Comparison of Different HILIC Stationary Phases in the Separation of Hemopexin and Immunoglobulin G Glycopeptides and Their Isomers

. 2020 Oct 13 ; 25 (20) : . [epub] 20201013

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33065988

Grantová podpora
19-18005Y Grantová Agentura České Republiky
project SVV260560 Charles University

Protein glycosylation analysis is challenging due to the structural variety of complex conjugates. However, chromatographically separating glycans attached to tryptic peptides enables their site-specific characterization. For this purpose, we have shown the importance of selecting a suitable hydrophilic interaction liquid chromatography (HILIC) stationary phase in the separation of glycopeptides and their isomers. Three different HILIC stationary phases, i.e., HALO® penta-HILIC, Glycan ethylene bridged hybrid (BEH) Amide, and ZIC-HILIC, were compared in the separation of complex N-glycopeptides of hemopexin and Immunoglobulin G glycoproteins. The retention time increased with the polarity of the glycans attached to the same peptide backbone in all HILIC columns tested in this study, except for the ZIC-HILIC column when adding sialic acid to the glycan moiety, which caused electrostatic repulsion with the negatively charged sulfobetaine functional group, thereby decreasing retention. The HALO® penta-HILIC column provided the best separation results, and the ZIC-HILIC column the worst. Moreover, we showed the potential of these HILIC columns for the isomeric separation of fucosylated and sialylated glycoforms. Therefore, HILIC is a useful tool for the comprehensive characterization of glycoproteins and their isomers.

Zobrazit více v PubMed

Varki A., Cummings R.D., Esko J.D., Stanley P., Hart G., Aebi M., Darvill A.G., Kinoshita T., Packer N.H. Essentials of Glycobiology. 3rd ed. Cold Spring Harbor Laboratory Press; New York, NY, USA: 2017. PubMed

Spiro R.G. Protein glycosylation: Nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology. 2002;12:43–56. doi: 10.1093/glycob/12.4.43R. PubMed DOI

Lisowska E., Jaskiewicz E. Protein Glycosylation, an overview. eLS. 2012 doi: 10.1002/9780470015902.a0006211.pub3. DOI

Nilsson J., Rüetschi U., Halim A., Hesse C., Carlsohn E., Brinkmalm G., Larson G. Enrichment of glycopeptides for glycan structure and attachment site identification. Nat. Methods. 2009;11:809–811. doi: 10.1038/nmeth.1392. PubMed DOI

Kailemia M.J., Park D., Lebrilla C.B. Glycans and glycoproteins as specific biomarkers for cancer. Anal. Bioanal. Chem. 2017;409:395–410. doi: 10.1007/s00216-016-9880-6. PubMed DOI PMC

Liu H., Zhang N., Wan D., Cui M., Liu Z., Liu S. Mass spectrometry-based analysis of glycoproteins and its clinical applications in cancer biomarker discovery. Clin. Proteom. 2014;11:14. doi: 10.1186/1559-0275-11-14. PubMed DOI PMC

Tian Y., Esteva F.J., Song J., Zhang H. Altered Expression of Sialylated Glycoproteins in Breast Cancer Using Hydrazide Chemistry and Mass Spectrometry. Mol. Cell. Proteom. 2012;11 doi: 10.1074/mcp.M111.011403. PubMed DOI PMC

Stowell S.R., Ju T., Cummings R.D. Protein Glycosylation in Cancer. Annu. Rev. Pathol. 2015;10:473–510. doi: 10.1146/annurev-pathol-012414-040438. PubMed DOI PMC

Darebna P., Novak P., Kucera R., Topolcan O., Sanda M., Goldman R., Pompach P. Changes in the expression of N- and O-glycopeptides in patients with colorectal cancer and hepatocellular carcinoma quantified by full-MS scan FT-ICR and multiple reaction monitoring. J. Proteom. 2017;153:44–52. doi: 10.1016/j.jprot.2016.09.004. PubMed DOI PMC

Badgett M.J., Boyes B., Orlando R. Predicting the Retention Behavior of Specific O-Linked Glycopeptides. J. Biomol. Tech. 2017;28:122–126. doi: 10.7171/jbt.17-2803-003. PubMed DOI PMC

Bruderer R., Bernhardt O.M., Gandhi T., Reiter L. High-precision iRT prediction in the targeted analysis of data-independent acquisition and its impact on identification and quantitation. Proteomics. 2016;16:2246–2256. doi: 10.1002/pmic.201500488. PubMed DOI PMC

Furuki K., Toyo’oka T. Retention of glycopeptides analyzed using hydrophilic interaction chromatography is influenced by charge and carbon chain length of ion-pairing reagent for mobile phase. Biomed. Chromatogr. 2017;31 doi: 10.1002/bmc.3988. PubMed DOI

Zhu R., Huang Y., Zhao J., Zhong J., Mechref Y. Isomeric Separation of N-Glycopeptides Derived from Glycoproteins by Porous Graphitic Carbon (PGC) LC-MS/MS. Anal. Chem. 2020;92:9556–9565. doi: 10.1021/acs.analchem.0c00668. PubMed DOI PMC

Peng W., Goli M., Mirzaei P., Mechref Y. Revealing the Biological Attributes of N-Glycan Isomers in Breast Cancer Brain Metastasis Using Porous Graphitic Carbon (PGC) Liquid Chromatography-Tandem Mass Spectrometry (LC-MS/MS) J. Proteom. Res. 2019;18:3731–3740. doi: 10.1021/acs.jproteome.9b00429. PubMed DOI

Kozlik P., Sanda M., Goldman R. Nano reversed phase versus nano hydrophilic interaction liquid chromatography on a chip in the analysis of hemopexin glycopeptides. J. Chromatogr. A. 2017;1519:152–155. doi: 10.1016/j.chroma.2017.08.066. PubMed DOI PMC

Kozlik P., Goldman R., Sanda M. Hydrophilic interaction liquid chromatography in the separation of glycopeptides and their isomers. Anal. Bioanal. Chem. 2018;410:5001–5008. doi: 10.1007/s00216-018-1150-3. PubMed DOI PMC

Tian Y., Tang R., Liu L., Yu Y., Ma S., Gong B., Ou J. Glutathione-modified ordered mesoporous silicas for enrichment of N-linked glycopeptides by hydrophilic interaction chromatography. Talanta. 2020;217:121082. doi: 10.1016/j.talanta.2020.121082. PubMed DOI

Zhang Y., Li J., Yu Y., Xie R., Liao H., Zhang B., Chen J. Coupling hydrophilic interaction chromatography materials with immobilized Fe3+ for phosphopeptide and glycopeptide enrichment and separation. RSC Adv. 2020;10:22176–22182. doi: 10.1039/D0RA01048K. PubMed DOI PMC

Huang Y., Nie Y., Boyes B., Orlando R. Resolving Isomeric Glycopeptide Glycoforms with Hydrophilic Interaction Chromatography (HILIC) J. Biomol. Tech. 2016;27:98–104. doi: 10.7171/jbt.16-2703-003. PubMed DOI PMC

Tao S., Huang Y., Boyes B.E., Orlando R. Liquid Chromatography-Selected Reaction Monitoring (LC-SRM) Approach for the Separation and Quantitation of Sialylated N-Glycans Linkage Isomers. Anal. Chem. 2014;86:10584–10590. doi: 10.1021/ac5020996. PubMed DOI PMC

Van der Burgt Y.E., Siliakus K.M., Cobbaert C.M., Ruhaak L.R. HILIC–MRM–MS for Linkage-Specific Separation of Sialylated Glycopeptides to Quantify Prostate-Specific Antigen Proteoforms. J. Proteome Res. 2020;19:2708–2716. doi: 10.1021/acs.jproteome.0c00050. PubMed DOI PMC

Alley W.R., Jr., Madera M., Mechref Y., Novotny M.V. Chip-based Reversed-phase Liquid Chromatography−Mass Spectrometry of Permethylated N-Linked Glycans: A Potential Methodology for Cancer-biomarker Discovery. Anal. Chem. 2010;82:5095–5106. doi: 10.1021/ac100131e. PubMed DOI PMC

Tengattini S., Dominguez-Vega E., Temporini C., Bavaro T., Rinaldi F., Piubelli L., Pollegioni L., Massolini G., Somsen G.W. Hydrophilic interaction liquid chromatography-mass spectrometry as a new tool for the characterization of intact semi-synthetic glycoproteins. Anal. Chim. Acta. 2017;981:94–105. doi: 10.1016/j.aca.2017.05.020. PubMed DOI

Lauber M.A., Yu Y.Q., Brousmiche D.W., Hua Z., Koza S.M., Magnelli P., Guthrie E., Taron C.H., Fountain K.J. Rapid Preparation of Released N -Glycans for HILIC Analysis Using a Labeling Reagent that Facilitates Sensitive Fluorescence and ESI-MS Detection. Anal. Chem. 2015;87:5401–5409. doi: 10.1021/acs.analchem.5b00758. PubMed DOI

Pedrali A., Tengattini S., Marrubini G., Bavaro T., Hemstrom P., Massolini G., Terreni M., Temporini C. Characterization of Intact Neo-Glycoproteins by Hydrophilic Interaction Liquid Chromatography. Molecules. 2014;19:9070–9088. doi: 10.3390/molecules19079070. PubMed DOI PMC

Takegawa Y., Deguchi K., Ito H., Keira T., Nakagawa H., Nishimura S.I. Simple separation of isomeric sialylated N-glycopeptides by a zwitterionic type of hydrophilic interaction chromatography. J. Sep. Sci. 2006;29:2533–2540. doi: 10.1002/jssc.200600133. PubMed DOI

Yin H., Zhu J., Wu J., Tan Z., An M., Zhou S., Mechref Y., Lubman D.M. A procedure for the analysis of site-specific and structure-specific fucosylation in alpha-1-antitrypsin. Electrophoresis. 2016;37:2624–2632. doi: 10.1002/elps.201600176. PubMed DOI PMC

Gilar M., Yu Y.Q., Ahn J., Xie H., Han H., Ying W., Qian X. Characterization of glycoprotein digests with hydrophilic interaction chromatography and mass spectrometry. Anal. Biochem. 2011;417:80–88. doi: 10.1016/j.ab.2011.05.028. PubMed DOI

Xue Y., Xie J., Fang P., Yao J., Yan G., Shen H., Yang P. Study on behaviors and performances of universal N -glycopeptide enrichment methods. Analyst. 2018;143:1870–1880. doi: 10.1039/C7AN02062G. PubMed DOI

Neue K., Mormann M., Peter-Katalinić J., Pohlentz G. Elucidation of Glycoprotein Structures by Unspecific Proteolysis and Direct nanoESI Mass Spectrometric Analysis of ZIC-HILIC-Enriched Glycopeptides. J. Proteome Res. 2011;10:2248–2260. doi: 10.1021/pr101082c. PubMed DOI

Alagesan K., Khilji S.K., Kolarich D. It is all about the solvent: On the importance of the mobile phase for ZIC-HILIC glycopeptide enrichment. Anal. Bioanal. Chem. 2017;409:529–538. doi: 10.1007/s00216-016-0051-6. PubMed DOI PMC

Hernandez-Hernandez O., Quintanilla-Lopez J.E., Lebron-Aguilar R., Sanz M.L., Moreno F.J. Characterization of post-translationally modified peptides by hydrophilic interaction and reverse phase liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry. J. Chromatogr. A. 2016;1428:202–211. doi: 10.1016/j.chroma.2015.07.096. PubMed DOI

Zauner G., Koeleman C.A., Deelder A.M., Wuhrer M. Protein glycosylation analysis by HILIC-LC-MS of Proteinase K-generated N- and O-glycopeptides. J. Sep. Sci. 2010;33:903–910. doi: 10.1002/jssc.200900850. PubMed DOI

Palmisano G., Larsen M.R., Packer N.H., Thaysen-Andersen M. Structural analysis of glycoprotein sialylation—part II: LC-MS based detection. RSC Adv. 2013;3:22706–22726. doi: 10.1039/c3ra42969e. DOI

Pompach P., Ashline D.J., Brnakova Z., Benicky J., Sanda M., Goldman R. Protein and Site Specificity of Fucosylation in Liver-Secreted Glycoproteins. J. Proteome Res. 2014;13:5561–5569. doi: 10.1021/pr5005482. PubMed DOI PMC

Ma J., Sanda M., Wei R., Zhang L., Goldman R. Quantitative analysis of core fucosylation of serum proteins in liver diseases by LC-MS-MRM. J. Proteom. 2018;189:67–74. doi: 10.1016/j.jprot.2018.02.003. PubMed DOI PMC

Benicky J., Sanda M., Pompach P., Wu J., Goldman R. Quantification of Fucosylated Hemopexin and Complement Factor H in Plasma of Patients with Liver Disease. Anal. Chem. 2014;86:10716–10723. doi: 10.1021/ac502727s. PubMed DOI PMC

Kozlik P., Goldman R., Sanda M. Study of structure-dependent chromatographic behavior of glycopeptides using reversed phase nanoLC. Electrophoresis. 2017;38:2193–2199. doi: 10.1002/elps.201600547. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...