproteomic Analyses. Chem. Rev. 2018;118:7886–7930. doi: 10.1021/acs.chemrev.7b00732. PubMed DOI PMC

Choo M.S., Wan C., Rudd P.M., Nguyen-Khuong T. GlycopeptideGraphMS: Improved Glycopeptide Detection and Identification by Exploiting Graph Theoretical Patterns in Mass and Retention Time. Anal. Chem. 2019;91:7236–7244. doi: 10.1021/acs.analchem.9b00594. PubMed DOI

Zeng W.F., Cao W.Q., Liu M.Q., He S.M., Yang P.Y. Precise, fast and comprehensive analysis of intact glycopeptides and modified glycans with pGlyco3. Nat. Methods. 2021;18:1515–1523. doi: 10.1038/s41592-021-01306-0. PubMed DOI PMC

Fang Z., Qin H., Mao J., Wang Z., Zhang N., Wang Y., Liu L., Nie Y., Dong M., Ye M. Glyco-Decipher enables glycan database-independent peptide matching and in-depth characterization of site-specific N-glycosylation. Nat. Commun. 2022;13:1900. doi: 10.1038/s41467-022-29530-y. PubMed DOI PMC

Kawahara R., Chernykh A., Alagesan K., Bern M., Cao W., Chalkley R.J., Cheng K., Choo M.S., Edwards N., Goldman R., et al. Community evaluation of glycoproteomics informatics solutions reveals high-performance search strategies for serum glycopeptide analysis. Nat. Methods. 2021;18:1304–1316. doi: 10.1038/s41592-021-01309-x. PubMed DOI PMC

Sanda M., Benicky J., Goldman R. Low Collision Energy Fragmentation in Structure-Specific Glycoproteomics Analysis. Anal. Chem. 2020;92:8262–8267. doi: 10.1021/acs.analchem.0c00519. PubMed DOI PMC

Bruderer R., Bernhardt O.M., Gandhi T., Reiter L. High-precision iRT prediction in the targeted analysis of data-independent acquisition and its impact on identification and quantitation. Proteomics. 2016;16:2246–2256. doi: 10.1002/pmic.201500488. PubMed DOI PMC

Tarasova I.A., Masselon C.D., Gorshkov A.V., Gorshkov M.V. Predictive chromatography of peptides and proteins as a complementary tool for proteomics. Analyst. 2016;141:4816–4832. doi: 10.1039/C6AN00919K. PubMed DOI

Villacrés C., Spicer V., Krokhin O.V. Confident Identification of Citrullination and Carbamylation Assisted by Peptide Retention Time Prediction. J. Proteome Res. 2021;20:1571–1581. doi: 10.1021/acs.jproteome.0c00775. PubMed DOI

Ang E., Neustaeter H., Spicer V., Perreault H., Krokhin O.V. Retention Time Prediction for Glycopeptides in Reversed Phase Chromatography for Glycoproteomic Applications. Anal. Chem. 2019;91:13360–13366. doi: 10.1021/acs.analchem.9b02584. PubMed DOI

Kozlik P., Goldman R., Sanda M. Study of structure-dependent chromatographic behavior of glycopeptides using reversed phase nanoLC. Electrophoresis. 2017;38:2193–2199. doi: 10.1002/elps.201600547. PubMed DOI PMC

Ozohanics O., Turiák L., Puerta A., Vékey K., Drahos L. High-performance liquid chromatography coupled to mass spectrometry methodology for analyzing site-specific N-glycosylation patterns. J. Chromatogr. A. 2012;1259:200–212. doi: 10.1016/j.chroma.2012.05.031. PubMed DOI

Stavenhagen K., Hinneburg H., Kolarich D., Wuhrer M. Site-specific N- and O-glycopeptide analysis using an integrated C18-PGC-LC-ESI-QTOF-MS/MS approach. Methods Mol. Biol. 2017;1503:109–119. doi: 10.1007/978-1-4939-6493-2_9. PubMed DOI

Kozlik P., Goldman R., Sanda M. Hydrophilic interaction liquid chromatography in the separation of glycopeptides and their isomers. Anal. Bioanal. Chem. 2018;410:5001–5008. doi: 10.1007/s00216-018-1150-3. PubMed DOI PMC

Kozlik P., Sanda M., Goldman R. Nano reversed phase versus nano hydrophilic interaction liquid chromatography on a chip in the analysis of hemopexin glycopeptides. J. Chromatogr. A. 2017;1519:152–155. doi: 10.1016/j.chroma.2017.08.066. PubMed DOI PMC

Huang Y., Nie Y., Boyes B., Orlando R. Resolving isomeric glycopeptide glycoforms with hydrophilic interaction chromatography (HILIC) J. Biomol. Tech. 2016;27:98–104. doi: 10.7171/jbt.16-2703-003. PubMed DOI PMC

Molnarova K., Kozlík P. Comparison of different HILIC stationary phases in the separation of hemopexin and immunoglobulin G glycopeptides and their isomers. Molecules. 2020;25:4655. doi: 10.3390/molecules25204655. PubMed DOI PMC

Badgett M.J., Mize E., Fletcher T., Boyes B., Orlando R. Predicting the hilic retention behavior of the n-linked glycopeptides produced by trypsin digestion of immunoglobulin gs (Iggs) J. Biomol. Tech. 2018;29:98–104. doi: 10.7171/jbt.18-2904-002. PubMed DOI PMC

Molnarova K., Duris A., Jecmen T., Kozlik P. Comparison of human IgG glycopeptides separation using mixed-mode hydrophilic interaction/ion-exchange liquid chromatography and reversed-phase mode. Anal. Bioanal. Chem. 2021;413:4321–4328. doi: 10.1007/s00216-021-03388-3. PubMed DOI

Badgett M.J., Boyes B., Orlando R. Predicting the retention behavior of specific O-Linked glycopeptides. J. Biomol. Tech. 2017;28:122–126. doi: 10.7171/jbt.17-2803-003. PubMed DOI PMC

Benicky J., Sanda M., Pompach P., Wu J., Goldman R. Quantification of fucosylated hemopexin and complement factor H in plasma of patients with liver disease. Anal. Chem. 2014;86:10716–10723. doi: 10.1021/ac502727s. PubMed DOI PMC

Pompach P., Brnakova Z., Sanda M., Wu J., Edwards N., Goldman R. Site-specific glycoforms of haptoglobin in liver cirrhosis and hepatocellular carcinoma. Mol. Cell. Proteom. 2013;12:1281–1293. doi: 10.1074/mcp.M112.023259. PubMed DOI PMC

Yuan W., Benicky J., Wei R., Goldman R., Sanda M. Quantitative Analysis of Sex-Hormone-Binding Globulin Glycosylation in Liver Diseases by Liquid Chromatography-Mass Spectrometry Parallel Reaction Monitoring. J. Proteome Res. 2018;17:2755–2766. doi: 10.1021/acs.jproteome.8b00201. PubMed DOI PMC

Togayachi A., Tomioka A., Fujita M., Sukegawa M., Noro E., Takakura D., Miyazaki M., Shikanai T., Narimatsu H., Kaji H. Identification of Poly-N-Acetyllactosamine-Carrying Glycoproteins from HL-60 Human Promyelocytic Leukemia Cells Using a Site-Specific Glycome Analysis Method, Glyco-RIDGE. J. Am. Soc. Mass Spectrom. 2018;29:1138–1152. doi: 10.1007/s13361-018-1938-6. PubMed DOI PMC

Badgett M.J., Boyes B., Orlando R. Peptide retention prediction using hydrophilic interaction liquid chromatography coupled to mass spectrometry. J. Chromatogr. A. 2018;1537:58–65. doi: 10.1016/j.chroma.2017.12.055. PubMed DOI PMC

Gilar M., Jaworski A. Retention behavior of peptides in hydrophilic-interaction chromatography. J. Chromatogr. A. 2011;1218:8890–8896. doi: 10.1016/j.chroma.2011.04.005. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...