Lipases as tools in the synthesis of prodrugs from racemic 9-(2,3-dihydroxypropyl)adenine

. 2012 Nov 22 ; 17 (12) : 13813-24. [epub] 20121122

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid23174898

Lipases from Geotrichum candidum 4013 (extracellular lipase and cell-bound lipase) were immobilized by adsorption on chitosan beads. The enzyme preparations were tested in the synthesis of ester prodrugs from racemic 9-(2,3-dihydroxypropyl)adenine in dimethylformamide with different vinyl esters (acetate, butyrate, decanoate, laurate, palmitate). The transesterification activities of these immobilized enzymes were compared with commercially available lipases (lipase from hog pancreas, Aspergillus niger, Candida antarctica, Pseudomonas fluorescens). Lipase from Candida antarctica was found to be the most efficient enzyme regarding chemical yield of the desired products, while transesterification by lipase from Aspergillus niger resulted in lower yields.

Zobrazit více v PubMed

Krishna S.H., Persson M., Bornscheuer U.T. Enantioselective transesterification of a tertiary alcohol by lipase A from Candida antarctica. Tetrahedron: Asymmetry. 2002;13:2693–2696. doi: 10.1016/S0957-4166(02)00739-5. DOI

Chenevert R., Pelchat N., Jacques F. Stereoselective enzymatic acylations (transesterifications) Curr. Org. Chem. 2006;10:1067–1094. doi: 10.2174/138527206777698093. DOI

Paravidino M., Hanefeld U. Enzymatic acylation: Assessing the greenness of different acyl donors. Green Chem. 2011;13:2651–2657. doi: 10.1039/c1gc15576h. DOI

Bizerra A.M.C., Montenegro T.G.C., Lemos T.L.G., Oliveira M.C.F., Mattos M.C., Lavandera I., Gotor-Fernández V., Gonzalo G., Gotor V. Enzymatic regioselective production of chloramphenicol esters. Tetrahedron. 2011;67:2858–2862.

Stella V.J., Charman W.N.A., Naringrekar V.H. Prodrugs: Do they have advantages in clinical practice? Drugs. 1985;29:455–473. doi: 10.2165/00003495-198529050-00002. PubMed DOI

Warren M.S., Rautio J. Prodrugs Designed to target transporters for oral drug delivery. In: Rautio J., editor. Prodrugs and Targeted Delivery. 1st. Vol. 47. Wiley-VCH Verlag GmbH and Co. KGaA; Weinheim, Germany: 2011. pp. 133–153.

Stránský K., Zarevúcka M., Kejík Z., Wimmer Z., Macková M., Demnerová K. Substrate specifity, regioselectivity and hydrolytic activity of lipases activated from Geotrichum sp. Biochem. Eng. J. 2007;34:209–216. doi: 10.1016/j.bej.2006.12.006. DOI

Hlavsová K., Zarevúcka M., Wimmer Z., Macková M., Sovová H. Geotrichum candidum 4013: Extracellular lipase versus cell-bound lipase from the single strain. J. Mol. Catal. B-Enzym. 2009;61:188–193.

Krečmerová M. Nucleoside and nucleotide Analogues for the Treatment of Herpesvirus Infections: Current Stage and New Prospects in the Field of Acyclic Nucleoside Phosphonates. In: George D., Magel S.T., editors. Herpesviridae—A Look into This Unique Family of Viruses. Intech; Rijeka, Croatia: 2012. pp. 245–270.

De Clercq E., Descamps J., De Somer P., Holý A. (S)-9-(2,3-Dihydroxypropyl)adenine: An Aliphatic Nucleoside Analog with Broad-Spectrum Antiviral Activity. Science. 1978;200:563–565. PubMed

De Clercq E., Holý A. Alkyl Esters of 3-Adenin-9-yl-2-hydroxypropanoic Acid: A New Class of Broad-spectrum Antiviral Agents. J. Med. Chem. 1985;28:282–287. doi: 10.1021/jm00381a004. PubMed DOI

Holý A., Votruba I., De Clercq E. Studies on S-adenosyl-L-homocysteine hydrolase. 5. Synthesis and antiviral activity of stereoisomeric eritadenines. Collect. Czech. Chem. Commun. 1982;47:1392–1407. doi: 10.1135/cccc19821392. DOI

Toida J., Arikawa Y., Kondou K., Fukuzawa M., Sekiguchi J. Purification and characterization of triacylglycerol lipase from Aspergillus oryzae. Biosci. Biotechnol. Biochem. 1998;62:759–763. doi: 10.1271/bbb.62.759. PubMed DOI

Berger M., Schneider M. Lipase catalyzed preparation of isomerically pure monoglycerides and diglycerides. Biol. Chem. Hoppe-Seyler. 1991;372:526–526.

Berger M., Schneider M. Regioselectivity of lipases in organic-solvents. Biotechnol. Lett. 1991;13:333–338. doi: 10.1007/BF01027678. DOI

Trodler P., Nieveler J., Rusnak M., Schmid R.D., Pleiss J. Rational design of a new one-step purification strategy for Candida antarctica lipase B by ion-exchange chromatography. J. Chromatogr. A. 2008;1179:161–167. doi: 10.1016/j.chroma.2007.11.108. PubMed DOI

Rangheard M.S., Langrand G., Triantaphylides C., Baratti J. Multi-competitive enzymatic-reactions in organic media — A simple test for the determination of lipase fatty-acid specificity. Biochim. Biophys. Acta. 1989;1004:20–28. doi: 10.1016/0005-2760(89)90207-5. PubMed DOI

Brabcová J., Zarevúcka M., Macková M. Difference in hydrolytic activities of two crude lipases from Geotrichum candidum 4013. Yeast. 2010;27:1029–1038. doi: 10.1002/yea.1812. PubMed DOI

Zarevúcka M., Kejík Z., Šaman D., Wimmer Z., Demnerová K. Enantioselective properties of induced lipases from Geotrichum. Enzyme Microb. Technol. 2005;37:481–486. doi: 10.1016/j.enzmictec.2004.07.021. DOI

Hlavsová K., Wimmer Z., Xanthakis E., Bernášek P., Sovová H., Zarevúcka M. Lipase activity enhancement by SC-CO2 treatment. Z. Naturforsch. B: Chem. Sci. 2008;63:779–784.

Hanefeld U., Gardossi L., Magner E. Understanding enzyme immobilization. Chem. Soc. Rev. 2009;38:453–468. doi: 10.1039/b711564b. PubMed DOI

Theil F., Weidner J., Ballschuh S., Kunath A., Schick H. Kinetic resolution of acyclic 1,2-diols using a sequential lipase-catalyzed transesterification in organic solvents. J. Org. Chem. 1994;59:388–393. doi: 10.1021/jo00081a018. DOI

Henegar K.E., Ashford S.W., Baughman T.A., Sih J.C., Gu R.L. Practical asymmetric synthesis of (S)-4-ethyl-7,8-dihydro-4- hydroxy-1H-pyrano[3,4-f]indolizine- 3,6,10(4H)-trione, a key intermediate for the synthesis of irinotecan and other camptothecin analogs. J. Org. Chem. 1997;62:6588–6597.

Chênevert R., Simard M., Bergeron M., Dasser M. Chemoenzymatic formal synthesis of (S)-(−)-phosphonotrixin. Tetrahedron: Asymmetry. 2004;15:1889–1892. doi: 10.1016/j.tetasy.2004.04.046. DOI

Serra S. Lipase-mediated resolution of substituted 2-aryl-propanols: Application to the enantioselective synthesis of phenolic sesquiterpenes. Tetrahedron: Asymmetry. 2011;22:619–628. doi: 10.1016/j.tetasy.2011.03.012. DOI

Djadchenko M.A., Pivnitsky K.K., Theil F., Schick H. Enzymes in organic synthesis. Part 3. Synthesis of enantiomerically pure prostaglandin intermediates by enzyme-catalyzed transesterification of (1SR,2RS,5SR,6RS)-bicyclo[3.3.0]octane-2,6-diol with trichloroethyl acetate in an organic solvent. J. Chem. Soc. Perkin Trans. 1989;1:2001–2002.

Guo Z.W., Wu S.H., Chen C.S., Girdaukas G., Sih C.J. Sequential biocatalytic kinetic resolutions. J. Am. Chem. Soc. 1990;112:4942–4945. doi: 10.1021/ja00168a046. DOI

Theil F., Schick H., Lapitskaya M.A., Pivnitsky K.K. Enzymes in organic-synthesis. 4. Investigation of the pancreatin-catalyzed acylation of cis-cyclopent-2-ene-1,4-diol with various trichloroethyl and vinyl alkanoates. Liebigs Ann. Chem. 1991:195–200.

Theil F., Schick H., Winter G., Reck G. Lipase-catalyzed transesterification of meso-cyclopentane diols. Tetrahedron. 1991;47:7569–7582. doi: 10.1016/S0040-4020(01)88281-8. DOI

Santaniello E., Ferraboschi P., Grisenti P. An efficient chemo-enzymatic approach to the enantioselective synthesis of 2-methyl-1,3-propamedical derivatives. Tetrahedron Lett. 1990;31:5657–5660.

Burgess K., Henderson I. Biocatalytic desymmetrizations of pentitol derivatives. Tetrahedron Lett. 1991;32:5701–5704. doi: 10.1016/S0040-4039(00)93534-2. DOI

Hung T.C., Giridhar R., Chiou S.H., Wu W.T. Binary immobilization of Candida rugosalipase on chitosan. J. Mol. Catal. B-Enzym. 2003;26:69–78. doi: 10.1016/S1381-1177(03)00167-X. DOI

Yi S.S., Noh J.M., Lee Y.S. Amino acid modified chitosan beads: Improved polymer supports for immobilization of lipase from Candida rugosa. J. Mol. Catal. B-Enzym. 2009;57:123–129. doi: 10.1016/j.molcatb.2008.08.002. DOI

Shafei M.S., Allam R.F. Production and immobilization of partially purified lipase from Penicillium chrysogenum. Mal. J. Microbiol. 2010;6:196–202.

Nasratun M., Said H.A., Noraziah A., Alla A.N.A. Immobilization of lipase from Candida rugosa on chitosan beads for transesterification reaction. Am. J. Appl. Sci. 2009;6:1653–1657. doi: 10.3844/ajassp.2009.1653.1657. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...