Regioselective Palmitoylation of 9-(2,3-Dihydroxy- propyl)adenine Catalyzed by a Glycopolymer-enzyme Conjugate
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
27196879
PubMed Central
PMC6274252
DOI
10.3390/molecules21050648
PII: molecules21050648
Knihovny.cz E-zdroje
- Klíčová slova
- chemical modification, glycosylation, palmitoylation, regioselectivity,
- MeSH
- adenin analogy a deriváty chemie MeSH
- Candida enzymologie MeSH
- enzymy imobilizované chemie MeSH
- fungální proteiny chemie MeSH
- glykosylace MeSH
- hexany chemie MeSH
- katalýza * MeSH
- lipasa chemie MeSH
- lipoylace MeSH
- polymery chemie MeSH
- rozpouštědla chemie MeSH
- stereoizomerie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- 9-(2,3-dihydroxypropyl)adenine MeSH Prohlížeč
- adenin MeSH
- enzymy imobilizované MeSH
- fungální proteiny MeSH
- hexany MeSH
- lipasa MeSH
- lipase B, Candida antarctica MeSH Prohlížeč
- n-hexane MeSH Prohlížeč
- polymery MeSH
- rozpouštědla MeSH
The enzymatic regioselective monopalmitoylation of racemic 9-(2,3-dihydroxypropyl)- adenine (DHPA), an approved antiviral agent, has been performed by an immobilized form of Candida antarctica B lipase (CAL-B) using a 4:1 DMF/hexane mixture as the reaction medium. To improve the chemical yield of the desired monopalmitoylation reaction, solid-phase chemical modifications of the lipase were evaluated. The reaction yield was successfully increased obtaining 100% product after a second treatment of the product solution with fresh immobilised chemically glycosylated-CAL-B.
Departamento de Biocatálisis Instituto de Catálisis Campus UAM Cantoblanco Madrid 28049 Spain
Institute of Organic Chemistry and Biochemistry AS CR Flemingovo nám 2 Prague 6 Czech Republic
Zobrazit více v PubMed
Kasthuri M., El Amri C., Lefort V., Perigaud C., Peyrottes S. Synthesis and study of (R)- and (S)-β-hydroxyphosphonate acyclonucleosides as structural analogues of (S)-HPMPC (cidofovir) New J. Chem. 2014;38:4736–4742. doi: 10.1039/C4NJ00813H. DOI
Głowacka I.E., Balzarini J., Andrei G., Snoeck R., Schols D., Piotrowska D.G. Design, synthesis, antiviral and cytostatic activity of ω-(1H-1,2,3-triazol-1-yl)(polyhydroxy)alkylphosphonates as acyclic nucleotide analogues. Bioorg. Med. Chem. 2014;22:3629–3641. doi: 10.1016/j.bmc.2014.05.020. PubMed DOI PMC
Kaiser M.M., Jansa P., Dračínský M., Janeba Z. A novel type of acyclic nucleoside phosphonates derived from 2-(phosphonomethoxy)propanoic acid. Tetrahedron. 2012;68:4003–4012. doi: 10.1016/j.tet.2012.03.066. PubMed DOI PMC
Xie M.-S., Niu H.-Y., Qu G.-R., Guo H.-M. The development for the synthesis of chiral acyclic nucleosides and their phosphonates Review. Tetrahedron Lett. 2014;55:7156–7166. doi: 10.1016/j.tetlet.2014.11.060. DOI
Pohl R., Postova Slavetinska L., Eng W.S., Keough D.T., Guddat L.W., Rejman D. Synthesis, conformational studies, and biological properties of phosphonomethoxyethyl derivatives of nucleobases with a locked conformation via a pyrrolidine ring. Org. Biomol. Chem. 2015;13:4693–4705. doi: 10.1039/C5OB00097A. PubMed DOI
Krečmerová M., George D., Magel S. Herpesviridae—A Look into This Unique Family of Viruses. InTech; Rijeka, Croatia: 2012. pp. 245–270.
De Clercq E., Descamps J., De Somer P., Holý A. (S)-9-(2,3-Dihydroxypropyl)adenine: An Aliphatic Nucleoside Analog with Broad-Spectrum Antiviral Activity. Science. 1978;200:563–565. doi: 10.1126/science.200.4341.563. PubMed DOI
Xie T., Lim S.M., Westover K.D., Dodge M.E., Ercan D., Ficarro S.B., Udayakumar D., Gurbani D., Tae H.S., Riddle S.M., et al. Pharmacological targeting of the pseudokinase Her3. Nat. Chem. Biol. 2014;10:1006–1012. doi: 10.1038/nchembio.1658. PubMed DOI PMC
Krečmerová M., Pohl R., Masojídková M., Balzarini J., Snoeck R., Andrei G. N4-Acyl derivatives as lipophilic prodrugs of cidofovir and its 5-azacytosine analogue,(S)-HPMP-5-azaC: Chemistry and antiviral activity. Bioorg. Med. Chem. 2014;22:2896–2906. doi: 10.1016/j.bmc.2014.03.031. PubMed DOI
Gao W.-L., Li N., Zong M.-H. Enzymatic regioselective acylation of nucleosides in biomass-derived 2-methyltetrahydrofuran: Kinetic study and enzyme substrate recognition. J. Biotechnol. 2013;164:91–96. doi: 10.1016/j.jbiotec.2013.01.004. PubMed DOI
Ravalico F., James S.L., Vyle J.S. Synthesis of nucleoside analogues in a ball mill: Fast, chemoselective and high yielding acylation without undesirable solvents. Green Chem. 2011;13:1778–1783. doi: 10.1039/c1gc15131b. DOI
Li N., Zong M.-H., Ma D. Regioselective acylation of nucleosides and their analogs catalyzed by Pseudomonas cepacia lipase: Enzyme substrate recognition. Tetrahedron. 2009;65:1063–1068. doi: 10.1016/j.tet.2008.11.045. DOI
Yuan L., Wang J., Shen W.-C. Lipidization of human interferon-alpha: A new approach toward improving the delivery of protein drugs. J. Controll. Release. 2008;129:11–17. doi: 10.1016/j.jconrel.2008.03.014. PubMed DOI
Draper J.M., Xia Z., Smith C.D. Cellular palmitoylation and trafficking of lipidated peptides. J. Lipid Res. 2007;48:1873–1884. doi: 10.1194/jlr.M700179-JLR200. PubMed DOI PMC
Reetz M.T. Biocatalysis in Organic Chemistry and Biotechnology: Past, Present, and Future. J. Am. Chem. Soc. 2013;135:12480–12496. doi: 10.1021/ja405051f. PubMed DOI
Wallace S., Balskus E.P. Opportunities for merging chemical and biological synthesis. Curr. Opin. Biotechnol. 2014;30 doi: 10.1016/j.copbio.2014.03.006. PubMed DOI PMC
Busto E., Gotor-Fernandez V., Gotor V. Hydrolases: Catalytically promiscuous enzymes for non-conventional reactions in organic synthesis. Chem. Soc. Rev. 2010;39:4504–4523. doi: 10.1039/c003811c. PubMed DOI
Mateo C., Palomo J.M., Fernandez-Lorente G., Guisan J.M., Fernandez-Lafuente R. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb. Technol. 2007;40:1451–1463. doi: 10.1016/j.enzmictec.2007.01.018. DOI
Adlercreutz P. Immobilisation and application of lipases in organic media. Chem. Soc. Rev. 2013;42:6406–6436. doi: 10.1039/c3cs35446f. PubMed DOI
Sheldon R.A. Enzyme Immobilization: The Quest for Optimum Performance. Adv. Synth. Catal. 2007;349:1289–1307. doi: 10.1002/adsc.200700082. DOI
Palomo J.M., Filice M. New emerging bio-catalysts design in biotransformations. Biotechnol. Adv. 2015:605–613. doi: 10.1016/j.biotechadv.2014.12.010. PubMed DOI
Romero O., Rivero C.W., Guisan J.M., Palomo J.M. Novel enzyme-polymer conjugates for biotechnological applications. Peer J. 2013;1 doi: 10.7717/peerj.27. PubMed DOI PMC
Payne R.J., Wong C.-H. Advances in chemical ligation strategies for the synthesis of glycopeptides and glycoproteins. Chem. Commun. 2010;46:21–43. doi: 10.1039/B913845E. PubMed DOI
Gutarra M.L.E., Romero O., Abian O., Torres F.A.G., Freire D.M.G., Castro A.M., Guisan J.M., Palomo J.M. Enzyme Surface Glycosylation in the Solid Phase: Improved Activity and Selectivity of Candida Antarctica Lipase B. Chem. Cat. Chem. 2011;3:1902–1910. doi: 10.1002/cctc.201100211. DOI
Díaz-Rodríguez A., Davis B.G. Chemical modification in the creation of novel biocatalysts. Opin. Chem. Biol. 2011;15:211–219. doi: 10.1016/j.cbpa.2010.12.002. PubMed DOI
Filice M., Romero O., Guisan J.M., Palomo J.M. Trans,trans-2,4-Hexadiene incorporation on enzymes for site-specific immobilization and fluorescent labeling. Org. Biomol.Chem. 2011;9:5535–5540. doi: 10.1039/c1ob05401e. PubMed DOI
Romero O., Filice M., Rivas B.D.L., Carrasco-Lopez C., Klett J., Morreale A., Hermoso J.A., Guisan J.M., Abian O., Palomo J.M. Semisynthetic peptide-lipase conjugates for improved biotransformations. Chem. Commun. 2012;48:9053–9055. doi: 10.1039/c2cc34816k. PubMed DOI
Filice M., Guisan J.M., Terreni M., Palomo J.M. Regioselective monodeprotection of peracetylated carbohydrates. Nat. Prot. 2012;7:1783–1796. doi: 10.1038/nprot.2012.098. PubMed DOI
Quintana P.G., Guillén M., Marciello M., Valero F., Palomo J.M., Baldessari A. Immobilized Heterologous Rhizopus Oryzae Lipase as an Efficient Catalyst in the Acetylation of Cortexolone. Eur. J. Org. Chem. 2012;2012:4306–4312. doi: 10.1002/ejoc.201200178. DOI
Palomo J.M., Cabrera Z. Enzymatic Desymmetrization of Prochiral Molecules. Curr. Org. Synth. 2012;9:791–805. doi: 10.2174/157017912803901628. DOI
Brabcová J., Blažek J., Janská L., Krečmerová M., Zarevúcka M. Lipases as Tools in the Synthesis of Prodrugs from Racemic 9-(2, 3-Dihydroxypropyl) adenine. Molecules. 2012;17:13813–13824. doi: 10.3390/molecules171213813. PubMed DOI PMC