Agonist-selective activation of individual G-proteins by muscarinic receptors

. 2024 Apr 26 ; 14 (1) : 9652. [epub] 20240426

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38671143

Grantová podpora
19-06106Y Grantová Agentura České Republiky
Programme EXCELES, LX22NPO5104 European Union Next Generation EU

Odkazy

PubMed 38671143
PubMed Central PMC11053168
DOI 10.1038/s41598-024-60259-4
PII: 10.1038/s41598-024-60259-4
Knihovny.cz E-zdroje

Selective activation of individual subtypes of muscarinic receptors is a promising way to safely alleviate a wide range of pathological conditions in the central nervous system and the periphery as well. The flexible G-protein interface of muscarinic receptors allows them to interact with several G-proteins with various efficacy, potency, and kinetics. Agonists biased to the particular G-protein mediated pathway may result in selectivity among muscarinic subtypes and, due to the non-uniform expression of individual G-protein alpha subunits, possibly achieve tissue specificity. Here, we demonstrate that novel tetrahydropyridine-based agonists exert specific signalling profiles in coupling with individual G-protein α subunits. These signalling profiles profoundly differ from the reference agonist carbachol. Moreover, coupling with individual Gα induced by these novel agonists varies among subtypes of muscarinic receptors which may lead to subtype selectivity. Thus, the novel tetrahydropyridine-based agonist can contribute to the elucidation of the mechanism of pathway-specific activation of muscarinic receptors and serve as a starting point for the development of desired selective muscarinic agonists.

Zobrazit více v PubMed

Caulfield MP. Muscarinic receptors—Characterization, coupling and function. Pharmacol. Ther. 1993;58:319–379. doi: 10.1016/0163-7258(93)90027-B. PubMed DOI

Masuho I, et al. Distinct profiles of functional discrimination among G proteins determine the actions of G protein-coupled receptors. Sci. Signal. 2015;8:1–16. doi: 10.1126/scisignal.aab4068. PubMed DOI PMC

Santiago LJ, Abrol R. Understanding G protein selectivity of muscarinic acetylcholine receptors using computational methods. Int. J. Mol. Sci. 2019;20:5290. doi: 10.3390/ijms20215290. PubMed DOI PMC

Eglen RM. Overview of muscarinic receptor subtypes. Handb. Exp. Pharmacol. 2012;208:3–28. doi: 10.1007/978-3-642-23274-9_1. PubMed DOI

Caccamo A, et al. M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron. 2006;49:671–682. doi: 10.1016/j.neuron.2006.01.020. PubMed DOI

De Angelis F, Maria TA. Analgesic effects mediated by muscarinic receptors: Mechanisms and pharmacological approaches. Cent. Nerv. Syst. Agents Med. Chem. 2016;16:218–226. doi: 10.2174/1871524916666160302103033. PubMed DOI

Naser PV, Kuner R. Molecular, cellular and circuit basis of cholinergic modulation of pain. Neuroscience. 2018;387:135–148. doi: 10.1016/j.neuroscience.2017.08.049. PubMed DOI PMC

Ferrier J, et al. Cholinergic neurotransmission in the posterior insular cortex is altered in preclinical models of neuropathic pain: Key role of muscarinic M2 receptors in donepezil-induced antinociception. J. Neurosci. 2015;35:16418–16430. doi: 10.1523/JNEUROSCI.1537-15.2015. PubMed DOI PMC

Langmead CJ, Watson J, Reavill C. Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol. Ther. 2008;117:232–243. doi: 10.1016/j.pharmthera.2007.09.009. PubMed DOI

Nathan PJ, et al. The potent M1 receptor allosteric agonist GSK1034702 improves episodic memory in humans in the nicotine abstinence model of cognitive dysfunction. Int. J. Neuropsychopharmacol. 2013;16:721–731. doi: 10.1017/S1461145712000752. PubMed DOI

Haga K, et al. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature. 2012;482:547–551. doi: 10.1038/nature10753. PubMed DOI PMC

Kruse A, Hu J, Pan A, Arlow D. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature. 2012;482:552–556. doi: 10.1038/nature10867. PubMed DOI PMC

Thal DM, Sun B. Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature. 2016;531:335–340. doi: 10.1038/nature17188. PubMed DOI PMC

Downes GB, Gautam N. The G protein subunit gene families. Genomics. 1999;62:544–552. doi: 10.1006/geno.1999.5992. PubMed DOI

Brann MR, Collins RM, Spiegel A. Localization of mRNAs encoding the α-subunits of signal-transducing G-proteins within rat brain and among peripheral tissues. FEBS Lett. 1987;222:191–198. doi: 10.1016/0014-5793(87)80218-1. PubMed DOI

Worley PF, Baraban JM, Van Dop C. G(o), a guanine nucleotide-binding protein: Immunohistochemical localization in rat brain resembles distribution of second messenger systems. Proc. Natl. Acad. Sci. USA. 1986;83:4561–4565. doi: 10.1073/pnas.83.12.4561. PubMed DOI PMC

Jiang M, Bajpayee NS. Molecular mechanisms of Go signaling. NeuroSignals. 2009;17:23–41. doi: 10.1159/000186688. PubMed DOI PMC

Jiang M, et al. Multiple neurological abnormalities in mice deficient in the G protein Go. Proc. Natl. Acad. Sci. USA. 1998;95:3269–3274. doi: 10.1073/pnas.95.6.3269. PubMed DOI PMC

Fagerberg L, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteom. 2014;13:397–406. doi: 10.1074/mcp.M113.035600. PubMed DOI PMC

Wilkie TM, Scherle PA, Strathmann MP, Slepak VZ, Simon MI. Characterization of G-protein alpha subunits in the Gq class: Expression in murine tissues and in stromal and hematopoietic cell lines. Proc. Natl. Acad. Sci. USA. 1991;88:10049–10053. doi: 10.1073/pnas.88.22.10049. PubMed DOI PMC

Ho MKC, et al. Gα 14 links a variety of G i- and G s-coupled receptors to the stimulation of phospholipase C. Br. J. Pharmacol. 2001;132:1431–1440. doi: 10.1038/sj.bjp.0703933. PubMed DOI PMC

Giannone F, et al. The puzzling uniqueness of the heterotrimeric G15 protein and its potential beyond hematopoiesis. J. Mol. Endocrinol. 2010;44:259–269. doi: 10.1677/JME-09-0134. PubMed DOI

Giovinazzo F, et al. Ectopic expression of the heterotrimeric G15 protein in pancreatic carcinoma and its potential in cancer signal transduction. Cell. Signal. 2013;25:651–659. doi: 10.1016/j.cellsig.2012.11.018. PubMed DOI

Manglik A, et al. Structure–based discovery of opioid analgesics with reduced side effects. Nature. 2017;537:185–190. doi: 10.1038/nature19112. PubMed DOI PMC

Maeda S, Qu Q, Robertson MJ, Skiniotis G, Kobilka BK. Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes. Science. 2019;364:552–557. doi: 10.1126/science.aaw5188. PubMed DOI PMC

Smith JS, Lefkowitz RJ, Rajagopal S. Biased signalling: From simple switches to allosteric microprocessors. Nat. Rev. Drug Discov. 2018;17:243–260. doi: 10.1038/nrd.2017.229. PubMed DOI PMC

Wootten D, Christopoulos A, Marti-Solano M, Babu MM, Sexton PM. Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 2018;19:638–653. doi: 10.1038/s41580-018-0049-3. PubMed DOI

Jakubík J, El-Fakahany EE, Doležal V, Dolezal V. Differences in kinetics of xanomeline binding and selectivity of activation of G proteins at M1 and M2 muscarinic acetylcholine receptors. Mol. Pharmacol. 2006;70:656–666. doi: 10.1124/mol.106.023762. PubMed DOI

Michal P, El-Fakahany EE, Dolezal V. Muscarinic M2 receptors directly activate Gq/11 and Gs G-proteins. J. Pharmacol. Exp. Ther. 2007;320:607–614. doi: 10.1124/jpet.106.114314. PubMed DOI

Anderson A, et al. GPCR-dependent biasing of GIRK channel signaling dynamics by RGS6 in mouse sinoatrial nodal cells. Proc. Natl. Acad. Sci. USA. 2020;117:14522–14531. doi: 10.1073/pnas.2001270117. PubMed DOI PMC

Randáková A, Jakubík J. Functionally selective and biased agonists of muscarinic receptors. Pharmacol. Res. 2021;169:105641. doi: 10.1016/j.phrs.2021.105641. PubMed DOI

Nivedha AK, et al. Identifying functional hotspot residues for biased ligand design in G-protein-coupled receptors. Mol. Pharmacol. 2018;93:288–296. doi: 10.1124/mol.117.110395. PubMed DOI PMC

Randáková A, et al. Novel M2-selective, Gi-biased agonists of muscarinic acetylcholine receptors. Br. J. Pharmacol. 2020;177:2073–2089. doi: 10.1111/bph.14970. PubMed DOI PMC

Randáková A, et al. Agonist-specific conformations of the M2 muscarinic acetylcholine receptor assessed by molecular dynamics. J. Chem. Inf. Model. 2020;60:2325–2338. doi: 10.1021/acs.jcim.0c00041. PubMed DOI

Fisher A, et al. (+−)-cis-2-methyl-spiro(1,3-oxathiolane-5,3’)quinuclidine, an M1 selective cholinergic agonist, attenuates cognitive dysfunctions in an animal model of Alzheimer’s disease. J. Pharmacol. Exp. Ther. 1991;257:392–403. PubMed

Malviya M, et al. Muscarinic receptor 1 agonist activity of novel n-aryl carboxamide substituted 3-morpholino arecoline derivatives in Alzheimer’s presenile dementia models. Bioorg. Med. Chem. 2009;17:5526–5534. doi: 10.1016/j.bmc.2009.06.032. PubMed DOI

Schneider EH, Seifert R. Sf9 cells: A versatile model system to investigate the pharmacological properties of G protein-coupled receptors. Pharmacol. Ther. 2010;128:387–418. doi: 10.1016/j.pharmthera.2010.07.005. PubMed DOI

Kenakin T. Functional selectivity and biased receptor signaling. J. Pharmacol. Exp. Ther. 2011;336:296–302. doi: 10.1124/jpet.110.173948. PubMed DOI

Kenakin T, Watson C, Muniz-Medina V, Christopoulos A, Novick S. A simple method for quantifying functional selectivity and agonist bias. ACS Chem. Neurosci. 2012;3:193–203. doi: 10.1021/cn200111m. PubMed DOI PMC

Griffin MT, Figueroa KW, Liller S, Ehlert FJ. Estimation of agonist activity at g protein-coupled receptors: Analysis of M2 muscarinic receptor signaling through Gi/o, G s, and G15. J. Pharmacol. Exp. Ther. 2007;321:1193–1207. doi: 10.1124/jpet.107.120857. PubMed DOI

Masuho I, Martemyanov KA, Lambert NA. Monitoring G protein activation in cells with BRET. Methods Mol. Biol. 2015;1335:107–113. doi: 10.1007/978-1-4939-2914-6_8. PubMed DOI PMC

Brown AJH, et al. From structure to clinic: Design of a muscarinic M1 receptor agonist with the potential to treat Alzheimer’s disease. Cell. 2021;184:5886–5901.e22. doi: 10.1016/j.cell.2021.11.001. PubMed DOI PMC

Wu H. Higher-order assemblies in a new paradigm of signal transduction. Cell. 2013;153:287–292. doi: 10.1016/j.cell.2013.03.013. PubMed DOI PMC

Palczewski K. Oligomeric forms of G protein-coupled receptors (GPCRs) Trends Biochem. Sci. 2010;35:595–600. doi: 10.1016/j.tibs.2010.05.002. PubMed DOI PMC

Jakubík J, Randáková A. Insights into the operational model of agonism of receptor dimers. Expert Opin. Drug Discov. 2022;17:1181–1191. doi: 10.1080/17460441.2023.2147502. PubMed DOI

Jiang Y, et al. Importance of receptor expression in the classification of novel ligands at the M 2 muscarinic acetylcholine receptor. Br. J. Pharmacol. 2023 doi: 10.1111/bph.16021. PubMed DOI

Asano T, Semba R, Kamiya N, Ogasawara N, Kato K. Go, a GTP-binding protein: Immunochemical and immunohistochemical localization in the rat. J. Neurochem. 1988;50:1164–1169. doi: 10.1111/j.1471-4159.1988.tb10588.x. PubMed DOI

Randáková A, et al. Fusion with promiscuous Gα16 subunit reveals signaling bias at muscarinic receptors. Int. J. Mol. Sci. 2021;22:10089. doi: 10.3390/ijms221810089. PubMed DOI PMC

Thomas RL, Mistry R, Langmead CJ, Wood MD, Challiss RAJ. G protein coupling and signaling pathway activation by M1 muscarinic acetylcholine receptor orthosteric and allosteric agonists. J. Pharmacol. Exp. Ther. 2008;327:365–374. doi: 10.1124/jpet.108.141788. PubMed DOI

Bock A, et al. The allosteric vestibule of a seven transmembrane helical receptor controls G-protein coupling. Nat. Commun. 2012;3:1044. doi: 10.1038/ncomms2028. PubMed DOI PMC

Akam EC, Challiss RAJ, Nahorski SR. G q/11 and G i/o activation profiles in CHO cells expressing human muscarinic acetylcholine receptors: Dependence on agonist as well as receptor-subtype. Br. J. Pharmacol. 2001;132:950–958. doi: 10.1038/sj.bjp.0703892. PubMed DOI PMC

Houston C, Wenzel-Seifert K, Bürckstümmer T, Seifert R. The human histamine H2-receptor couples more efficiently to Sf9 insect cell Gs-proteins than to insect cell Gq-proteins: Limitations of Sf9 cells for the analysis of receptor/Gq-protein coupling. J. Neurochem. 2002;80:678–696. doi: 10.1046/j.0022-3042.2001.00746.x. PubMed DOI

El-Fakahany EE, Jakubik J. Radioligand binding at muscarinic receptors. In: Myslivecek J, Jakubík J, editors. Neuromethods. Humana Press Inc.; 2016. pp. 37–68.

Kruse AC, et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature. 2013;504:101–106. doi: 10.1038/nature12735. PubMed DOI PMC

Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 2013;27:221–234. doi: 10.1007/s10822-013-9644-8. PubMed DOI

Krieger E, Koraimann G, Vriend G. Increasing the precision of comparative models with YASARA NOVA—A self-parameterizing force field. Proteins. 2002;47:393–402. doi: 10.1002/prot.10104. PubMed DOI

Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC

Randáková A, et al. Role of membrane cholesterol in differential sensitivity of muscarinic receptor subtypes to persistently bound xanomeline. Neuropharmacology. 2018;133:129–144. doi: 10.1016/j.neuropharm.2018.01.027. PubMed DOI

Shaw DE. A fast, scalable method for the parallel evaluation of distance-limited pairwise particle interactions. J. Comput. Chem. 2005;26:1318–1328. doi: 10.1002/jcc.20267. PubMed DOI

Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996;14(33–8):27–28. PubMed

Jakubík J, et al. Applications and limitations of fitting of the operational model to determine relative efficacies of agonists. Sci. Rep. 2019;9:1–14. doi: 10.1038/s41598-019-40993-w. PubMed DOI PMC

Black JW, Leff P. Operational models of pharmacological agonism. Proc. R. Soc. Lond. Biol. Sci. 1983;220:141–162. doi: 10.1098/rspb.1983.0093. PubMed DOI

Kolb P, et al. Community guidelines for GPCR ligand bias: IUPHAR review 32. Br. J. Pharmacol. 2022;179:3651–3674. doi: 10.1111/bph.15811. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...