Lipases as tools in the synthesis of prodrugs from racemic 9-(2,3-dihydroxypropyl)adenine
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23174898
PubMed Central
PMC6268494
DOI
10.3390/molecules171213813
PII: molecules171213813
Knihovny.cz E-zdroje
- MeSH
- adenin * analogy a deriváty chemická syntéza chemie MeSH
- chitosan chemie MeSH
- enzymy imobilizované chemie metabolismus MeSH
- esterifikace MeSH
- estery chemie MeSH
- Geotrichum enzymologie MeSH
- lipasa chemie izolace a purifikace MeSH
- prekurzory léčiv * chemická syntéza chemie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 9-(2,3-dihydroxypropyl)adenine MeSH Prohlížeč
- adenin * MeSH
- chitosan MeSH
- enzymy imobilizované MeSH
- estery MeSH
- lipasa MeSH
- lipase II, Geotrichum candidum MeSH Prohlížeč
- prekurzory léčiv * MeSH
Lipases from Geotrichum candidum 4013 (extracellular lipase and cell-bound lipase) were immobilized by adsorption on chitosan beads. The enzyme preparations were tested in the synthesis of ester prodrugs from racemic 9-(2,3-dihydroxypropyl)adenine in dimethylformamide with different vinyl esters (acetate, butyrate, decanoate, laurate, palmitate). The transesterification activities of these immobilized enzymes were compared with commercially available lipases (lipase from hog pancreas, Aspergillus niger, Candida antarctica, Pseudomonas fluorescens). Lipase from Candida antarctica was found to be the most efficient enzyme regarding chemical yield of the desired products, while transesterification by lipase from Aspergillus niger resulted in lower yields.
Zobrazit více v PubMed
Krishna S.H., Persson M., Bornscheuer U.T. Enantioselective transesterification of a tertiary alcohol by lipase A from Candida antarctica. Tetrahedron: Asymmetry. 2002;13:2693–2696. doi: 10.1016/S0957-4166(02)00739-5. DOI
Chenevert R., Pelchat N., Jacques F. Stereoselective enzymatic acylations (transesterifications) Curr. Org. Chem. 2006;10:1067–1094. doi: 10.2174/138527206777698093. DOI
Paravidino M., Hanefeld U. Enzymatic acylation: Assessing the greenness of different acyl donors. Green Chem. 2011;13:2651–2657. doi: 10.1039/c1gc15576h. DOI
Bizerra A.M.C., Montenegro T.G.C., Lemos T.L.G., Oliveira M.C.F., Mattos M.C., Lavandera I., Gotor-Fernández V., Gonzalo G., Gotor V. Enzymatic regioselective production of chloramphenicol esters. Tetrahedron. 2011;67:2858–2862.
Stella V.J., Charman W.N.A., Naringrekar V.H. Prodrugs: Do they have advantages in clinical practice? Drugs. 1985;29:455–473. doi: 10.2165/00003495-198529050-00002. PubMed DOI
Warren M.S., Rautio J. Prodrugs Designed to target transporters for oral drug delivery. In: Rautio J., editor. Prodrugs and Targeted Delivery. 1st. Vol. 47. Wiley-VCH Verlag GmbH and Co. KGaA; Weinheim, Germany: 2011. pp. 133–153.
Stránský K., Zarevúcka M., Kejík Z., Wimmer Z., Macková M., Demnerová K. Substrate specifity, regioselectivity and hydrolytic activity of lipases activated from Geotrichum sp. Biochem. Eng. J. 2007;34:209–216. doi: 10.1016/j.bej.2006.12.006. DOI
Hlavsová K., Zarevúcka M., Wimmer Z., Macková M., Sovová H. Geotrichum candidum 4013: Extracellular lipase versus cell-bound lipase from the single strain. J. Mol. Catal. B-Enzym. 2009;61:188–193.
Krečmerová M. Nucleoside and nucleotide Analogues for the Treatment of Herpesvirus Infections: Current Stage and New Prospects in the Field of Acyclic Nucleoside Phosphonates. In: George D., Magel S.T., editors. Herpesviridae—A Look into This Unique Family of Viruses. Intech; Rijeka, Croatia: 2012. pp. 245–270.
De Clercq E., Descamps J., De Somer P., Holý A. (S)-9-(2,3-Dihydroxypropyl)adenine: An Aliphatic Nucleoside Analog with Broad-Spectrum Antiviral Activity. Science. 1978;200:563–565. PubMed
De Clercq E., Holý A. Alkyl Esters of 3-Adenin-9-yl-2-hydroxypropanoic Acid: A New Class of Broad-spectrum Antiviral Agents. J. Med. Chem. 1985;28:282–287. doi: 10.1021/jm00381a004. PubMed DOI
Holý A., Votruba I., De Clercq E. Studies on S-adenosyl-L-homocysteine hydrolase. 5. Synthesis and antiviral activity of stereoisomeric eritadenines. Collect. Czech. Chem. Commun. 1982;47:1392–1407. doi: 10.1135/cccc19821392. DOI
Toida J., Arikawa Y., Kondou K., Fukuzawa M., Sekiguchi J. Purification and characterization of triacylglycerol lipase from Aspergillus oryzae. Biosci. Biotechnol. Biochem. 1998;62:759–763. doi: 10.1271/bbb.62.759. PubMed DOI
Berger M., Schneider M. Lipase catalyzed preparation of isomerically pure monoglycerides and diglycerides. Biol. Chem. Hoppe-Seyler. 1991;372:526–526.
Berger M., Schneider M. Regioselectivity of lipases in organic-solvents. Biotechnol. Lett. 1991;13:333–338. doi: 10.1007/BF01027678. DOI
Trodler P., Nieveler J., Rusnak M., Schmid R.D., Pleiss J. Rational design of a new one-step purification strategy for Candida antarctica lipase B by ion-exchange chromatography. J. Chromatogr. A. 2008;1179:161–167. doi: 10.1016/j.chroma.2007.11.108. PubMed DOI
Rangheard M.S., Langrand G., Triantaphylides C., Baratti J. Multi-competitive enzymatic-reactions in organic media — A simple test for the determination of lipase fatty-acid specificity. Biochim. Biophys. Acta. 1989;1004:20–28. doi: 10.1016/0005-2760(89)90207-5. PubMed DOI
Brabcová J., Zarevúcka M., Macková M. Difference in hydrolytic activities of two crude lipases from Geotrichum candidum 4013. Yeast. 2010;27:1029–1038. doi: 10.1002/yea.1812. PubMed DOI
Zarevúcka M., Kejík Z., Šaman D., Wimmer Z., Demnerová K. Enantioselective properties of induced lipases from Geotrichum. Enzyme Microb. Technol. 2005;37:481–486. doi: 10.1016/j.enzmictec.2004.07.021. DOI
Hlavsová K., Wimmer Z., Xanthakis E., Bernášek P., Sovová H., Zarevúcka M. Lipase activity enhancement by SC-CO2 treatment. Z. Naturforsch. B: Chem. Sci. 2008;63:779–784.
Hanefeld U., Gardossi L., Magner E. Understanding enzyme immobilization. Chem. Soc. Rev. 2009;38:453–468. doi: 10.1039/b711564b. PubMed DOI
Theil F., Weidner J., Ballschuh S., Kunath A., Schick H. Kinetic resolution of acyclic 1,2-diols using a sequential lipase-catalyzed transesterification in organic solvents. J. Org. Chem. 1994;59:388–393. doi: 10.1021/jo00081a018. DOI
Henegar K.E., Ashford S.W., Baughman T.A., Sih J.C., Gu R.L. Practical asymmetric synthesis of (S)-4-ethyl-7,8-dihydro-4- hydroxy-1H-pyrano[3,4-f]indolizine- 3,6,10(4H)-trione, a key intermediate for the synthesis of irinotecan and other camptothecin analogs. J. Org. Chem. 1997;62:6588–6597.
Chênevert R., Simard M., Bergeron M., Dasser M. Chemoenzymatic formal synthesis of (S)-(−)-phosphonotrixin. Tetrahedron: Asymmetry. 2004;15:1889–1892. doi: 10.1016/j.tetasy.2004.04.046. DOI
Serra S. Lipase-mediated resolution of substituted 2-aryl-propanols: Application to the enantioselective synthesis of phenolic sesquiterpenes. Tetrahedron: Asymmetry. 2011;22:619–628. doi: 10.1016/j.tetasy.2011.03.012. DOI
Djadchenko M.A., Pivnitsky K.K., Theil F., Schick H. Enzymes in organic synthesis. Part 3. Synthesis of enantiomerically pure prostaglandin intermediates by enzyme-catalyzed transesterification of (1SR,2RS,5SR,6RS)-bicyclo[3.3.0]octane-2,6-diol with trichloroethyl acetate in an organic solvent. J. Chem. Soc. Perkin Trans. 1989;1:2001–2002.
Guo Z.W., Wu S.H., Chen C.S., Girdaukas G., Sih C.J. Sequential biocatalytic kinetic resolutions. J. Am. Chem. Soc. 1990;112:4942–4945. doi: 10.1021/ja00168a046. DOI
Theil F., Schick H., Lapitskaya M.A., Pivnitsky K.K. Enzymes in organic-synthesis. 4. Investigation of the pancreatin-catalyzed acylation of cis-cyclopent-2-ene-1,4-diol with various trichloroethyl and vinyl alkanoates. Liebigs Ann. Chem. 1991:195–200.
Theil F., Schick H., Winter G., Reck G. Lipase-catalyzed transesterification of meso-cyclopentane diols. Tetrahedron. 1991;47:7569–7582. doi: 10.1016/S0040-4020(01)88281-8. DOI
Santaniello E., Ferraboschi P., Grisenti P. An efficient chemo-enzymatic approach to the enantioselective synthesis of 2-methyl-1,3-propamedical derivatives. Tetrahedron Lett. 1990;31:5657–5660.
Burgess K., Henderson I. Biocatalytic desymmetrizations of pentitol derivatives. Tetrahedron Lett. 1991;32:5701–5704. doi: 10.1016/S0040-4039(00)93534-2. DOI
Hung T.C., Giridhar R., Chiou S.H., Wu W.T. Binary immobilization of Candida rugosalipase on chitosan. J. Mol. Catal. B-Enzym. 2003;26:69–78. doi: 10.1016/S1381-1177(03)00167-X. DOI
Yi S.S., Noh J.M., Lee Y.S. Amino acid modified chitosan beads: Improved polymer supports for immobilization of lipase from Candida rugosa. J. Mol. Catal. B-Enzym. 2009;57:123–129. doi: 10.1016/j.molcatb.2008.08.002. DOI
Shafei M.S., Allam R.F. Production and immobilization of partially purified lipase from Penicillium chrysogenum. Mal. J. Microbiol. 2010;6:196–202.
Nasratun M., Said H.A., Noraziah A., Alla A.N.A. Immobilization of lipase from Candida rugosa on chitosan beads for transesterification reaction. Am. J. Appl. Sci. 2009;6:1653–1657. doi: 10.3844/ajassp.2009.1653.1657. DOI