The treatment with soluble guanylate cyclase stimulator BAY41-8543 prevents malignant hypertension and associated organ damage
Language English Country Netherlands Media print-electronic
Document type Journal Article
PubMed
40197357
PubMed Central
PMC12052048
DOI
10.1097/hjh.0000000000004009
PII: 00004872-990000000-00655
Knihovny.cz E-resources
- Keywords
- malignant hypertension, renin–angiotensin system, sodium-glucose cotransporter type 2 inhibitor, soluble guanylyl cyclase stimulator,
- MeSH
- Benzhydryl Compounds pharmacology MeSH
- Sodium-Glucose Transporter 2 Inhibitors MeSH
- Glucosides pharmacology therapeutic use MeSH
- Hypertension, Malignant * prevention & control drug therapy MeSH
- Blood Pressure drug effects MeSH
- Rats MeSH
- Morpholines MeSH
- NG-Nitroarginine Methyl Ester pharmacology MeSH
- Rats, Transgenic MeSH
- Pyrazoles * pharmacology therapeutic use MeSH
- Pyrimidines * therapeutic use pharmacology MeSH
- Soluble Guanylyl Cyclase * metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- BAY 41-8543 MeSH Browser
- Benzhydryl Compounds MeSH
- empagliflozin MeSH Browser
- Sodium-Glucose Transporter 2 Inhibitors MeSH
- Glucosides MeSH
- Morpholines MeSH
- NG-Nitroarginine Methyl Ester MeSH
- Pyrazoles * MeSH
- Pyrimidines * MeSH
- Soluble Guanylyl Cyclase * MeSH
OBJECTIVE: Despite availability of an array of antihypertensive drugs, malignant hypertension remains a life-threatening condition, and new therapeutic strategies for the treatment of malignant hypertension and malignant hypertension-associated organ damage are needed. The aim of the present study was to assess the effects of nitric oxide (NO)-independent soluble guanylyl cyclase (sGC) stimulator on the course of malignant hypertension. The second aim was to investigate if the treatment with sodium-glucose cotransporter type 2 (SGLT2) inhibitor would augment the expected beneficial actions of the sGC stimulation on the course of malignant hypertension. METHODS: As a model of malignant hypertension, Ren-2 transgenic rats (TGR) treated with nonspecific NO synthase inhibitor (Nω-nitro- l -arginine methyl ester, l -NAME) was used. Blood pressure (BP) was monitored by radiotelemetry, and the treatment was started 3 days before administration of l -NAME. RESULTS: The treatment with sGC stimulator BAY 41-8543, alone or combined with SGLT2 inhibitor empagliflozin, abolished malignant hypertension-related mortality in TGR receiving l -NAME. These two treatment regimens also prevented BP increases after l -NAME administration in TGR, and even decreased BP below values observed in control TGR, and prevented cardiac dysfunction and malignant hypertension-related morbidity. The treatment with the SGLT2 inhibitor empagliflozin did not further augment the beneficial actions of sGC stimulator on the course of malignant hypertension-related mortality. CONCLUSION: The treatment with NO-independent sGC stimulator displayed marked protective actions on the course of malignant hypertension-related mortality and malignant hypertension-related cardiac damage. This suggests that application of sGC stimulator could be a promising therapeutic means for the treatment of malignant hypertension.
Bayer AG Pharmaceuticals R and D Pharma Research Center Wuppertal Germany
Center for Experimental Medicine Institute for Clinical and Experimental Medicine
Department of Cardiology Ceske Budejovice Hospital Ceske Budejovice Czech Republic
Department of Cardiology Institute for Clinical and Experimental Medicine Prague Czech Republic
Department of Cardiology University Hospital Motol and 2nd Faculty of Medicine Charles University
Department of Pathophysiology 2nd Faculty of Medicine Charles University
See more in PubMed
Vasan RS, Song RJ, Xanthakis V, Beiser A, DeCarli C, Mitchell GF, et al. . Hypertension-mediated organ damage: prevalence, correlates, and prognosis in the community. Hypertension 2022; 79:505–515. PubMed PMC
Boulestreau R, van den Born BH, Lip GYH, Gupta A. Malignant hypertension: current perspectives and challenges. J Am Heart Assoc 2022; 11:e023397. PubMed PMC
World Health Organization. Global report on hypertension: the race against a silent killer. Geneva, Switzerland: World Health Organization; 2023, pp. 1–276.
Kario K, Okura A, Hoshide S, Mogi M. The WHO Global report 2023 on hypertension warning the emerging hypertension burden in globe and its treatment strategy. Hypertens Res 2024; 47:1099–1102. PubMed
Murphy FD, Grill J. So called malignant hypertension: a clinical and morphological study. JAMA 1930; 46:75–104.
Kimmelstiel P, Wilson C. Benign and malignant hypertension and nephrosclerosis: a clinical and pathological study. Am J Pathol 1936; 12:45–83. PubMed PMC
Boulestreau R, Śpiewak M, Januszewicz A, Kreutz R, Guzik TJ, Januszewicz M, et al. . Malignant hypertension: a systemic cardiovascular disease. J Am Coll Cardiol 2024; 83:1688–1701. PubMed
Volhard F, Fahr T. Die Brightsche Nierenkrankeit: Klinik, Pathologie und Atlas. Berlin: Springer; 1914.
Byrom FB. The hypertensive vascular crisis. London: William Heinemann Medial Books Ltd; 1969.
Giese J. The renin-angiotensin system and the pathogenesis of vascular disease in malignant hypertension. Clin Sci Mol Med 1976; 51:19–21. PubMed
Kawazo N, Eto T, Abe I, Takishita S, Ueno M, Kobayashi K, et al. . Pathophysiology in malignant hypertension: with special reference to the renin-angiotensin system. Clin Cardiol 1987; 10:513–518. PubMed
Laragh JH. Laragh's lessons in pathophysiology and clinical pearls for treating hypertension. Am J Hypertens 2001; 14:186–194. PubMed
Van den Born BJ, Koopmans RP, van Montfrans GA. The renin-angiotensin system in malignant hypertension revisited: plasma renin activity, microangiopathic hemolysis, and renal failure in malignant hypertension. Am J Hypertens 2007; 20:900–906. PubMed
Guerin C, Gonthier R, Berthoux FC. Long-term prognosis in malignant or accelerated hypertension. Nephrol Dial Transplant 1988; 3:33–37. PubMed
Lane DA, Lip GYH, Beevers DG. Improving survival of malignant hypertension patients over 40 years. Am J Hypertens 2009; 22:1199–1204. PubMed
Domek M, Gumprecht J, Lip GYH, Shantsila A. Malignant hypertension: does this still exist? J Hum Hypertens 2020; 34:1–4. PubMed
Saito T, Hasebe N. Malignant hypertension and multiorgan damage: mechanisms to be elucidated and countermeasures. Hypertens Res 2021; 44:122–123. PubMed
Mishima E, Funayama Y, Suzuki T, Mishima F, Nitta F, Toyohara T, et al. . Concurrent analogous organ damage in the brain, eyes, and kidneys in malignant hypertension: reversible encephalopathy, serous retinal detachment, and proteinuria. Hypertens Res 2021; 44:88–97. PubMed
Kulkarni S, Glover M, Kapil V, Abrams SML, Partridge S, McCormack T, et al. . Management of hypertensive crisis: British and Irish Hypertension Society Position document. J Hum Hypertens 2023; 37:863–879. PubMed PMC
Laragh JH. Laragh's lessons in renin system pathophysiology for treating hypertension and its fatal cardiovascular consequences. New York: Elsevier Science; 2002.
Fleming S. Malignant hypertension - the role of the paracrine renin-angiotensin system. J Pathol 2000; 192:135–139. PubMed
Liu X, Bellamy CO, Bailey MA, Mullins LJ, Dunbar DR, Kenyon CJ, et al. . Angiotensin-converting enzyme is a modifier of hypertensive end organ damage. J Biol Chem 2009; 284:15564–15572. PubMed PMC
Krishnan SM, Kraehling JR, Eitner F, Bénardeau A, Sandner P. The impact of the nitric oxide (NO)/soluble guanylyl cyclase (sGC) signaling cascade on kidney health and disease: a preclinical perspective. Int J Mol Sci 2018; 19:1712. PubMed PMC
Ataei Ataabadi E, Golshiri K, Jüttner A, Krenning G, Danser AHJ, Roks AJM. Nitric oxide-cGMP signaling in hypertension: current and future options for pharmacotherapy. Hypertension 2020; 76:1055–1068. PubMed
Sandner P, Zimmer DP, Milne GT, Follmann M, Hobbs A, Stasch JP. Soluble guanylate cyclase stimulators and activators. Handb Exp Pharmacol 2021; 264:355–394. PubMed
Jüttner AA, Danser AHJ, Roks AJM. Pharmacological developments in antihypertensive treatment through nitric oxide-cGMP modulation. Adv Pharmacol 2022; 94:57–94. PubMed
Lerman LO, Kurtz TW, Touyz RM, Ellison DH, Chade AR, Crowley SD, et al. . Animal models of hypertension: a scientific statement from the American Heart Association. Hypertension 2019; 73:e87–e120. PubMed PMC
Roh J, Hill JA, Singh A, Valero-Muñoz M, Sam F. Heart failure with preserved ejection fraction: heterogeneous syndrome, diverse preclinical models. Circ Res 2022; 130:1906–1925. PubMed PMC
Kuczeriszka M, Wąsowicz K. Animal models of hypertension: the status of nitric oxide and oxidative stress and the role of the renal medulla. Nitric Oxide 2022; 125-126:40–46. PubMed
Gao S, Liu XP, Li TT, Chen L, Feng YP, Wang YK, et al. . Animal models of heart failure with preserved ejection fraction (HFpEF): from metabolic pathobiology to drug discovery. Acta Pharmacol Sin 2024; 45:23–35. PubMed PMC
Mullins JJ, Peters J, Ganten D. Fulminant hypertension in transgenic rats harbouring the mouse Ren-2 gene. Nature 1990; 344:541–544. PubMed
Kopkan L, Kramer HJ, Huskova Z, Vaňourková Z, Škaroupková P, Thumová M, Červenka L. The role of intrarenal angiotensin II in the development of hypertension in Ren-2 transgenic rats. J Hypertens 2005; 23:1531–1539. PubMed
Hartupee J, Mann DL. Neurohormonal activation in heart failure with reduced ejection fraction. Nat Rev Cardiol 2017; 14:30–38. PubMed PMC
Mann DL, Felker GM. Mechanisms and models in heart failure: a translational approach. Circ Res 2021; 128:1435–1450. PubMed PMC
Hall JE, Granger JP, Hall ME. Albeprn RJ, Caplan MJ, Moe OW. Physiology and pathophysiology of hypertension. Seldin and Giebisch: the kidney physiology and pathophysiology 5th ed.Massachusetts, USA: Academic Press; 2013. 1319–1352.
Kobori H, Nangaku M, Navar LG, Nishiyama A. The intrarenal renin-angiotensin system: from physiology to the pathobiology of hypertension and kidney disease. Pharmacol Rev 2007; 59:251–287. PubMed
Triebel H, Castrop H. The renin angiotensin aldosterone system. Pflugers Arch 2024; 476:705–713. PubMed PMC
Honetschlägerová Z, Kitada K, Husková Z, Sporková A, Kopkan L, Bürgelová M, et al. . Antihypertensive and renoprotective actions of soluble epoxide hydrolase inhibition in ANG II-dependent malignant hypertension are abolished by pretreatment with l-NAME. J Hypertens 2013; 31:321–332. PubMed PMC
Sharkovska Y, Kalk P, Lawrenz B, Godes M, Hoffmann LS, Wellkisch K, et al. . Nitric oxide-independent stimulation of soluble guanylate cyclase reduces organ damage in experimental low-renin and high-renin models. J Hypertens 2010; 28:1666–1675. PubMed
Armstrong PW, Pieske B, Anstrom KJ, Ezekowitz J, Hernandez AF, Butler J, et al. . Vericiguat in patients with heart failure and reduced ejection fraction. N Engl J Med 2020; 382:1883–1893. PubMed
Senni M, Alemayehu WG, Sim D, Edelmann F, Butler J, Ezekowitz J, et al. . Efficacy and safety of vericiguat in patients with heart failure with reduced ejection fraction treated with sacubitril/valsartan: insights from the VICTORIA trial. Eur J Heart Fail 2022; 24:1614–1622. PubMed
Gawrys O, Husková Z, Škaroupková P, Honetschlägerová Z, Vaňourková Z, Kikerlová S, et al. . The treatment with sGC stimulator improves survival of hypertensive rats in response to volume-overload induced by aorto-caval fistula. Naunyn Schmiedebergs Arch Pharmacol 2023; 396:3757–3773. PubMed PMC
Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, et al. . Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373:2117–2128. PubMed
McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, et al. . Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 2019; 381:1995–2008. PubMed
Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, et al. . Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med 2020; 383:1413–1424. PubMed
Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M, et al. . Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med 2021; 385:1451–1461. PubMed
Perkovic V, Jardine MJ, Neal B, Bompoint S, Heerspink HJL, Charytan DM, et al. . Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 2019; 380:2295–2306. PubMed
Herrington WG, Staplin N, Wanner C, Green JB, Hauske SJ, et al. . The EMPA-KIDNEY Collaborative Group. Empagliflozin in patients with chronic kidney disease. N Engl J Med 2023; 388:117–127. PubMed PMC
Reverte V, Rodriguez F, Oltra L, Moreno JM, Llinás MT, Shea CM, et al. . SGLT2 inhibition potentiates the cardiovascular, renal, and metabolic effects of sGC stimulation in hypertensive rats with prolonged exposure to high-fat diet. Am J Physiol Heart Circ Physiol 2022; 322:H523–H536. PubMed PMC
Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DC. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. J Pharmacol Pharmacother 2010; 2:94–99. PubMed PMC
Verhagen AM, Braam B, Boer P, Gröne HJ, Koomans HA, Joles JA. Losartan-sensitive renal damage caused by chronic NOS inhibition does not involve increased renal angiotensin II concentrations. Kidney Int 1999; 56:222–231. PubMed
Hojná S, Rauchová H, Malínská H, Marková I, Hüttl M, Papoušek F, et al. . Antihypertensive and metabolic effects of empagliflozin in Ren-2 transgenic rats, an experimental non-diabetic model of hypertension. Biomed Pharmacother 2021; 144:112246. PubMed
Kurtz TW, Griffin KA, Bidani AK, Davisson RL, Hall JE. Subcommittee of Professional and Public Education of the American Heart Association. Recommendations for blood pressure measurement in humans and experimental animals. Part 2: Blood pressure measurement in experimental animals: a statement for professionals from the subcommittee of professional and public education of the American Heart Association council on high blood pressure research. Hypertension 2005; 45:299–310. PubMed
Harrison DG, Bader M, Lerman LO, Fink G, Karumanchi SA, Reckelhoff JF, et al. . Tail-cuff versus radiotelemetry to measure blood pressure in mice and rats. Hypertension 2024; 81:3–5. PubMed PMC
Sporková A, Čertíková Chábová V, Doleželová Š, Jíchová Š, Kopkan L, Vaňourková Z, et al. . Fenofibrate attenuates hypertension in goldblatt hypertensive rats: role of 20-hydroxyeicosatetraenoic acid in the nonclipped kidney. Am J Med Sci 2017; 353:568–579. PubMed
Červenka L, Husková Z, Kopkan L, Kikerlová S, Sedláková L, Vaňourková Z, et al. . Two pharmacological epoxyeicosatrienoic acid-enhancing therapies are effectively antihypertensive and reduce the severity of ischemic arrhythmias in rats with angiotensin II-dependent hypertension. J Hypertens 2018; 36:1326–1341. PubMed PMC
Husková Z, Kramer HJ, Vaňourková Z, Červenka L. Effects of changes in sodium balance on plasma and kidney angiotensin II levels in anesthetized and conscious Ren-2 transgenic rats. J Hypertens 2006; 24:517–527. PubMed
Husková Z, Kramer H, Vanourková Z, Thumová M, Malý J, Opocenský M, et al. . Effects of dietary salt load and salt depletion on the course of hypertension and angiotensin II levels in male and female heterozygous Ren-2 transgenic rats. Kidney Blood Press Res 2007; 30:45–55. PubMed
Červenka L, Melenovský V, Husková Z, Škaroupková P, Nishiyama A, Sadowski J. Inhibition of soluble epoxide hydrolase counteracts the development of renal dysfunction and progression of congestive heart failure in Ren-2 transgenic hypertensive rats with aorto-caval fistula. Clin Exp Pharmacol Physiol 2015; 42:795–807. PubMed
Husková Z, Kopkan L, Červenková L, Doleželová Š, Vaňourková Z, Škaroupková P, et al. . Intrarenal alterations of the angiotensin-converting type 2/angiotensin 1-7 complex of the renin-angiotensin system do not alter the course of malignant hypertension in Cyp1a1-Ren-2 transgenic rats. Clin Exp Pharmacol Physiol 2016; 43:438–449. PubMed
Miklovič M, Gawryś O, Honetschlägerová Z, Kala P, Husková Z, Kikerlová S, et al. . Renal denervation improves cardiac function independently of afterload and restores myocardial norepinephrine levels in a rodent heart failure model. Hypertens Res 2024; 47:2718–2730. PubMed PMC
Nakano Y, Hirano T, Uehara K, Nishibayashi S, Hattori K, Aihara M, et al. . New rat model induced by anti-glomerular basement membrane antibody shows severe glomerular adhesion in early stage and quickly progresses to end-stage renal failure. Pathol Int 2008; 58:361–370. PubMed
Honetschlagerová Z, Škaroupková P, Kikerlová S, Husková Z, Maxová H, Melenovský V, et al. . Effects of renal sympathetic denervation on the course of congestive heart failure combined with chronic kidney disease: insight from studies with fawn-hooded hypertensive rats with volume overload induced using aorto-caval fistula. Clin Exp Hypertens 2021; 43:522–535. PubMed
Kala P, Vaňourková Z, Škaroupková P, Kompanowska-Jezierska E, Sadowski J, Walkowska A, et al. . Endothelin type A receptor blockade increases renoprotection in congestive heart failure combined with chronic kidney disease: studies in 5/6 nephrectomized rats with aorto-caval fistula. Biomed Pharmacother 2023; 158:114157. PubMed
Kujal P, Chábová VČ, Vernerová Z, Walkowska A, Kompanowska-Jezierska E, Sadowski J, et al. . Similar renoprotection after renin-angiotensin-dependent and -independent antihypertensive therapy in 5/6-nephrectomized Ren-2 transgenic rats: are there blood pressure-independent effects? Clin Exp Pharmacol Physiol 2010; 37:1159–1169. PubMed
Vallon V. State-of-the-art-review: mechanisms of action of SGLT2 inhibitors and clinical implications. Am J Hypertens 2024; 37:841–852. PubMed PMC