Fusion with Promiscuous Gα16 Subunit Reveals Signaling Bias at Muscarinic Receptors

. 2021 Sep 18 ; 22 (18) : . [epub] 20210918

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34576254

Grantová podpora
19-06106Y Grantová Agentura České Republiky
RVO:67985823 Akademie Věd České Republiky

A complex evaluation of agonist bias at G-protein coupled receptors at the level of G-protein classes and isoforms including non-preferential ones is essential for advanced agonist screening and drug development. Molecular crosstalk in downstream signaling and a lack of sufficiently sensitive and selective methods to study direct coupling with G-protein of interest complicates this analysis. We performed binding and functional analysis of 11 structurally different agonists on prepared fusion proteins of individual subtypes of muscarinic receptors and non-canonical promiscuous α-subunit of G16 protein to study agonist bias. We have demonstrated that fusion of muscarinic receptors with Gα16 limits access of other competitive Gα subunits to the receptor, and thus enables us to study activation of Gα16 mediated pathway more specifically. Our data demonstrated agonist-specific activation of G16 pathway among individual subtypes of muscarinic receptors and revealed signaling bias of oxotremorine towards Gα16 pathway at the M2 receptor and at the same time impaired Gα16 signaling of iperoxo at M5 receptors. Our data have shown that fusion proteins of muscarinic receptors with α-subunit of G-proteins can serve as a suitable tool for studying agonist bias, especially at non-preferential pathways.

Zobrazit více v PubMed

Hermans E. Biochemical and pharmacological control of the multiplicity of coupling at G-protein-coupled receptors. Pharmacol. Ther. 2003;99:25–44. doi: 10.1016/S0163-7258(03)00051-2. PubMed DOI

Jakubík J., El-Fakahany E.E., Dolezal V. Differences in kinetics of xanomeline binding and selectivity of activation of G proteins at M(1) and M(2) muscarinic acetylcholine receptors. Mol. Pharmacol. 2006;70:656–666. doi: 10.1124/mol.106.023762. PubMed DOI

Masuho I., Ostrovskaya O., Kramer G.M., Jones C.D., Xie K., Martemyanov K.A. Distinct profiles of functional discrimination among G proteins determine the actions of G protein-coupled receptors. Sci. Signal. 2015;8:1–16. doi: 10.1126/scisignal.aab4068. PubMed DOI PMC

Jakubík J., Bačáková L., Lisá V., El-Fakahany E.E., Tuček S. Activation of muscarinic acetylcholine receptors via their allosteric binding sites. Proc. Natl. Acad. Sci. USA. 1996;93:8705–8709. doi: 10.1073/pnas.93.16.8705. PubMed DOI PMC

Laugwitz K.L., Allgeier A., Offermanns S., Spicher K., Van Sande J., Dumont J.E., Schultz G. The human thyrotropin receptor: A heptahelical receptor capable of stimulating members of all four G protein families. Proc. Natl. Acad. Sci. USA. 1996;93:116–120. doi: 10.1073/pnas.93.1.116. PubMed DOI PMC

Peterson Y.K., Luttrell L.M. The Diverse Roles of Arrestin Scaffolds in G Protein–Coupled Receptor Signaling. Pharmacol. Rev. 2017;69:256. doi: 10.1124/pr.116.013367. PubMed DOI PMC

Kenakin T., Christopoulos A. Signalling bias in new drug discovery: Detection, quantification and therapeutic impact. Nat. Rev. Drug Discov. 2013;12:205–216. doi: 10.1038/nrd3954. PubMed DOI

Lorenzen E., Ceraudo E., Berchiche Y.A., Rico C.A., Fürstenberg A., Sakmar T.P., Huber T. G protein subtype–specific signaling bias in a series of CCR5 chemokine analogs. Sci. Signal. 2018;11 doi: 10.1126/scisignal.aao6152. PubMed DOI

Seyedabadi M., Ghahremani M.H., Albert P.R. Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential. Pharmacol. Ther. 2019;200:148–178. doi: 10.1016/j.pharmthera.2019.05.006. PubMed DOI

Randáková A., Jakubík J. Functionally selective and biased agonists of muscarinic receptors. Pharmacol. Res. 2021;169:105641. doi: 10.1016/j.phrs.2021.105641. PubMed DOI

Li Y.Q., Shrestha Y., Pandey M., Chen M., Kablan A., Gavrilova O., Offermanns S., Weinstein L.S. Gq/11 α and Gs α mediate distinct physiological responses to central melanocortins. J. Clin. Investig. 2016;126:40–49. doi: 10.1172/JCI76348. PubMed DOI PMC

Hur E.M., Kim K.T. G protein-coupled receptor signalling and cross-talk: Achieving rapidity and specificity. Cell. Signal. 2002;14:397–405. doi: 10.1016/S0898-6568(01)00258-3. PubMed DOI

Denis C., Sauliere A., Galandrin S., Senard J.-M., Gales C. Probing Heterotrimeric G Protein Activation: Applications to Biased Ligands. Curr. Pharm. Des. 2012;18:128–144. doi: 10.2174/138161212799040466. PubMed DOI PMC

Matera C., Tata A. Pharmacological Approaches to Targeting Muscarinic Acetylcholine Receptors. Recent Pat. CNS Drug Discov. 2014;9:85–100. doi: 10.2174/1574889809666141120131238. PubMed DOI

De Angelis F., Maria Tata A. Analgesic Effects Mediated by Muscarinic Receptors: Mechanisms and Pharmacological Approaches. Cent. Nerv. Syst. Agents Med. Chem. 2016;16:218–226. doi: 10.2174/1871524916666160302103033. PubMed DOI

Haga K., Kruse A.C.A., Asada H., Yurugi-Kobayashi T., Shiroishi M., Zhang C., Weis W.I., Okada T., Kobilka B.K., Haga T., et al. Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature. 2012;482:547–551. doi: 10.1038/nature10753. PubMed DOI PMC

Kruse A., Hu J., Pan A., Arlow D. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature. 2012;482:552–556. doi: 10.1038/nature10867. PubMed DOI PMC

Thal D.M., Sun B. Crystal Structures of the M1 and M4 Muscarinic Acetylcholine Receptors. Nature. 2016;531:335–340. doi: 10.1038/nature17188. PubMed DOI PMC

Randáková A., Nelic D., Ungerová D., Nwokoye P., Su Q., Doležal V., El-Fakahany E.E., Boulos J., Jakubík J. Novel M2-selective, Gi-biased agonists of muscarinic acetylcholine receptors. Br. J. Pharmacol. 2020;177:2073–2089. doi: 10.1111/bph.14970. PubMed DOI PMC

Downes G.B., Gautam N. The G protein subunit gene families. Genomics. 1999;62:544–552. doi: 10.1006/geno.1999.5992. PubMed DOI

Bertin B., Freissmuth M., Jockers R., Strosberg A.D., Marullo S. Cellular signaling by an agonist-activated receptor/G(s)α fusion protein. Proc. Natl. Acad. Sci. USA. 1994;91:8827–8831. doi: 10.1073/pnas.91.19.8827. PubMed DOI PMC

Wenzel-Seifert K., Seifert R. Molecular analysis of β2-adrenoceptor coupling to G(s)-, G(i)-, and G(q)-proteins. Mol. Pharmacol. 2000;58:954–966. doi: 10.1124/mol.58.5.954. PubMed DOI

Massotte D., Brillet K., Kieffer B.L., Milligan G. Agonists activate Gi1α or Gi2α fused to the human mu opioid receptor differently. J. Neurochem. 2002;81:1372–1382. doi: 10.1046/j.1471-4159.2002.00946.x. PubMed DOI

Milligan G., Parenty G., Stoddart L.A., Lane J.R. Novel pharmacological applications of G-protein-coupled receptor-G protein fusions. Curr. Opin. Pharmacol. 2007;7:521–526. doi: 10.1016/j.coph.2007.06.007. PubMed DOI

Lane J.R., Powney B., Wise A., Rees S., Milligan G. Protean agonism at the dopamine D2 receptor: (S)-3-(3-hydroxyphenyl)-N-propylpiperidine is an agonist for activation of Go1 but an antagonist/inverse agonist for Gi1, G i2, and Gi3. Mol. Pharmacol. 2007;71:1349–1359. doi: 10.1124/mol.106.032722. PubMed DOI

Suga H., Haga T. Ligand screening system using fusion proteins of G protein-coupled receptors with G protein α subunits. Neurochem. Int. 2007;51:140–164. doi: 10.1016/j.neuint.2007.06.006. PubMed DOI

Giannone F., Malpeli G., Lisi V., Grasso S., Shukla P., Ramarli D., Sartoris S., Monsurró V., Krampera M., Amato E., et al. The puzzling uniqueness of the heterotrimeric G15 protein and its potential beyond hematopoiesis. J. Mol. Endocrinol. 2010;44:259–269. doi: 10.1677/JME-09-0134. PubMed DOI

Grant K.R., Harnett W., Milligant G. Differential G-protein expression during B- and T-cell development. Immunology. 1997;90:564–571. doi: 10.1046/j.1365-2567.1997.00196.x. PubMed DOI PMC

Giovinazzo F., Malpeli G., Zanini S., Parenti M., Piemonti L., Colombatti M., Valenti M.T., Dalle Carbonare L., Scarpa A., Sinnett-Smith J., et al. Ectopic expression of the heterotrimeric G15 protein in pancreatic carcinoma and its potential in cancer signal transduction. Cell. Signal. 2013;25:651–659. doi: 10.1016/j.cellsig.2012.11.018. PubMed DOI

Maeda S., Qu Q., Robertson M.J., Skiniotis G., Kobilka B.K. Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes. Science. 2019;364:552–557. doi: 10.1126/science.aaw5188. PubMed DOI PMC

Jakubík J., Randáková A., Rudajev V., Zimčík P., El-Fakahany E.E., Doležal V. Applications and limitations of fitting of the operational model to determine relative efficacies of agonists. Sci. Rep. 2019;9:4637. doi: 10.1038/s41598-019-40993-w. PubMed DOI PMC

Schrage R., Seemann W.K., Klöckner J., Dallanoce C., Racké K., Kostenis E., De Amici M., Holzgrabe U., Mohr K. Agonists with supraphysiological efficacy at the muscarinic M2 ACh receptor. Br. J. Pharmacol. 2013;169:357–370. doi: 10.1111/bph.12003. PubMed DOI PMC

Schrage R., Holze J., Klöckner J., Balkow A., Klause A.S., Schmitz A.L., De Amici M., Kostenis E., Tränkle C., Holzgrabe U., et al. New insight into active muscarinic receptors with the novel radioagonist [3H]iperoxo. Biochem. Pharmacol. 2014;90:307–319. doi: 10.1016/j.bcp.2014.05.012. PubMed DOI

Sur C., Mallorga P.J., Wittmann M., Jacobson M.A., Pascarella D., Williams J.B., Brandish P.E., Pettibone D.J., Scolnick E.M., Conn P.J. N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-D-aspartate receptor activity. Proc. Natl. Acad. Sci. USA. 2003;100:13674–13679. doi: 10.1073/pnas.1835612100. PubMed DOI PMC

Kenakin T., Watson C., Muniz-Medina V., Christopoulos A., Novick S. A simple method for quantifying functional selectivity and agonist bias. ACS Chem. Neurosci. 2012;3:193–203. doi: 10.1021/cn200111m. PubMed DOI PMC

Antoni F.A. Calcium regulation of adenylyl cyclase: Relevance for endocrine control. Trends Endocrinol. Metab. 1997;8:7–14. doi: 10.1016/S1043-2760(96)00206-8. PubMed DOI

Delmas P., Abogadie F.C., Milligan G., Buckley N.J., Brown D.A. βγ dimers derived from G0 and G1 proteins contribute different components of adrenergic inhibition of Ca2+ channels in rat sympathetic neurones. J. Physiol. 1999;518:23–36. doi: 10.1111/j.1469-7793.1999.0023r.x. PubMed DOI PMC

Li S., Huang S., Peng S. Bin Overexpression of G protein-coupled receptors in cancer cells: Involvement in tumor progression. Int. J. Oncol. 2005;27:1329–1339. doi: 10.3892/ijo.27.5.1329. PubMed DOI

Corvol J.C., Muriel M.P., Valjent E., Féger J., Hanoun N., Girault J.A., Hirsch E.C., Hervé D. Persistent increase in olfactory type G-protein α subunit levels may underlie D1 receptor functional hypersensitivity in Parkinson disease. J. Neurosci. 2004;24:7007–7014. doi: 10.1523/JNEUROSCI.0676-04.2004. PubMed DOI PMC

Campbell A.P., Smrcka A.V., Arbor A. Targeting G protein-coupled receptor signalling by blocking G proteins. Nat. Rev. 2019;17:789–803. doi: 10.1038/nrd.2018.135. PubMed DOI PMC

Rasenick M.M., Watanabe M., Lazarevic M.B., Hatta S., Hamm H.E. Synthetic peptides as probes for G protein function: Carboxyl-terminal Gαs peptides mimic Gs and evoke high affinity agonist binding to β-adrenergic receptors. J. Biol. Chem. 1994;269:21519–21525. doi: 10.1016/S0021-9258(17)31835-5. PubMed DOI

Krumins A.M., Gilman A.G. Targeted knockdown of G protein subunits selectively prevents receptor-mediated modulation of effectors and reveals complex changes in non-targeted signaling proteins. J. Biol. Chem. 2006;281:10250–10262. doi: 10.1074/jbc.M511551200. PubMed DOI

Jakubík J., Janíčková H., Randáková A., El-Fakahany E.E., Doležal V. Subtype differences in pre-coupling of muscarinic acetylcholine receptors. PLoS ONE. 2011;6:e27732. doi: 10.1371/journal.pone.0027732. PubMed DOI PMC

Barr A.J., Brass L.F., Manning D.R. Reconstitution of receptors and GTP-binding regulatory proteins (G proteins) in Sf9 cells. A direct evaluation of selectivity in receptor-G protein coupling. J. Biol. Chem. 1997;272:2223–2229. doi: 10.1074/jbc.272.4.2223. PubMed DOI

Houston C., Wenzel-Seifert K., Bürckstümmer T., Seifert R. The human histamine H2-receptor couples more efficiently to Sf9 insect cell Gs-proteins than to insect cell Gq-proteins: Limitations of Sf9 cells for the analysis of receptor/Gq-protein coupling. J. Neurochem. 2002;80:678–696. doi: 10.1046/j.0022-3042.2001.00746.x. PubMed DOI

Uustare A., Näsman J., Åkerman K.E.O., Rinken A. Characterization of M2 muscarinic receptor activation of different G protein subtypes. Neurochem. Int. 2004;44:119–124. doi: 10.1016/S0197-0186(03)00103-7. PubMed DOI

Parker E.M., Kameyama K., Higashijima T., Ross E.M. Reconstitutively active G protein-coupled receptors purified from baculovirus-infected insect cells. J. Biol. Chem. 1991;266:519–527. doi: 10.1016/S0021-9258(18)52467-4. PubMed DOI

Heitz F., McClue S.J., Harris B.A., Guenet C. Expression of human M2 muscarinic receptors in Sf9 cells: Characterisation and reconstitution with G-proteins. J. Recept. Signal Transduct. Res. 1995;15:55–70. doi: 10.3109/10799899509045207. PubMed DOI

DeLapp N.W. The antibody-capture [35S]GTPγS scintillation proximity assay: A powerful emerging technique for analysis of GPCR pharmacology. Trends Pharmacol. Sci. 2004;25:400–401. doi: 10.1016/j.tips.2004.06.003. PubMed DOI

Galés C., Rebois R.V., Hogue M., Trieu P., Breit A., Hébert T.E., Bouvier M. Real-time monitoring of receptor and G-protein interactions in living cells. Nat. Methods. 2005;2:177–184. doi: 10.1038/nmeth743. PubMed DOI

Hein P., Frank M., Hoffmann C., Lohse M.J., Bünemann M. Dynamics of receptor/G protein coupling in living cells. EMBO J. 2005;24:4106–4114. doi: 10.1038/sj.emboj.7600870. PubMed DOI PMC

Wessler I., Kilbinger H., Bittinger F., Unger R., Kirkpatrick C.J. The non-neuronal cholinergic system in humans: Expression, function and pathophysiology. Life Sci. 2003;72:2055–2061. doi: 10.1016/S0024-3205(03)00083-3. PubMed DOI

Pereira A., McLaren A., Bell W.R., Copolov D., Dean B. Potential clozapine target sites on peripheral hematopoietic cells and stromal cells of the bone marrow. Pharmacogenom. J. 2003;3:227–234. doi: 10.1038/sj.tpj.6500179. PubMed DOI

Onfroy L., Galandrin S., Pontier S.M., Seguelas M.H., N’Guyen D., Sénard J.M., Galés C. G protein stoichiometry dictates biased agonism through distinct receptor-G protein partitioning. Sci. Rep. 2017;7:7885. doi: 10.1038/s41598-017-07392-5. PubMed DOI PMC

Randáková A., Dolejší E., Rudajev V., Zimčík P., Doležal V., El-Fakahany E.E., Jakubík J. Classical and atypical agonists activate M1 muscarinic acetylcholine receptors through common mechanisms. Pharmacol. Res. 2015;97:27–39. doi: 10.1016/j.phrs.2015.04.002. PubMed DOI

Jakubík J., Tuek S., El-Fakahany E.E. Allosteric modulation by persistent binding of xanomeline of the interaction of competitive ligands with the M1 muscarinic acetylcholine receptor. J. Pharmacol. Exp. Ther. 2002;301:1033–1041. doi: 10.1124/jpet.301.3.1033. PubMed DOI

Valant C., Gregory K.J., Hall N.E., Scammells P.J., Lew M.J., Sexton P.M., Christopoulos A. A novel mechanism of G protein-coupled receptor functional selectivity: Muscarinic partial agonist McN-A-343 as a bitopic orthosteric/allosteric ligand. J. Biol. Chem. 2008;283:29312–29321. doi: 10.1074/jbc.M803801200. PubMed DOI PMC

Hayashi M.K., Haga T. Palmitoylation of muscarinic acetylcholine receptor m2 subtypes: Reduction in their ability to activate G proteins by mutation of a putative palmitoylation site, cysteine 457, in the carboxyl-terminal tail. Arch. Biochem. Biophys. 1997;340:376–382. doi: 10.1006/abbi.1997.9906. PubMed DOI

Chen C.A., Manning D.R. Regulation of G proteins by covalent modification. Oncogene. 2001;20:1643–1652. doi: 10.1038/sj.onc.1204185. PubMed DOI

Rasmussen S.G.F., DeVree B.T., Zou Y., Kruse A.C., Chung K.Y., Kobilka T.S., Thian F.S., Chae P.S., Pardon E., Calinski D., et al. Crystal structure of the β2 adrenergic receptor-Gs protein complex. Nature. 2011;477:549–555. doi: 10.1038/nature10361. PubMed DOI PMC

Draper-Joyce C.J., Khoshouei M., Thal D.M., Liang Y.L., Nguyen A.T.N., Furness S.G.B., Venugopal H., Baltos J.A., Plitzko J.M., Danev R., et al. Structure of the adenosine-bound human adenosine A1 receptor-Gi complex. Nature. 2018;558:559–565. doi: 10.1038/s41586-018-0236-6. PubMed DOI

García-Nafría J., Tate C.G. Cryo-EM structures of GPCRs coupled to Gs, Gi and Go. Mol. Cell. Endocrinol. 2019;488:1–13. doi: 10.1016/j.mce.2019.02.006. PubMed DOI

Koehl A., Hu H., Maeda S., Zhang Y., Qu Q., Paggi J.M., Latorraca N.R., Hilger D., Dawson R., Matile H., et al. Structure of the μ-opioid receptor-Gi protein complex. Nature. 2018;558:547–552. doi: 10.1038/s41586-018-0219-7. PubMed DOI PMC

Gurwitz D., Haring R., Heldman E., Fraser C.M., Manor D., Fisher A. Discrete activation of transduction pathways associated with acetylcholine m1 receptor by several muscarinic ligands. Eur. J. Pharmacol. Mol. Pharmacol. 1994;267:21–31. doi: 10.1016/0922-4106(94)90220-8. PubMed DOI

Burford N.T., Tobin A.B., Nahorski S.R. Differential coupling of m1, m2 and m3 muscarinic receptor subtypes to inositol 1,4,5-trisphosphate and adenosine 3′,5′-cyclic monophosphate accumulation in Chinese hamster ovary cells. J. Pharmacol. Exp. Ther. 1995;274:134–142. PubMed

Michal P., El-Fakahany E.E., Dolezal V. Muscarinic M2 receptors directly activate Gq/11 and Gs G-proteins. J. Pharmacol. Exp. Ther. 2007;320:607–614. doi: 10.1124/jpet.106.114314. PubMed DOI

Burt A.R., Sautel M., Wilson M.A., Rees S., Wise A., Milligan G. Agonist occupation of an alpha2A-adrenoreceptor-Gi1alpha fusion protein results in activation of both receptor-linked and endogenous Gi proteins. Comparisons of their contributions to GTPase activity and signal transduction and analysis of receptor-G prot. J. Biol. Chem. 1998;273:10367–10375. doi: 10.1074/jbc.273.17.10367. PubMed DOI

Jakubík J., Janíčková H., El-Fakahany E.E., Doležal V. Negative cooperativity in binding of muscarinic receptor agonists and GDP as a measure of agonist efficacy. Br. J. Pharmacol. 2011;162:1029–1044. doi: 10.1111/j.1476-5381.2010.01081.x. PubMed DOI PMC

Devree B.T., Mahoney J.P., Vélez-Ruiz G.A., Rasmussen S.G.F., Kuszak A.J., Edwald E., Fung J.J., Manglik A., Masureel M., Du Y., et al. Allosteric coupling from G protein to the agonist-binding pocket in GPCRs. Nature. 2016;535:182–186. doi: 10.1038/nature18324. PubMed DOI PMC

Griffin M.T., Figueroa K.W., Liller S., Ehlert F.J. Estimation of agonist activity at g protein-coupled receptors: Analysis of M2 muscarinic receptor signaling through Gi/o, G s, and G15. J. Pharmacol. Exp. Ther. 2007;321:1193–1207. doi: 10.1124/jpet.107.120857. PubMed DOI

Bermudez M., Bock A., Krebs F., Holzgrabe U., Mohr K., Lohse M.J., Wolber G. Ligand-Specific Restriction of Extracellular Conformational Dynamics Constrains Signaling of the M2 Muscarinic Receptor. ACS Chem. Biol. 2017;12:1743–1748. doi: 10.1021/acschembio.7b00275. PubMed DOI

Holze J., Bermudez M., Pfeil E.M., Kauk M., Bödefeld T., Irmen M., Matera C., Dallanoce C., De Amici M., Holzgrabe U., et al. Ligand-Specific Allosteric Coupling Controls G-Protein-Coupled Receptor Signaling. ACS Pharmacol. Transl. Sci. 2020;3:859–867. doi: 10.1021/acsptsci.0c00069. PubMed DOI PMC

Amatruda T.T., Steele D.A., Slepak V.Z., Simon M.I. Gα16, a G protein α subunit specifically expressed in hematopoietic cells. Proc. Natl. Acad. Sci. USA. 1991;88:5587–5591. doi: 10.1073/pnas.88.13.5587. PubMed DOI PMC

Krieger E., Joo K., Lee J., Lee J., Raman S., Thompson J., Tyka M., Baker D., Karplus K. Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins Struct. Funct. Bioinforma. 2009;77:114–122. doi: 10.1002/prot.22570. PubMed DOI PMC

Konagurthu A.S., Whisstock J., Stuckey P.J. Progressive multiple alignment using sequence triplet optimizations and three-residue exchange costs. J. Bioinform. Comput. Biol. 2004;2:719–745. doi: 10.1142/S0219720004000831. PubMed DOI

El-Fakahany E.E., Jakubik J. Radioligand Binding at Muscarinic Receptors. In: Myslivecek J., Jakubík J., editors. Neuromethods. Volume 107. Humana Press Inc.; Totowa, NJ, USA: 2016. pp. 37–68.

Black J.W., Leff P. Operational models of pharmacological agonism. Proc. R. Soc. Lond.-Biol. Sci. 1983;220:141–162. doi: 10.1098/rspb.1983.0093. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Agonist-selective activation of individual G-proteins by muscarinic receptors

. 2024 Apr 26 ; 14 (1) : 9652. [epub] 20240426

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...