Comparison of Different HILIC Stationary Phases in the Separation of Hemopexin and Immunoglobulin G Glycopeptides and Their Isomers
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu srovnávací studie, časopisecké články
Grantová podpora
19-18005Y
Grantová Agentura České Republiky
project SVV260560
Charles University
PubMed
33065988
PubMed Central
PMC7594091
DOI
10.3390/molecules25204655
PII: molecules25204655
Knihovny.cz E-zdroje
- Klíčová slova
- glycopeptide separation, glycopeptides, glycoproteomics, hydrophilic interaction liquid chromatography, separation of glycopeptide isomers,
- MeSH
- amidy chemie MeSH
- chromatografie kapalinová přístrojové vybavení metody MeSH
- glykopeptidy chemie izolace a purifikace metabolismus MeSH
- glykosylace MeSH
- hemopexin chemie izolace a purifikace MeSH
- hydrofobní a hydrofilní interakce MeSH
- imunoglobulin G chemie izolace a purifikace MeSH
- isomerie MeSH
- lidé MeSH
- polysacharidy chemie MeSH
- teplota MeSH
- trypsin chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
- Názvy látek
- amidy MeSH
- glykopeptidy MeSH
- hemopexin MeSH
- imunoglobulin G MeSH
- polysacharidy MeSH
- trypsin MeSH
Protein glycosylation analysis is challenging due to the structural variety of complex conjugates. However, chromatographically separating glycans attached to tryptic peptides enables their site-specific characterization. For this purpose, we have shown the importance of selecting a suitable hydrophilic interaction liquid chromatography (HILIC) stationary phase in the separation of glycopeptides and their isomers. Three different HILIC stationary phases, i.e., HALO® penta-HILIC, Glycan ethylene bridged hybrid (BEH) Amide, and ZIC-HILIC, were compared in the separation of complex N-glycopeptides of hemopexin and Immunoglobulin G glycoproteins. The retention time increased with the polarity of the glycans attached to the same peptide backbone in all HILIC columns tested in this study, except for the ZIC-HILIC column when adding sialic acid to the glycan moiety, which caused electrostatic repulsion with the negatively charged sulfobetaine functional group, thereby decreasing retention. The HALO® penta-HILIC column provided the best separation results, and the ZIC-HILIC column the worst. Moreover, we showed the potential of these HILIC columns for the isomeric separation of fucosylated and sialylated glycoforms. Therefore, HILIC is a useful tool for the comprehensive characterization of glycoproteins and their isomers.
Zobrazit více v PubMed
Varki A., Cummings R.D., Esko J.D., Stanley P., Hart G., Aebi M., Darvill A.G., Kinoshita T., Packer N.H. Essentials of Glycobiology. 3rd ed. Cold Spring Harbor Laboratory Press; New York, NY, USA: 2017. PubMed
Spiro R.G. Protein glycosylation: Nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology. 2002;12:43–56. doi: 10.1093/glycob/12.4.43R. PubMed DOI
Lisowska E., Jaskiewicz E. Protein Glycosylation, an overview. eLS. 2012 doi: 10.1002/9780470015902.a0006211.pub3. DOI
Nilsson J., Rüetschi U., Halim A., Hesse C., Carlsohn E., Brinkmalm G., Larson G. Enrichment of glycopeptides for glycan structure and attachment site identification. Nat. Methods. 2009;11:809–811. doi: 10.1038/nmeth.1392. PubMed DOI
Kailemia M.J., Park D., Lebrilla C.B. Glycans and glycoproteins as specific biomarkers for cancer. Anal. Bioanal. Chem. 2017;409:395–410. doi: 10.1007/s00216-016-9880-6. PubMed DOI PMC
Liu H., Zhang N., Wan D., Cui M., Liu Z., Liu S. Mass spectrometry-based analysis of glycoproteins and its clinical applications in cancer biomarker discovery. Clin. Proteom. 2014;11:14. doi: 10.1186/1559-0275-11-14. PubMed DOI PMC
Tian Y., Esteva F.J., Song J., Zhang H. Altered Expression of Sialylated Glycoproteins in Breast Cancer Using Hydrazide Chemistry and Mass Spectrometry. Mol. Cell. Proteom. 2012;11 doi: 10.1074/mcp.M111.011403. PubMed DOI PMC
Stowell S.R., Ju T., Cummings R.D. Protein Glycosylation in Cancer. Annu. Rev. Pathol. 2015;10:473–510. doi: 10.1146/annurev-pathol-012414-040438. PubMed DOI PMC
Darebna P., Novak P., Kucera R., Topolcan O., Sanda M., Goldman R., Pompach P. Changes in the expression of N- and O-glycopeptides in patients with colorectal cancer and hepatocellular carcinoma quantified by full-MS scan FT-ICR and multiple reaction monitoring. J. Proteom. 2017;153:44–52. doi: 10.1016/j.jprot.2016.09.004. PubMed DOI PMC
Badgett M.J., Boyes B., Orlando R. Predicting the Retention Behavior of Specific O-Linked Glycopeptides. J. Biomol. Tech. 2017;28:122–126. doi: 10.7171/jbt.17-2803-003. PubMed DOI PMC
Bruderer R., Bernhardt O.M., Gandhi T., Reiter L. High-precision iRT prediction in the targeted analysis of data-independent acquisition and its impact on identification and quantitation. Proteomics. 2016;16:2246–2256. doi: 10.1002/pmic.201500488. PubMed DOI PMC
Furuki K., Toyo’oka T. Retention of glycopeptides analyzed using hydrophilic interaction chromatography is influenced by charge and carbon chain length of ion-pairing reagent for mobile phase. Biomed. Chromatogr. 2017;31 doi: 10.1002/bmc.3988. PubMed DOI
Zhu R., Huang Y., Zhao J., Zhong J., Mechref Y. Isomeric Separation of N-Glycopeptides Derived from Glycoproteins by Porous Graphitic Carbon (PGC) LC-MS/MS. Anal. Chem. 2020;92:9556–9565. doi: 10.1021/acs.analchem.0c00668. PubMed DOI PMC
Peng W., Goli M., Mirzaei P., Mechref Y. Revealing the Biological Attributes of N-Glycan Isomers in Breast Cancer Brain Metastasis Using Porous Graphitic Carbon (PGC) Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) J. Proteom. Res. 2019;18:3731–3740. doi: 10.1021/acs.jproteome.9b00429. PubMed DOI
Kozlik P., Sanda M., Goldman R. Nano reversed phase versus nano hydrophilic interaction liquid chromatography on a chip in the analysis of hemopexin glycopeptides. J. Chromatogr. A. 2017;1519:152–155. doi: 10.1016/j.chroma.2017.08.066. PubMed DOI PMC
Kozlik P., Goldman R., Sanda M. Hydrophilic interaction liquid chromatography in the separation of glycopeptides and their isomers. Anal. Bioanal. Chem. 2018;410:5001–5008. doi: 10.1007/s00216-018-1150-3. PubMed DOI PMC
Tian Y., Tang R., Liu L., Yu Y., Ma S., Gong B., Ou J. Glutathione-modified ordered mesoporous silicas for enrichment of N-linked glycopeptides by hydrophilic interaction chromatography. Talanta. 2020;217:121082. doi: 10.1016/j.talanta.2020.121082. PubMed DOI
Zhang Y., Li J., Yu Y., Xie R., Liao H., Zhang B., Chen J. Coupling hydrophilic interaction chromatography materials with immobilized Fe3+ for phosphopeptide and glycopeptide enrichment and separation. RSC Adv. 2020;10:22176–22182. doi: 10.1039/D0RA01048K. PubMed DOI PMC
Huang Y., Nie Y., Boyes B., Orlando R. Resolving Isomeric Glycopeptide Glycoforms with Hydrophilic Interaction Chromatography (HILIC) J. Biomol. Tech. 2016;27:98–104. doi: 10.7171/jbt.16-2703-003. PubMed DOI PMC
Tao S., Huang Y., Boyes B.E., Orlando R. Liquid Chromatography-Selected Reaction Monitoring (LC-SRM) Approach for the Separation and Quantitation of Sialylated N-Glycans Linkage Isomers. Anal. Chem. 2014;86:10584–10590. doi: 10.1021/ac5020996. PubMed DOI PMC
Van der Burgt Y.E., Siliakus K.M., Cobbaert C.M., Ruhaak L.R. HILIC–MRM–MS for Linkage-Specific Separation of Sialylated Glycopeptides to Quantify Prostate-Specific Antigen Proteoforms. J. Proteome Res. 2020;19:2708–2716. doi: 10.1021/acs.jproteome.0c00050. PubMed DOI PMC
Alley W.R., Jr., Madera M., Mechref Y., Novotny M.V. Chip-based Reversed-phase Liquid Chromatography−Mass Spectrometry of Permethylated N-Linked Glycans: A Potential Methodology for Cancer-biomarker Discovery. Anal. Chem. 2010;82:5095–5106. doi: 10.1021/ac100131e. PubMed DOI PMC
Tengattini S., Dominguez-Vega E., Temporini C., Bavaro T., Rinaldi F., Piubelli L., Pollegioni L., Massolini G., Somsen G.W. Hydrophilic interaction liquid chromatography-mass spectrometry as a new tool for the characterization of intact semi-synthetic glycoproteins. Anal. Chim. Acta. 2017;981:94–105. doi: 10.1016/j.aca.2017.05.020. PubMed DOI
Lauber M.A., Yu Y.Q., Brousmiche D.W., Hua Z., Koza S.M., Magnelli P., Guthrie E., Taron C.H., Fountain K.J. Rapid Preparation of Released N -Glycans for HILIC Analysis Using a Labeling Reagent that Facilitates Sensitive Fluorescence and ESI-MS Detection. Anal. Chem. 2015;87:5401–5409. doi: 10.1021/acs.analchem.5b00758. PubMed DOI
Pedrali A., Tengattini S., Marrubini G., Bavaro T., Hemstrom P., Massolini G., Terreni M., Temporini C. Characterization of Intact Neo-Glycoproteins by Hydrophilic Interaction Liquid Chromatography. Molecules. 2014;19:9070–9088. doi: 10.3390/molecules19079070. PubMed DOI PMC
Takegawa Y., Deguchi K., Ito H., Keira T., Nakagawa H., Nishimura S.I. Simple separation of isomeric sialylated N-glycopeptides by a zwitterionic type of hydrophilic interaction chromatography. J. Sep. Sci. 2006;29:2533–2540. doi: 10.1002/jssc.200600133. PubMed DOI
Yin H., Zhu J., Wu J., Tan Z., An M., Zhou S., Mechref Y., Lubman D.M. A procedure for the analysis of site-specific and structure-specific fucosylation in alpha-1-antitrypsin. Electrophoresis. 2016;37:2624–2632. doi: 10.1002/elps.201600176. PubMed DOI PMC
Gilar M., Yu Y.Q., Ahn J., Xie H., Han H., Ying W., Qian X. Characterization of glycoprotein digests with hydrophilic interaction chromatography and mass spectrometry. Anal. Biochem. 2011;417:80–88. doi: 10.1016/j.ab.2011.05.028. PubMed DOI
Xue Y., Xie J., Fang P., Yao J., Yan G., Shen H., Yang P. Study on behaviors and performances of universal N -glycopeptide enrichment methods. Analyst. 2018;143:1870–1880. doi: 10.1039/C7AN02062G. PubMed DOI
Neue K., Mormann M., Peter-Katalinić J., Pohlentz G. Elucidation of Glycoprotein Structures by Unspecific Proteolysis and Direct nanoESI Mass Spectrometric Analysis of ZIC-HILIC-Enriched Glycopeptides. J. Proteome Res. 2011;10:2248–2260. doi: 10.1021/pr101082c. PubMed DOI
Alagesan K., Khilji S.K., Kolarich D. It is all about the solvent: On the importance of the mobile phase for ZIC-HILIC glycopeptide enrichment. Anal. Bioanal. Chem. 2017;409:529–538. doi: 10.1007/s00216-016-0051-6. PubMed DOI PMC
Hernandez-Hernandez O., Quintanilla-Lopez J.E., Lebron-Aguilar R., Sanz M.L., Moreno F.J. Characterization of post-translationally modified peptides by hydrophilic interaction and reverse phase liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry. J. Chromatogr. A. 2016;1428:202–211. doi: 10.1016/j.chroma.2015.07.096. PubMed DOI
Zauner G., Koeleman C.A., Deelder A.M., Wuhrer M. Protein glycosylation analysis by HILIC-LC-MS of Proteinase K-generated N- and O-glycopeptides. J. Sep. Sci. 2010;33:903–910. doi: 10.1002/jssc.200900850. PubMed DOI
Palmisano G., Larsen M.R., Packer N.H., Thaysen-Andersen M. Structural analysis of glycoprotein sialylation—part II: LC-MS based detection. RSC Adv. 2013;3:22706–22726. doi: 10.1039/c3ra42969e. DOI
Pompach P., Ashline D.J., Brnakova Z., Benicky J., Sanda M., Goldman R. Protein and Site Specificity of Fucosylation in Liver-Secreted Glycoproteins. J. Proteome Res. 2014;13:5561–5569. doi: 10.1021/pr5005482. PubMed DOI PMC
Ma J., Sanda M., Wei R., Zhang L., Goldman R. Quantitative analysis of core fucosylation of serum proteins in liver diseases by LC-MS-MRM. J. Proteom. 2018;189:67–74. doi: 10.1016/j.jprot.2018.02.003. PubMed DOI PMC
Benicky J., Sanda M., Pompach P., Wu J., Goldman R. Quantification of Fucosylated Hemopexin and Complement Factor H in Plasma of Patients with Liver Disease. Anal. Chem. 2014;86:10716–10723. doi: 10.1021/ac502727s. PubMed DOI PMC
Kozlik P., Goldman R., Sanda M. Study of structure-dependent chromatographic behavior of glycopeptides using reversed phase nanoLC. Electrophoresis. 2017;38:2193–2199. doi: 10.1002/elps.201600547. PubMed DOI PMC
Liquid chromatography and capillary electrophoresis in glycomic and glycoproteomic analysis