Prediction of Intact N-Glycopeptide Retention Time Windows in Hydrophilic Interaction Liquid Chromatography
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-18005Y
Czech Science Foundation
PubMed
35744847
PubMed Central
PMC9228347
DOI
10.3390/molecules27123723
PII: molecules27123723
Knihovny.cz E-zdroje
- Klíčová slova
- glycopeptide separation, glycopeptides, glycoproteomics, haptoglobin, hemopexin, hydrophilic interaction liquid chromatography, retention time prediction, sex hormone-binding globulin,
- MeSH
- chromatografie kapalinová metody MeSH
- chromatografie s reverzní fází * metody MeSH
- glykopeptidy * chemie MeSH
- glykosylace MeSH
- hydrofobní a hydrofilní interakce MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- glykopeptidy * MeSH
Analysis of protein glycosylation is challenging due to micro- and macro-heterogeneity of the attached glycans. Hydrophilic interaction liquid chromatography (HILIC) is a mode of choice for separation of intact glycopeptides, which are inadequately resolved by reversed phase chromatography. In this work, we propose an easy-to-use model to predict retention time windows of glycopeptides in HILIC. We constructed this model based on the parameters derived from chromatographic separation of six differently glycosylated peptides obtained from tryptic digests of three plasma proteins: haptoglobin, hemopexin, and sex hormone-binding globulin. We calculated relative retention times of different glycoforms attached to the same peptide to the bi-antennary form and showed that the character of the peptide moiety did not significantly change the relative retention time differences between the glycoforms. To challenge the model, we assessed chromatographic behavior of fetuin glycopeptides experimentally, and their retention times all fell within the calculated retention time windows, which suggests that the retention time window prediction model in HILIC is sufficiently accurate. Relative retention time windows provide complementary information to mass spectrometric data, and we consider them useful for reliable determination of protein glycosylation in a site-specific manner.
Zobrazit více v PubMed
Gutierrez Reyes C.D., Jiang P., Donohoo K., Atashi M., Mechref Y.S. Glycomics and glycoproteomics: Approaches to address isomeric separation of glycans and glycopeptides. J. Sep. Sci. 2021;44:403–425. doi: 10.1002/jssc.202000878. PubMed DOI
Chang D., Zaia J. Methods to improve quantitative glycoprotein coverage from bottom-up LC-MS data. Mass Spectrom. Rev. 2021 doi: 10.1002/mas.21692. PubMed DOI
Chernykh A., Kawahara R., Thaysen-Andersen M. Towards structure-focused glycoproteomics. Biochem. Soc. Trans. 2021;49:161–186. doi: 10.1042/BST20200222. PubMed DOI PMC
Ruhaak L.R., Xu G., Li Q., Goonatilleke E., Lebrilla C.B. Mass Spectrometry Approaches to Glycomic and Glycoproteomic Analyses. Chem. Rev. 2018;118:7886–7930. doi: 10.1021/acs.chemrev.7b00732. PubMed DOI PMC
Choo M.S., Wan C., Rudd P.M., Nguyen-Khuong T. GlycopeptideGraphMS: Improved Glycopeptide Detection and Identification by Exploiting Graph Theoretical Patterns in Mass and Retention Time. Anal. Chem. 2019;91:7236–7244. doi: 10.1021/acs.analchem.9b00594. PubMed DOI
Zeng W.F., Cao W.Q., Liu M.Q., He S.M., Yang P.Y. Precise, fast and comprehensive analysis of intact glycopeptides and modified glycans with pGlyco3. Nat. Methods. 2021;18:1515–1523. doi: 10.1038/s41592-021-01306-0. PubMed DOI PMC
Fang Z., Qin H., Mao J., Wang Z., Zhang N., Wang Y., Liu L., Nie Y., Dong M., Ye M. Glyco-Decipher enables glycan database-independent peptide matching and in-depth characterization of site-specific N-glycosylation. Nat. Commun. 2022;13:1900. doi: 10.1038/s41467-022-29530-y. PubMed DOI PMC
Kawahara R., Chernykh A., Alagesan K., Bern M., Cao W., Chalkley R.J., Cheng K., Choo M.S., Edwards N., Goldman R., et al. Community evaluation of glycoproteomics informatics solutions reveals high-performance search strategies for serum glycopeptide analysis. Nat. Methods. 2021;18:1304–1316. doi: 10.1038/s41592-021-01309-x. PubMed DOI PMC
Sanda M., Benicky J., Goldman R. Low Collision Energy Fragmentation in Structure-Specific Glycoproteomics Analysis. Anal. Chem. 2020;92:8262–8267. doi: 10.1021/acs.analchem.0c00519. PubMed DOI PMC
Bruderer R., Bernhardt O.M., Gandhi T., Reiter L. High-precision iRT prediction in the targeted analysis of data-independent acquisition and its impact on identification and quantitation. Proteomics. 2016;16:2246–2256. doi: 10.1002/pmic.201500488. PubMed DOI PMC
Tarasova I.A., Masselon C.D., Gorshkov A.V., Gorshkov M.V. Predictive chromatography of peptides and proteins as a complementary tool for proteomics. Analyst. 2016;141:4816–4832. doi: 10.1039/C6AN00919K. PubMed DOI
Villacrés C., Spicer V., Krokhin O.V. Confident Identification of Citrullination and Carbamylation Assisted by Peptide Retention Time Prediction. J. Proteome Res. 2021;20:1571–1581. doi: 10.1021/acs.jproteome.0c00775. PubMed DOI
Ang E., Neustaeter H., Spicer V., Perreault H., Krokhin O.V. Retention Time Prediction for Glycopeptides in Reversed Phase Chromatography for Glycoproteomic Applications. Anal. Chem. 2019;91:13360–13366. doi: 10.1021/acs.analchem.9b02584. PubMed DOI
Kozlik P., Goldman R., Sanda M. Study of structure-dependent chromatographic behavior of glycopeptides using reversed phase nanoLC. Electrophoresis. 2017;38:2193–2199. doi: 10.1002/elps.201600547. PubMed DOI PMC
Ozohanics O., Turiák L., Puerta A., Vékey K., Drahos L. High-performance liquid chromatography coupled to mass spectrometry methodology for analyzing site-specific N-glycosylation patterns. J. Chromatogr. A. 2012;1259:200–212. doi: 10.1016/j.chroma.2012.05.031. PubMed DOI
Stavenhagen K., Hinneburg H., Kolarich D., Wuhrer M. Site-specific N- and O-glycopeptide analysis using an integrated C18-PGC-LC-ESI-QTOF-MS/MS approach. Methods Mol. Biol. 2017;1503:109–119. doi: 10.1007/978-1-4939-6493-2_9. PubMed DOI
Kozlik P., Goldman R., Sanda M. Hydrophilic interaction liquid chromatography in the separation of glycopeptides and their isomers. Anal. Bioanal. Chem. 2018;410:5001–5008. doi: 10.1007/s00216-018-1150-3. PubMed DOI PMC
Kozlik P., Sanda M., Goldman R. Nano reversed phase versus nano hydrophilic interaction liquid chromatography on a chip in the analysis of hemopexin glycopeptides. J. Chromatogr. A. 2017;1519:152–155. doi: 10.1016/j.chroma.2017.08.066. PubMed DOI PMC
Huang Y., Nie Y., Boyes B., Orlando R. Resolving isomeric glycopeptide glycoforms with hydrophilic interaction chromatography (HILIC) J. Biomol. Tech. 2016;27:98–104. doi: 10.7171/jbt.16-2703-003. PubMed DOI PMC
Molnarova K., Kozlík P. Comparison of different HILIC stationary phases in the separation of hemopexin and immunoglobulin G glycopeptides and their isomers. Molecules. 2020;25:4655. doi: 10.3390/molecules25204655. PubMed DOI PMC
Badgett M.J., Mize E., Fletcher T., Boyes B., Orlando R. Predicting the hilic retention behavior of the n-linked glycopeptides produced by trypsin digestion of immunoglobulin gs (Iggs) J. Biomol. Tech. 2018;29:98–104. doi: 10.7171/jbt.18-2904-002. PubMed DOI PMC
Molnarova K., Duris A., Jecmen T., Kozlik P. Comparison of human IgG glycopeptides separation using mixed-mode hydrophilic interaction/ion-exchange liquid chromatography and reversed-phase mode. Anal. Bioanal. Chem. 2021;413:4321–4328. doi: 10.1007/s00216-021-03388-3. PubMed DOI
Badgett M.J., Boyes B., Orlando R. Predicting the retention behavior of specific O-Linked glycopeptides. J. Biomol. Tech. 2017;28:122–126. doi: 10.7171/jbt.17-2803-003. PubMed DOI PMC
Benicky J., Sanda M., Pompach P., Wu J., Goldman R. Quantification of fucosylated hemopexin and complement factor H in plasma of patients with liver disease. Anal. Chem. 2014;86:10716–10723. doi: 10.1021/ac502727s. PubMed DOI PMC
Pompach P., Brnakova Z., Sanda M., Wu J., Edwards N., Goldman R. Site-specific glycoforms of haptoglobin in liver cirrhosis and hepatocellular carcinoma. Mol. Cell. Proteom. 2013;12:1281–1293. doi: 10.1074/mcp.M112.023259. PubMed DOI PMC
Yuan W., Benicky J., Wei R., Goldman R., Sanda M. Quantitative Analysis of Sex-Hormone-Binding Globulin Glycosylation in Liver Diseases by Liquid Chromatography-Mass Spectrometry Parallel Reaction Monitoring. J. Proteome Res. 2018;17:2755–2766. doi: 10.1021/acs.jproteome.8b00201. PubMed DOI PMC
Togayachi A., Tomioka A., Fujita M., Sukegawa M., Noro E., Takakura D., Miyazaki M., Shikanai T., Narimatsu H., Kaji H. Identification of Poly-N-Acetyllactosamine-Carrying Glycoproteins from HL-60 Human Promyelocytic Leukemia Cells Using a Site-Specific Glycome Analysis Method, Glyco-RIDGE. J. Am. Soc. Mass Spectrom. 2018;29:1138–1152. doi: 10.1007/s13361-018-1938-6. PubMed DOI PMC
Badgett M.J., Boyes B., Orlando R. Peptide retention prediction using hydrophilic interaction liquid chromatography coupled to mass spectrometry. J. Chromatogr. A. 2018;1537:58–65. doi: 10.1016/j.chroma.2017.12.055. PubMed DOI PMC
Gilar M., Jaworski A. Retention behavior of peptides in hydrophilic-interaction chromatography. J. Chromatogr. A. 2011;1218:8890–8896. doi: 10.1016/j.chroma.2011.04.005. PubMed DOI