Fusion with Promiscuous Gα16 Subunit Reveals Signaling Bias at Muscarinic Receptors
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-06106Y
Grantová Agentura České Republiky
RVO:67985823
Akademie Věd České Republiky
PubMed
34576254
PubMed Central
PMC8469978
DOI
10.3390/ijms221810089
PII: ijms221810089
Knihovny.cz E-zdroje
- Klíčová slova
- fusion proteins, muscarinic receptors, non-canonical signaling, signaling bias,
- MeSH
- AMP cyklický metabolismus MeSH
- CHO buňky MeSH
- Cricetulus MeSH
- inhibiční koncentrace 50 MeSH
- isoxazoly chemie MeSH
- křečci praví MeSH
- kvartérní amoniové sloučeniny chemie MeSH
- lidé MeSH
- molekulární konformace MeSH
- oxotremorin chemie MeSH
- proteiny vázající GTP - alfa-podjednotky Gq-G11 metabolismus MeSH
- receptory muskarinové metabolismus MeSH
- rekombinantní fúzní proteiny chemie MeSH
- signální transdukce * MeSH
- simulace molekulární dynamiky MeSH
- vazba proteinů MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- AMP cyklický MeSH
- G protein alpha 16 MeSH Prohlížeč
- iperoxo MeSH Prohlížeč
- isoxazoly MeSH
- kvartérní amoniové sloučeniny MeSH
- oxotremorin MeSH
- proteiny vázající GTP - alfa-podjednotky Gq-G11 MeSH
- receptory muskarinové MeSH
- rekombinantní fúzní proteiny MeSH
A complex evaluation of agonist bias at G-protein coupled receptors at the level of G-protein classes and isoforms including non-preferential ones is essential for advanced agonist screening and drug development. Molecular crosstalk in downstream signaling and a lack of sufficiently sensitive and selective methods to study direct coupling with G-protein of interest complicates this analysis. We performed binding and functional analysis of 11 structurally different agonists on prepared fusion proteins of individual subtypes of muscarinic receptors and non-canonical promiscuous α-subunit of G16 protein to study agonist bias. We have demonstrated that fusion of muscarinic receptors with Gα16 limits access of other competitive Gα subunits to the receptor, and thus enables us to study activation of Gα16 mediated pathway more specifically. Our data demonstrated agonist-specific activation of G16 pathway among individual subtypes of muscarinic receptors and revealed signaling bias of oxotremorine towards Gα16 pathway at the M2 receptor and at the same time impaired Gα16 signaling of iperoxo at M5 receptors. Our data have shown that fusion proteins of muscarinic receptors with α-subunit of G-proteins can serve as a suitable tool for studying agonist bias, especially at non-preferential pathways.
Zobrazit více v PubMed
Hermans E. Biochemical and pharmacological control of the multiplicity of coupling at G-protein-coupled receptors. Pharmacol. Ther. 2003;99:25–44. doi: 10.1016/S0163-7258(03)00051-2. PubMed DOI
Jakubík J., El-Fakahany E.E., Dolezal V. Differences in kinetics of xanomeline binding and selectivity of activation of G proteins at M(1) and M(2) muscarinic acetylcholine receptors. Mol. Pharmacol. 2006;70:656–666. doi: 10.1124/mol.106.023762. PubMed DOI
Masuho I., Ostrovskaya O., Kramer G.M., Jones C.D., Xie K., Martemyanov K.A. Distinct profiles of functional discrimination among G proteins determine the actions of G protein-coupled receptors. Sci. Signal. 2015;8:1–16. doi: 10.1126/scisignal.aab4068. PubMed DOI PMC
Jakubík J., Bačáková L., Lisá V., El-Fakahany E.E., Tuček S. Activation of muscarinic acetylcholine receptors via their allosteric binding sites. Proc. Natl. Acad. Sci. USA. 1996;93:8705–8709. doi: 10.1073/pnas.93.16.8705. PubMed DOI PMC
Laugwitz K.L., Allgeier A., Offermanns S., Spicher K., Van Sande J., Dumont J.E., Schultz G. The human thyrotropin receptor: A heptahelical receptor capable of stimulating members of all four G protein families. Proc. Natl. Acad. Sci. USA. 1996;93:116–120. doi: 10.1073/pnas.93.1.116. PubMed DOI PMC
Peterson Y.K., Luttrell L.M. The Diverse Roles of Arrestin Scaffolds in G Protein–Coupled Receptor Signaling. Pharmacol. Rev. 2017;69:256. doi: 10.1124/pr.116.013367. PubMed DOI PMC
Kenakin T., Christopoulos A. Signalling bias in new drug discovery: Detection, quantification and therapeutic impact. Nat. Rev. Drug Discov. 2013;12:205–216. doi: 10.1038/nrd3954. PubMed DOI
Lorenzen E., Ceraudo E., Berchiche Y.A., Rico C.A., Fürstenberg A., Sakmar T.P., Huber T. G protein subtype–specific signaling bias in a series of CCR5 chemokine analogs. Sci. Signal. 2018;11 doi: 10.1126/scisignal.aao6152. PubMed DOI
Seyedabadi M., Ghahremani M.H., Albert P.R. Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential. Pharmacol. Ther. 2019;200:148–178. doi: 10.1016/j.pharmthera.2019.05.006. PubMed DOI
Randáková A., Jakubík J. Functionally selective and biased agonists of muscarinic receptors. Pharmacol. Res. 2021;169:105641. doi: 10.1016/j.phrs.2021.105641. PubMed DOI
Li Y.Q., Shrestha Y., Pandey M., Chen M., Kablan A., Gavrilova O., Offermanns S., Weinstein L.S. Gq/11 α and Gs α mediate distinct physiological responses to central melanocortins. J. Clin. Investig. 2016;126:40–49. doi: 10.1172/JCI76348. PubMed DOI PMC
Hur E.M., Kim K.T. G protein-coupled receptor signalling and cross-talk: Achieving rapidity and specificity. Cell. Signal. 2002;14:397–405. doi: 10.1016/S0898-6568(01)00258-3. PubMed DOI
Denis C., Sauliere A., Galandrin S., Senard J.-M., Gales C. Probing Heterotrimeric G Protein Activation: Applications to Biased Ligands. Curr. Pharm. Des. 2012;18:128–144. doi: 10.2174/138161212799040466. PubMed DOI PMC
Matera C., Tata A. Pharmacological Approaches to Targeting Muscarinic Acetylcholine Receptors. Recent Pat. CNS Drug Discov. 2014;9:85–100. doi: 10.2174/1574889809666141120131238. PubMed DOI
De Angelis F., Maria Tata A. Analgesic Effects Mediated by Muscarinic Receptors: Mechanisms and Pharmacological Approaches. Cent. Nerv. Syst. Agents Med. Chem. 2016;16:218–226. doi: 10.2174/1871524916666160302103033. PubMed DOI
Haga K., Kruse A.C.A., Asada H., Yurugi-Kobayashi T., Shiroishi M., Zhang C., Weis W.I., Okada T., Kobilka B.K., Haga T., et al. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature. 2012;482:547–551. doi: 10.1038/nature10753. PubMed DOI PMC
Kruse A., Hu J., Pan A., Arlow D. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature. 2012;482:552–556. doi: 10.1038/nature10867. PubMed DOI PMC
Thal D.M., Sun B. Crystal Structures of the M1 and M4 Muscarinic Acetylcholine Receptors. Nature. 2016;531:335–340. doi: 10.1038/nature17188. PubMed DOI PMC
Randáková A., Nelic D., Ungerová D., Nwokoye P., Su Q., Doležal V., El-Fakahany E.E., Boulos J., Jakubík J. Novel M2-selective, Gi-biased agonists of muscarinic acetylcholine receptors. Br. J. Pharmacol. 2020;177:2073–2089. doi: 10.1111/bph.14970. PubMed DOI PMC
Downes G.B., Gautam N. The G protein subunit gene families. Genomics. 1999;62:544–552. doi: 10.1006/geno.1999.5992. PubMed DOI
Bertin B., Freissmuth M., Jockers R., Strosberg A.D., Marullo S. Cellular signaling by an agonist-activated receptor/G(s)α fusion protein. Proc. Natl. Acad. Sci. USA. 1994;91:8827–8831. doi: 10.1073/pnas.91.19.8827. PubMed DOI PMC
Wenzel-Seifert K., Seifert R. Molecular analysis of β2-adrenoceptor coupling to G(s)-, G(i)-, and G(q)-proteins. Mol. Pharmacol. 2000;58:954–966. doi: 10.1124/mol.58.5.954. PubMed DOI
Massotte D., Brillet K., Kieffer B.L., Milligan G. Agonists activate Gi1α or Gi2α fused to the human mu opioid receptor differently. J. Neurochem. 2002;81:1372–1382. doi: 10.1046/j.1471-4159.2002.00946.x. PubMed DOI
Milligan G., Parenty G., Stoddart L.A., Lane J.R. Novel pharmacological applications of G-protein-coupled receptor-G protein fusions. Curr. Opin. Pharmacol. 2007;7:521–526. doi: 10.1016/j.coph.2007.06.007. PubMed DOI
Lane J.R., Powney B., Wise A., Rees S., Milligan G. Protean agonism at the dopamine D2 receptor: (S)-3-(3-hydroxyphenyl)-N-propylpiperidine is an agonist for activation of Go1 but an antagonist/inverse agonist for Gi1, G i2, and Gi3. Mol. Pharmacol. 2007;71:1349–1359. doi: 10.1124/mol.106.032722. PubMed DOI
Suga H., Haga T. Ligand screening system using fusion proteins of G protein-coupled receptors with G protein α subunits. Neurochem. Int. 2007;51:140–164. doi: 10.1016/j.neuint.2007.06.006. PubMed DOI
Giannone F., Malpeli G., Lisi V., Grasso S., Shukla P., Ramarli D., Sartoris S., Monsurró V., Krampera M., Amato E., et al. The puzzling uniqueness of the heterotrimeric G15 protein and its potential beyond hematopoiesis. J. Mol. Endocrinol. 2010;44:259–269. doi: 10.1677/JME-09-0134. PubMed DOI
Grant K.R., Harnett W., Milligant G. Differential G-protein expression during B- and T-cell development. Immunology. 1997;90:564–571. doi: 10.1046/j.1365-2567.1997.00196.x. PubMed DOI PMC
Giovinazzo F., Malpeli G., Zanini S., Parenti M., Piemonti L., Colombatti M., Valenti M.T., Dalle Carbonare L., Scarpa A., Sinnett-Smith J., et al. Ectopic expression of the heterotrimeric G15 protein in pancreatic carcinoma and its potential in cancer signal transduction. Cell. Signal. 2013;25:651–659. doi: 10.1016/j.cellsig.2012.11.018. PubMed DOI
Maeda S., Qu Q., Robertson M.J., Skiniotis G., Kobilka B.K. Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes. Science. 2019;364:552–557. doi: 10.1126/science.aaw5188. PubMed DOI PMC
Jakubík J., Randáková A., Rudajev V., Zimčík P., El-Fakahany E.E., Doležal V. Applications and limitations of fitting of the operational model to determine relative efficacies of agonists. Sci. Rep. 2019;9:4637. doi: 10.1038/s41598-019-40993-w. PubMed DOI PMC
Schrage R., Seemann W.K., Klöckner J., Dallanoce C., Racké K., Kostenis E., De Amici M., Holzgrabe U., Mohr K. Agonists with supraphysiological efficacy at the muscarinic M2 ACh receptor. Br. J. Pharmacol. 2013;169:357–370. doi: 10.1111/bph.12003. PubMed DOI PMC
Schrage R., Holze J., Klöckner J., Balkow A., Klause A.S., Schmitz A.L., De Amici M., Kostenis E., Tränkle C., Holzgrabe U., et al. New insight into active muscarinic receptors with the novel radioagonist [3H]iperoxo. Biochem. Pharmacol. 2014;90:307–319. doi: 10.1016/j.bcp.2014.05.012. PubMed DOI
Sur C., Mallorga P.J., Wittmann M., Jacobson M.A., Pascarella D., Williams J.B., Brandish P.E., Pettibone D.J., Scolnick E.M., Conn P.J. N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-D-aspartate receptor activity. Proc. Natl. Acad. Sci. USA. 2003;100:13674–13679. doi: 10.1073/pnas.1835612100. PubMed DOI PMC
Kenakin T., Watson C., Muniz-Medina V., Christopoulos A., Novick S. A simple method for quantifying functional selectivity and agonist bias. ACS Chem. Neurosci. 2012;3:193–203. doi: 10.1021/cn200111m. PubMed DOI PMC
Antoni F.A. Calcium regulation of adenylyl cyclase: Relevance for endocrine control. Trends Endocrinol. Metab. 1997;8:7–14. doi: 10.1016/S1043-2760(96)00206-8. PubMed DOI
Delmas P., Abogadie F.C., Milligan G., Buckley N.J., Brown D.A. βγ dimers derived from G0 and G1 proteins contribute different components of adrenergic inhibition of Ca2+ channels in rat sympathetic neurones. J. Physiol. 1999;518:23–36. doi: 10.1111/j.1469-7793.1999.0023r.x. PubMed DOI PMC
Li S., Huang S., Peng S. Bin Overexpression of G protein-coupled receptors in cancer cells: Involvement in tumor progression. Int. J. Oncol. 2005;27:1329–1339. doi: 10.3892/ijo.27.5.1329. PubMed DOI
Corvol J.C., Muriel M.P., Valjent E., Féger J., Hanoun N., Girault J.A., Hirsch E.C., Hervé D. Persistent increase in olfactory type G-protein α subunit levels may underlie D1 receptor functional hypersensitivity in Parkinson disease. J. Neurosci. 2004;24:7007–7014. doi: 10.1523/JNEUROSCI.0676-04.2004. PubMed DOI PMC
Campbell A.P., Smrcka A.V., Arbor A. Targeting G protein-coupled receptor signalling by blocking G proteins. Nat. Rev. 2019;17:789–803. doi: 10.1038/nrd.2018.135. PubMed DOI PMC
Rasenick M.M., Watanabe M., Lazarevic M.B., Hatta S., Hamm H.E. Synthetic peptides as probes for G protein function: Carboxyl-terminal Gαs peptides mimic Gs and evoke high affinity agonist binding to β-adrenergic receptors. J. Biol. Chem. 1994;269:21519–21525. doi: 10.1016/S0021-9258(17)31835-5. PubMed DOI
Krumins A.M., Gilman A.G. Targeted knockdown of G protein subunits selectively prevents receptor-mediated modulation of effectors and reveals complex changes in non-targeted signaling proteins. J. Biol. Chem. 2006;281:10250–10262. doi: 10.1074/jbc.M511551200. PubMed DOI
Jakubík J., Janíčková H., Randáková A., El-Fakahany E.E., Doležal V. Subtype differences in pre-coupling of muscarinic acetylcholine receptors. PLoS ONE. 2011;6:e27732. doi: 10.1371/journal.pone.0027732. PubMed DOI PMC
Barr A.J., Brass L.F., Manning D.R. Reconstitution of receptors and GTP-binding regulatory proteins (G proteins) in Sf9 cells. A direct evaluation of selectivity in receptor-G protein coupling. J. Biol. Chem. 1997;272:2223–2229. doi: 10.1074/jbc.272.4.2223. PubMed DOI
Houston C., Wenzel-Seifert K., Bürckstümmer T., Seifert R. The human histamine H2-receptor couples more efficiently to Sf9 insect cell Gs-proteins than to insect cell Gq-proteins: Limitations of Sf9 cells for the analysis of receptor/Gq-protein coupling. J. Neurochem. 2002;80:678–696. doi: 10.1046/j.0022-3042.2001.00746.x. PubMed DOI
Uustare A., Näsman J., Åkerman K.E.O., Rinken A. Characterization of M2 muscarinic receptor activation of different G protein subtypes. Neurochem. Int. 2004;44:119–124. doi: 10.1016/S0197-0186(03)00103-7. PubMed DOI
Parker E.M., Kameyama K., Higashijima T., Ross E.M. Reconstitutively active G protein-coupled receptors purified from baculovirus-infected insect cells. J. Biol. Chem. 1991;266:519–527. doi: 10.1016/S0021-9258(18)52467-4. PubMed DOI
Heitz F., McClue S.J., Harris B.A., Guenet C. Expression of human M2 muscarinic receptors in Sf9 cells: Characterisation and reconstitution with G-proteins. J. Recept. Signal Transduct. Res. 1995;15:55–70. doi: 10.3109/10799899509045207. PubMed DOI
DeLapp N.W. The antibody-capture [35S]GTPγS scintillation proximity assay: A powerful emerging technique for analysis of GPCR pharmacology. Trends Pharmacol. Sci. 2004;25:400–401. doi: 10.1016/j.tips.2004.06.003. PubMed DOI
Galés C., Rebois R.V., Hogue M., Trieu P., Breit A., Hébert T.E., Bouvier M. Real-time monitoring of receptor and G-protein interactions in living cells. Nat. Methods. 2005;2:177–184. doi: 10.1038/nmeth743. PubMed DOI
Hein P., Frank M., Hoffmann C., Lohse M.J., Bünemann M. Dynamics of receptor/G protein coupling in living cells. EMBO J. 2005;24:4106–4114. doi: 10.1038/sj.emboj.7600870. PubMed DOI PMC
Wessler I., Kilbinger H., Bittinger F., Unger R., Kirkpatrick C.J. The non-neuronal cholinergic system in humans: Expression, function and pathophysiology. Life Sci. 2003;72:2055–2061. doi: 10.1016/S0024-3205(03)00083-3. PubMed DOI
Pereira A., McLaren A., Bell W.R., Copolov D., Dean B. Potential clozapine target sites on peripheral hematopoietic cells and stromal cells of the bone marrow. Pharmacogenom. J. 2003;3:227–234. doi: 10.1038/sj.tpj.6500179. PubMed DOI
Onfroy L., Galandrin S., Pontier S.M., Seguelas M.H., N’Guyen D., Sénard J.M., Galés C. G protein stoichiometry dictates biased agonism through distinct receptor-G protein partitioning. Sci. Rep. 2017;7:7885. doi: 10.1038/s41598-017-07392-5. PubMed DOI PMC
Randáková A., Dolejší E., Rudajev V., Zimčík P., Doležal V., El-Fakahany E.E., Jakubík J. Classical and atypical agonists activate M1 muscarinic acetylcholine receptors through common mechanisms. Pharmacol. Res. 2015;97:27–39. doi: 10.1016/j.phrs.2015.04.002. PubMed DOI
Jakubík J., Tuek S., El-Fakahany E.E. Allosteric modulation by persistent binding of xanomeline of the interaction of competitive ligands with the M1 muscarinic acetylcholine receptor. J. Pharmacol. Exp. Ther. 2002;301:1033–1041. doi: 10.1124/jpet.301.3.1033. PubMed DOI
Valant C., Gregory K.J., Hall N.E., Scammells P.J., Lew M.J., Sexton P.M., Christopoulos A. A novel mechanism of G protein-coupled receptor functional selectivity: Muscarinic partial agonist McN-A-343 as a bitopic orthosteric/allosteric ligand. J. Biol. Chem. 2008;283:29312–29321. doi: 10.1074/jbc.M803801200. PubMed DOI PMC
Hayashi M.K., Haga T. Palmitoylation of muscarinic acetylcholine receptor m2 subtypes: Reduction in their ability to activate G proteins by mutation of a putative palmitoylation site, cysteine 457, in the carboxyl-terminal tail. Arch. Biochem. Biophys. 1997;340:376–382. doi: 10.1006/abbi.1997.9906. PubMed DOI
Chen C.A., Manning D.R. Regulation of G proteins by covalent modification. Oncogene. 2001;20:1643–1652. doi: 10.1038/sj.onc.1204185. PubMed DOI
Rasmussen S.G.F., DeVree B.T., Zou Y., Kruse A.C., Chung K.Y., Kobilka T.S., Thian F.S., Chae P.S., Pardon E., Calinski D., et al. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature. 2011;477:549–555. doi: 10.1038/nature10361. PubMed DOI PMC
Draper-Joyce C.J., Khoshouei M., Thal D.M., Liang Y.L., Nguyen A.T.N., Furness S.G.B., Venugopal H., Baltos J.A., Plitzko J.M., Danev R., et al. Structure of the adenosine-bound human adenosine A1 receptor-Gi complex. Nature. 2018;558:559–565. doi: 10.1038/s41586-018-0236-6. PubMed DOI
García-Nafría J., Tate C.G. Cryo-EM structures of GPCRs coupled to Gs, Gi and Go. Mol. Cell. Endocrinol. 2019;488:1–13. doi: 10.1016/j.mce.2019.02.006. PubMed DOI
Koehl A., Hu H., Maeda S., Zhang Y., Qu Q., Paggi J.M., Latorraca N.R., Hilger D., Dawson R., Matile H., et al. Structure of the μ-opioid receptor-Gi protein complex. Nature. 2018;558:547–552. doi: 10.1038/s41586-018-0219-7. PubMed DOI PMC
Gurwitz D., Haring R., Heldman E., Fraser C.M., Manor D., Fisher A. Discrete activation of transduction pathways associated with acetylcholine m1 receptor by several muscarinic ligands. Eur. J. Pharmacol. Mol. Pharmacol. 1994;267:21–31. doi: 10.1016/0922-4106(94)90220-8. PubMed DOI
Burford N.T., Tobin A.B., Nahorski S.R. Differential coupling of m1, m2 and m3 muscarinic receptor subtypes to inositol 1,4,5-trisphosphate and adenosine 3′,5′-cyclic monophosphate accumulation in Chinese hamster ovary cells. J. Pharmacol. Exp. Ther. 1995;274:134–142. PubMed
Michal P., El-Fakahany E.E., Dolezal V. Muscarinic M2 receptors directly activate Gq/11 and Gs G-proteins. J. Pharmacol. Exp. Ther. 2007;320:607–614. doi: 10.1124/jpet.106.114314. PubMed DOI
Burt A.R., Sautel M., Wilson M.A., Rees S., Wise A., Milligan G. Agonist occupation of an alpha2A-adrenoreceptor-Gi1alpha fusion protein results in activation of both receptor-linked and endogenous Gi proteins. Comparisons of their contributions to GTPase activity and signal transduction and analysis of receptor-G prot. J. Biol. Chem. 1998;273:10367–10375. doi: 10.1074/jbc.273.17.10367. PubMed DOI
Jakubík J., Janíčková H., El-Fakahany E.E., Doležal V. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy. Br. J. Pharmacol. 2011;162:1029–1044. doi: 10.1111/j.1476-5381.2010.01081.x. PubMed DOI PMC
Devree B.T., Mahoney J.P., Vélez-Ruiz G.A., Rasmussen S.G.F., Kuszak A.J., Edwald E., Fung J.J., Manglik A., Masureel M., Du Y., et al. Allosteric coupling from G protein to the agonist-binding pocket in GPCRs. Nature. 2016;535:182–186. doi: 10.1038/nature18324. PubMed DOI PMC
Griffin M.T., Figueroa K.W., Liller S., Ehlert F.J. Estimation of agonist activity at g protein-coupled receptors: Analysis of M2 muscarinic receptor signaling through Gi/o, G s, and G15. J. Pharmacol. Exp. Ther. 2007;321:1193–1207. doi: 10.1124/jpet.107.120857. PubMed DOI
Bermudez M., Bock A., Krebs F., Holzgrabe U., Mohr K., Lohse M.J., Wolber G. Ligand-Specific Restriction of Extracellular Conformational Dynamics Constrains Signaling of the M2 Muscarinic Receptor. ACS Chem. Biol. 2017;12:1743–1748. doi: 10.1021/acschembio.7b00275. PubMed DOI
Holze J., Bermudez M., Pfeil E.M., Kauk M., Bödefeld T., Irmen M., Matera C., Dallanoce C., De Amici M., Holzgrabe U., et al. Ligand-Specific Allosteric Coupling Controls G-Protein-Coupled Receptor Signaling. ACS Pharmacol. Transl. Sci. 2020;3:859–867. doi: 10.1021/acsptsci.0c00069. PubMed DOI PMC
Amatruda T.T., Steele D.A., Slepak V.Z., Simon M.I. Gα16, a G protein α subunit specifically expressed in hematopoietic cells. Proc. Natl. Acad. Sci. USA. 1991;88:5587–5591. doi: 10.1073/pnas.88.13.5587. PubMed DOI PMC
Krieger E., Joo K., Lee J., Lee J., Raman S., Thompson J., Tyka M., Baker D., Karplus K. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins Struct. Funct. Bioinforma. 2009;77:114–122. doi: 10.1002/prot.22570. PubMed DOI PMC
Konagurthu A.S., Whisstock J., Stuckey P.J. Progressive multiple alignment using sequence triplet optimizations and three-residue exchange costs. J. Bioinform. Comput. Biol. 2004;2:719–745. doi: 10.1142/S0219720004000831. PubMed DOI
El-Fakahany E.E., Jakubik J. Radioligand Binding at Muscarinic Receptors. In: Myslivecek J., Jakubík J., editors. Neuromethods. Volume 107. Humana Press Inc.; Totowa, NJ, USA: 2016. pp. 37–68.
Black J.W., Leff P. Operational models of pharmacological agonism. Proc. R. Soc. Lond.-Biol. Sci. 1983;220:141–162. doi: 10.1098/rspb.1983.0093. PubMed DOI