Agonist-selective activation of individual G-proteins by muscarinic receptors
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
19-06106Y
Grantová Agentura České Republiky
Programme EXCELES, LX22NPO5104
European Union Next Generation EU
PubMed
38671143
PubMed Central
PMC11053168
DOI
10.1038/s41598-024-60259-4
PII: 10.1038/s41598-024-60259-4
Knihovny.cz E-zdroje
- MeSH
- agonisté muskarinových receptorů * farmakologie MeSH
- CHO buňky MeSH
- Cricetulus MeSH
- karbachol farmakologie MeSH
- lidé MeSH
- proteiny vázající GTP - alfa-podjednotky metabolismus genetika MeSH
- proteiny vázající GTP metabolismus MeSH
- pyridiny farmakologie MeSH
- receptory muskarinové * metabolismus MeSH
- signální transdukce účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- agonisté muskarinových receptorů * MeSH
- karbachol MeSH
- proteiny vázající GTP - alfa-podjednotky MeSH
- proteiny vázající GTP MeSH
- pyridiny MeSH
- receptory muskarinové * MeSH
Selective activation of individual subtypes of muscarinic receptors is a promising way to safely alleviate a wide range of pathological conditions in the central nervous system and the periphery as well. The flexible G-protein interface of muscarinic receptors allows them to interact with several G-proteins with various efficacy, potency, and kinetics. Agonists biased to the particular G-protein mediated pathway may result in selectivity among muscarinic subtypes and, due to the non-uniform expression of individual G-protein alpha subunits, possibly achieve tissue specificity. Here, we demonstrate that novel tetrahydropyridine-based agonists exert specific signalling profiles in coupling with individual G-protein α subunits. These signalling profiles profoundly differ from the reference agonist carbachol. Moreover, coupling with individual Gα induced by these novel agonists varies among subtypes of muscarinic receptors which may lead to subtype selectivity. Thus, the novel tetrahydropyridine-based agonist can contribute to the elucidation of the mechanism of pathway-specific activation of muscarinic receptors and serve as a starting point for the development of desired selective muscarinic agonists.
Department of Neurochemistry Institute of Physiology Czech Academy of Sciences Prague Czech Republic
Department of Neuroscience UF Scripps Biomedical Research University of Florida Jupiter FL 33458 USA
Department of Physical Sciences Barry University Miami Shores Miami FL USA
Zobrazit více v PubMed
Caulfield MP. Muscarinic receptors—Characterization, coupling and function. Pharmacol. Ther. 1993;58:319–379. doi: 10.1016/0163-7258(93)90027-B. PubMed DOI
Masuho I, et al. Distinct profiles of functional discrimination among G proteins determine the actions of G protein-coupled receptors. Sci. Signal. 2015;8:1–16. doi: 10.1126/scisignal.aab4068. PubMed DOI PMC
Santiago LJ, Abrol R. Understanding G protein selectivity of muscarinic acetylcholine receptors using computational methods. Int. J. Mol. Sci. 2019;20:5290. doi: 10.3390/ijms20215290. PubMed DOI PMC
Eglen RM. Overview of muscarinic receptor subtypes. Handb. Exp. Pharmacol. 2012;208:3–28. doi: 10.1007/978-3-642-23274-9_1. PubMed DOI
Caccamo A, et al. M1 receptors play a central role in modulating AD-like pathology in transgenic mice. Neuron. 2006;49:671–682. doi: 10.1016/j.neuron.2006.01.020. PubMed DOI
De Angelis F, Maria TA. Analgesic effects mediated by muscarinic receptors: Mechanisms and pharmacological approaches. Cent. Nerv. Syst. Agents Med. Chem. 2016;16:218–226. doi: 10.2174/1871524916666160302103033. PubMed DOI
Naser PV, Kuner R. Molecular, cellular and circuit basis of cholinergic modulation of pain. Neuroscience. 2018;387:135–148. doi: 10.1016/j.neuroscience.2017.08.049. PubMed DOI PMC
Ferrier J, et al. Cholinergic neurotransmission in the posterior insular cortex is altered in preclinical models of neuropathic pain: Key role of muscarinic M2 receptors in donepezil-induced antinociception. J. Neurosci. 2015;35:16418–16430. doi: 10.1523/JNEUROSCI.1537-15.2015. PubMed DOI PMC
Langmead CJ, Watson J, Reavill C. Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol. Ther. 2008;117:232–243. doi: 10.1016/j.pharmthera.2007.09.009. PubMed DOI
Nathan PJ, et al. The potent M1 receptor allosteric agonist GSK1034702 improves episodic memory in humans in the nicotine abstinence model of cognitive dysfunction. Int. J. Neuropsychopharmacol. 2013;16:721–731. doi: 10.1017/S1461145712000752. PubMed DOI
Haga K, et al. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature. 2012;482:547–551. doi: 10.1038/nature10753. PubMed DOI PMC
Kruse A, Hu J, Pan A, Arlow D. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature. 2012;482:552–556. doi: 10.1038/nature10867. PubMed DOI PMC
Thal DM, Sun B. Crystal structures of the M1 and M4 muscarinic acetylcholine receptors. Nature. 2016;531:335–340. doi: 10.1038/nature17188. PubMed DOI PMC
Downes GB, Gautam N. The G protein subunit gene families. Genomics. 1999;62:544–552. doi: 10.1006/geno.1999.5992. PubMed DOI
Brann MR, Collins RM, Spiegel A. Localization of mRNAs encoding the α-subunits of signal-transducing G-proteins within rat brain and among peripheral tissues. FEBS Lett. 1987;222:191–198. doi: 10.1016/0014-5793(87)80218-1. PubMed DOI
Worley PF, Baraban JM, Van Dop C. G(o), a guanine nucleotide-binding protein: Immunohistochemical localization in rat brain resembles distribution of second messenger systems. Proc. Natl. Acad. Sci. USA. 1986;83:4561–4565. doi: 10.1073/pnas.83.12.4561. PubMed DOI PMC
Jiang M, Bajpayee NS. Molecular mechanisms of Go signaling. NeuroSignals. 2009;17:23–41. doi: 10.1159/000186688. PubMed DOI PMC
Jiang M, et al. Multiple neurological abnormalities in mice deficient in the G protein Go. Proc. Natl. Acad. Sci. USA. 1998;95:3269–3274. doi: 10.1073/pnas.95.6.3269. PubMed DOI PMC
Fagerberg L, et al. Analysis of the human tissue-specific expression by genome-wide integration of transcriptomics and antibody-based proteomics. Mol. Cell. Proteom. 2014;13:397–406. doi: 10.1074/mcp.M113.035600. PubMed DOI PMC
Wilkie TM, Scherle PA, Strathmann MP, Slepak VZ, Simon MI. Characterization of G-protein alpha subunits in the Gq class: Expression in murine tissues and in stromal and hematopoietic cell lines. Proc. Natl. Acad. Sci. USA. 1991;88:10049–10053. doi: 10.1073/pnas.88.22.10049. PubMed DOI PMC
Ho MKC, et al. Gα 14 links a variety of G i- and G s-coupled receptors to the stimulation of phospholipase C. Br. J. Pharmacol. 2001;132:1431–1440. doi: 10.1038/sj.bjp.0703933. PubMed DOI PMC
Giannone F, et al. The puzzling uniqueness of the heterotrimeric G15 protein and its potential beyond hematopoiesis. J. Mol. Endocrinol. 2010;44:259–269. doi: 10.1677/JME-09-0134. PubMed DOI
Giovinazzo F, et al. Ectopic expression of the heterotrimeric G15 protein in pancreatic carcinoma and its potential in cancer signal transduction. Cell. Signal. 2013;25:651–659. doi: 10.1016/j.cellsig.2012.11.018. PubMed DOI
Manglik A, et al. Structure–based discovery of opioid analgesics with reduced side effects. Nature. 2017;537:185–190. doi: 10.1038/nature19112. PubMed DOI PMC
Maeda S, Qu Q, Robertson MJ, Skiniotis G, Kobilka BK. Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes. Science. 2019;364:552–557. doi: 10.1126/science.aaw5188. PubMed DOI PMC
Smith JS, Lefkowitz RJ, Rajagopal S. Biased signalling: From simple switches to allosteric microprocessors. Nat. Rev. Drug Discov. 2018;17:243–260. doi: 10.1038/nrd.2017.229. PubMed DOI PMC
Wootten D, Christopoulos A, Marti-Solano M, Babu MM, Sexton PM. Mechanisms of signalling and biased agonism in G protein-coupled receptors. Nat. Rev. Mol. Cell Biol. 2018;19:638–653. doi: 10.1038/s41580-018-0049-3. PubMed DOI
Jakubík J, El-Fakahany EE, Doležal V, Dolezal V. Differences in kinetics of xanomeline binding and selectivity of activation of G proteins at M1 and M2 muscarinic acetylcholine receptors. Mol. Pharmacol. 2006;70:656–666. doi: 10.1124/mol.106.023762. PubMed DOI
Michal P, El-Fakahany EE, Dolezal V. Muscarinic M2 receptors directly activate Gq/11 and Gs G-proteins. J. Pharmacol. Exp. Ther. 2007;320:607–614. doi: 10.1124/jpet.106.114314. PubMed DOI
Anderson A, et al. GPCR-dependent biasing of GIRK channel signaling dynamics by RGS6 in mouse sinoatrial nodal cells. Proc. Natl. Acad. Sci. USA. 2020;117:14522–14531. doi: 10.1073/pnas.2001270117. PubMed DOI PMC
Randáková A, Jakubík J. Functionally selective and biased agonists of muscarinic receptors. Pharmacol. Res. 2021;169:105641. doi: 10.1016/j.phrs.2021.105641. PubMed DOI
Nivedha AK, et al. Identifying functional hotspot residues for biased ligand design in G-protein-coupled receptors. Mol. Pharmacol. 2018;93:288–296. doi: 10.1124/mol.117.110395. PubMed DOI PMC
Randáková A, et al. Novel M2-selective, Gi-biased agonists of muscarinic acetylcholine receptors. Br. J. Pharmacol. 2020;177:2073–2089. doi: 10.1111/bph.14970. PubMed DOI PMC
Randáková A, et al. Agonist-specific conformations of the M2 muscarinic acetylcholine receptor assessed by molecular dynamics. J. Chem. Inf. Model. 2020;60:2325–2338. doi: 10.1021/acs.jcim.0c00041. PubMed DOI
Fisher A, et al. (+−)-cis-2-methyl-spiro(1,3-oxathiolane-5,3’)quinuclidine, an M1 selective cholinergic agonist, attenuates cognitive dysfunctions in an animal model of Alzheimer’s disease. J. Pharmacol. Exp. Ther. 1991;257:392–403. PubMed
Malviya M, et al. Muscarinic receptor 1 agonist activity of novel n-aryl carboxamide substituted 3-morpholino arecoline derivatives in Alzheimer’s presenile dementia models. Bioorg. Med. Chem. 2009;17:5526–5534. doi: 10.1016/j.bmc.2009.06.032. PubMed DOI
Schneider EH, Seifert R. Sf9 cells: A versatile model system to investigate the pharmacological properties of G protein-coupled receptors. Pharmacol. Ther. 2010;128:387–418. doi: 10.1016/j.pharmthera.2010.07.005. PubMed DOI
Kenakin T. Functional selectivity and biased receptor signaling. J. Pharmacol. Exp. Ther. 2011;336:296–302. doi: 10.1124/jpet.110.173948. PubMed DOI
Kenakin T, Watson C, Muniz-Medina V, Christopoulos A, Novick S. A simple method for quantifying functional selectivity and agonist bias. ACS Chem. Neurosci. 2012;3:193–203. doi: 10.1021/cn200111m. PubMed DOI PMC
Griffin MT, Figueroa KW, Liller S, Ehlert FJ. Estimation of agonist activity at g protein-coupled receptors: Analysis of M2 muscarinic receptor signaling through Gi/o, G s, and G15. J. Pharmacol. Exp. Ther. 2007;321:1193–1207. doi: 10.1124/jpet.107.120857. PubMed DOI
Masuho I, Martemyanov KA, Lambert NA. Monitoring G protein activation in cells with BRET. Methods Mol. Biol. 2015;1335:107–113. doi: 10.1007/978-1-4939-2914-6_8. PubMed DOI PMC
Brown AJH, et al. From structure to clinic: Design of a muscarinic M1 receptor agonist with the potential to treat Alzheimer’s disease. Cell. 2021;184:5886–5901.e22. doi: 10.1016/j.cell.2021.11.001. PubMed DOI PMC
Wu H. Higher-order assemblies in a new paradigm of signal transduction. Cell. 2013;153:287–292. doi: 10.1016/j.cell.2013.03.013. PubMed DOI PMC
Palczewski K. Oligomeric forms of G protein-coupled receptors (GPCRs) Trends Biochem. Sci. 2010;35:595–600. doi: 10.1016/j.tibs.2010.05.002. PubMed DOI PMC
Jakubík J, Randáková A. Insights into the operational model of agonism of receptor dimers. Expert Opin. Drug Discov. 2022;17:1181–1191. doi: 10.1080/17460441.2023.2147502. PubMed DOI
Jiang Y, et al. Importance of receptor expression in the classification of novel ligands at the M 2 muscarinic acetylcholine receptor. Br. J. Pharmacol. 2023 doi: 10.1111/bph.16021. PubMed DOI
Asano T, Semba R, Kamiya N, Ogasawara N, Kato K. Go, a GTP-binding protein: Immunochemical and immunohistochemical localization in the rat. J. Neurochem. 1988;50:1164–1169. doi: 10.1111/j.1471-4159.1988.tb10588.x. PubMed DOI
Randáková A, et al. Fusion with promiscuous Gα16 subunit reveals signaling bias at muscarinic receptors. Int. J. Mol. Sci. 2021;22:10089. doi: 10.3390/ijms221810089. PubMed DOI PMC
Thomas RL, Mistry R, Langmead CJ, Wood MD, Challiss RAJ. G protein coupling and signaling pathway activation by M1 muscarinic acetylcholine receptor orthosteric and allosteric agonists. J. Pharmacol. Exp. Ther. 2008;327:365–374. doi: 10.1124/jpet.108.141788. PubMed DOI
Bock A, et al. The allosteric vestibule of a seven transmembrane helical receptor controls G-protein coupling. Nat. Commun. 2012;3:1044. doi: 10.1038/ncomms2028. PubMed DOI PMC
Akam EC, Challiss RAJ, Nahorski SR. G q/11 and G i/o activation profiles in CHO cells expressing human muscarinic acetylcholine receptors: Dependence on agonist as well as receptor-subtype. Br. J. Pharmacol. 2001;132:950–958. doi: 10.1038/sj.bjp.0703892. PubMed DOI PMC
Houston C, Wenzel-Seifert K, Bürckstümmer T, Seifert R. The human histamine H2-receptor couples more efficiently to Sf9 insect cell Gs-proteins than to insect cell Gq-proteins: Limitations of Sf9 cells for the analysis of receptor/Gq-protein coupling. J. Neurochem. 2002;80:678–696. doi: 10.1046/j.0022-3042.2001.00746.x. PubMed DOI
El-Fakahany EE, Jakubik J. Radioligand binding at muscarinic receptors. In: Myslivecek J, Jakubík J, editors. Neuromethods. Humana Press Inc.; 2016. pp. 37–68.
Kruse AC, et al. Activation and allosteric modulation of a muscarinic acetylcholine receptor. Nature. 2013;504:101–106. doi: 10.1038/nature12735. PubMed DOI PMC
Sastry GM, Adzhigirey M, Day T, Annabhimoju R, Sherman W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des. 2013;27:221–234. doi: 10.1007/s10822-013-9644-8. PubMed DOI
Krieger E, Koraimann G, Vriend G. Increasing the precision of comparative models with YASARA NOVA—A self-parameterizing force field. Proteins. 2002;47:393–402. doi: 10.1002/prot.10104. PubMed DOI
Trott O, Olson AJ. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010;31:455–461. doi: 10.1002/jcc.21334. PubMed DOI PMC
Randáková A, et al. Role of membrane cholesterol in differential sensitivity of muscarinic receptor subtypes to persistently bound xanomeline. Neuropharmacology. 2018;133:129–144. doi: 10.1016/j.neuropharm.2018.01.027. PubMed DOI
Shaw DE. A fast, scalable method for the parallel evaluation of distance-limited pairwise particle interactions. J. Comput. Chem. 2005;26:1318–1328. doi: 10.1002/jcc.20267. PubMed DOI
Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J. Mol. Graph. 1996;14(33–8):27–28. PubMed
Jakubík J, et al. Applications and limitations of fitting of the operational model to determine relative efficacies of agonists. Sci. Rep. 2019;9:1–14. doi: 10.1038/s41598-019-40993-w. PubMed DOI PMC
Black JW, Leff P. Operational models of pharmacological agonism. Proc. R. Soc. Lond. Biol. Sci. 1983;220:141–162. doi: 10.1098/rspb.1983.0093. PubMed DOI
Kolb P, et al. Community guidelines for GPCR ligand bias: IUPHAR review 32. Br. J. Pharmacol. 2022;179:3651–3674. doi: 10.1111/bph.15811. PubMed DOI PMC