• This record comes from PubMed

Divergence of allosteric effects of rapacuronium on binding and function of muscarinic receptors

. 2009 Dec 28 ; 9 () : 15. [epub] 20091228

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

BACKGROUND: Many neuromuscular blockers act as negative allosteric modulators of muscarinic acetylcholine receptors by decreasing affinity and potency of acetylcholine. The neuromuscular blocker rapacuronium has been shown to have facilitatory effects at muscarinic receptors leading to bronchospasm. We examined the influence of rapacuronium on acetylcholine (ACh) binding to and activation of individual subtypes of muscarinic receptors expressed in Chinese hamster ovary cells to determine its receptor selectivity. RESULTS: At equilibrium rapacuronium bound to all subtypes of muscarinic receptors with micromolar affinity (2.7-17 microM) and displayed negative cooperativity with both high- and low-affinity ACh binding states. Rapacuronium accelerated [3H]ACh association with and dissociation from odd-numbered receptor subtypes. With respect to [35S]GTPgammaS binding rapacuronium alone behaved as an inverse agonist at all subtypes. Rapacuronium concentration-dependently decreased the potency of ACh-induced [35S]GTPgammaS binding at M2 and M4 receptors. In contrast, 0.1 microM rapacuronium significantly increased ACh potency at M1, M3, and M5 receptors. Kinetic measurements at M3 receptors showed acceleration of the rate of ACh-induced [35S]GTPgammaS binding by rapacuronium. CONCLUSIONS: Our data demonstrate a novel dichotomy in rapacuronium effects at odd-numbered muscarinic receptors. Rapacuronium accelerates the rate of ACh binding but decreases its affinity under equilibrium conditions. This results in potentiation of receptor activation at low concentrations of rapacuronium (1 microM) but not at high concentrations (10 microM). These observations highlight the relevance and necessity of performing physiological tests under non-equilibrium conditions in evaluating the functional effects of allosteric modulators at muscarinic receptors. They also provide molecular basis for potentiating M3 receptor-mediated bronchoconstriction.

See more in PubMed

Caulfield MP, Birdsall NJ. International union of pharmacology. XVII. classification of muscarinic acetylcholine receptors. Pharmacol Rev. 1998;50:279–290. PubMed

Bonner TI. The molecular basis of muscarinic receptor diversity. Trends Neurosci. 1989;12:148–151. doi: 10.1016/0166-2236(89)90054-4. PubMed DOI

Caulfield MP. Muscarinic receptors - characterization, coupling and function. Pharmacol Ther. 1993;58:319–379. doi: 10.1016/0163-7258(93)90027-B. PubMed DOI

Eglen RM, Watson N. Selective muscarinic receptor agonists and antagonists. Pharmacol Toxicol. 1996;78:59–68. doi: 10.1111/j.1600-0773.1996.tb00181.x. PubMed DOI

Tuček S, Proška J. Allosteric modulation of muscarinic acetylcholine receptors. Trends Pharmacol Sci. 1995;16:205–212. doi: 10.1016/S0165-6147(00)89023-9. PubMed DOI

Leppik RA, Miller RC, Eck M, Paquet JL. Role of acidic amino acids in the allosteric modulation by gallamine of antagonist binding at the M2 muscarinic acetylcholine receptor. Mol Pharmacol. 1994;45:983–990. PubMed

Gnagey AL, Seidenberg M, Ellis J. Site-directed mutagenesis reveals two epitopes involved in the subtype selectivity of the allosteric interactions of gallamine at muscarinic acetylcholine receptors. Mol Pharmacol. 1999;56:1245–1253. PubMed

Krejčí A, Tuček S. Changes of cooperativity between n-methylscopolamine and allosteric modulators alcuronium and gallamine induced by mutations of external loops of muscarinic m(3) receptors. Mol Pharmacol. 2001;60:761–767. PubMed

Jakubík J, Krejčí A, Doležal V. Asparagine, valine, and threonine in the third extracellular loop of muscarinic receptor have essential roles in the positive cooperativity of strychnine-like allosteric modulators. J Pharmacol Exp Ther. 2005;313:688–696. doi: 10.1124/jpet.104.080358. PubMed DOI

Jäger D, Schmalenbach C, Prilla S, Schrobang J, Kebig A, Sennwitz M, Heller E, Tränkle C, Holzgrabe U, Höltje H, Mohr K. Allosteric small molecules unveil a role of an extracellular e2/transmembrane helix 7 junction for G protein-coupled receptor activation. J Biol Chem. 2007;282:34968–34976. doi: 10.1074/jbc.M705563200. PubMed DOI

Lazareno S, Doležal V, Popham A, Birdsall NJM. Thiochrome enhances acetylcholine affinity at muscarinic m4 receptors: receptor subtype selectivity via cooperativity rather than affinity. Mol Pharmacol. 2004;65:257–266. doi: 10.1124/mol.65.1.257. PubMed DOI

Clark AL, Mitchelson F. The inhibitory effect of gallamine on muscarinic receptors. Br J Pharmacol. 1976;58:323–331. PubMed PMC

Stockton JM, Birdsall NJ, Burgen AS, Hulme EC. Modification of the binding properties of muscarinic receptors by gallamine. Mol Pharmacol. 1983;23:551–557. PubMed

Nedoma J, Dorofeeva NA, Tuček S, Shelkovnikov SA, Danilov AF. Interaction of the neuromuscular blocking drugs alcuronium, decamethonium, gallamine, pancuronium, ritebronium, tercuronium and d-tubocurarine with muscarinic acetylcholine receptors in the heart and ileum. Naunyn Schmiedebergs Arch Pharmacol. 1985;329:176–181. doi: 10.1007/BF00501209. PubMed DOI

Goudsouzian NG. Rapacuronium and bronchospasm. Anesthesiology. 2001;94:727–728. doi: 10.1097/00000542-200105000-00006. PubMed DOI

Ehlert FJ. Contractile role of M2 and M3 muscarinic receptors in gastrointestinal, airway and urinary bladder smooth muscle. Life Sci. 2003;74:355–366. doi: 10.1016/j.lfs.2003.09.023. PubMed DOI

Coulson FR, Fryer AD. Muscarinic acetylcholine receptors and airway diseases. Pharmacol Ther. 2003;98:59–69. doi: 10.1016/S0163-7258(03)00004-4. PubMed DOI

Jooste E, Klafter F, Hirshman CA, Emala CW. A mechanism for rapacuronium-induced bronchospasm: M2 muscarinic receptor antagonism. Anesthesiology. 2003;98:906–911. doi: 10.1097/00000542-200304000-00017. PubMed DOI

Jooste EH, Sharma A, Zhang Y, Emala CW. Rapacuronium augments acetylcholine-induced bronchoconstriction via positive allosteric interactions at the M3 muscarinic receptor. Anesthesiology. 2005;103:1195–1203. doi: 10.1097/00000542-200512000-00014. PubMed DOI

Jooste E, Zhang Y, Emala CW. Neuromuscular blocking agents" differential bronchoconstrictive potential in guinea pig airways. Anesthesiology. 2007;106:763–772. doi: 10.1097/01.anes.0000264763.48920.c9. PubMed DOI

Jakubík J, Bačáková L, El-Fakahany EE, Tuček S. Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors. Mol Pharmacol. 1997;52:172–179. PubMed

Jakubík J, El-Fakahany EE, Doležal V. Differences in kinetics of xanomeline binding and selectivity of activation of G proteins at M(1) and M(2) muscarinic acetylcholine receptors. Mol Pharmacol. 2006;70:656–666. doi: 10.1124/mol.106.023762. PubMed DOI

Ellis J, Huyler J, Brann MR. Allosteric regulation of cloned m1-m5 muscarinic receptor subtypes. Biochem Pharmacol. 1991;42:1927–1932. doi: 10.1016/0006-2952(91)90591-R. PubMed DOI

Jakubík J, Bačáková L, el-Fakahany EE, Tuček S. Subtype selectivity of the positive allosteric action of alcuronium at cloned m1-m5 muscarinic acetylcholine receptors. J Pharmacol Exp Ther. 1995;274:1077–1083. PubMed

Jakubík J, Bačáková L, el-Fakahany EE, Tuček S. Constitutive activity of the m1-m4 subtypes of muscarinic receptors in transfected cho cells and of muscarinic receptors in the heart cells revealed by negative antagonists. FEBS Lett. 1995;377:275–279. doi: 10.1016/0014-5793(95)01360-1. PubMed DOI

Spalding TA, Burstein ES. Constitutive activity of muscarinic acetylcholine receptors. J Recept Signal Transduct Res. 2006;26:61–85. doi: 10.1080/10799890600567349. PubMed DOI

Jakubík J, Haga T, Tuček S. Effects of an agonist, allosteric modulator, and antagonist on guanosine-gamma-[35S]thiotriphosphate binding to liposomes with varying muscarinic receptor/Go protein stoichiometry. Mol Pharmacol. 1998;54:899–906. PubMed

Jakubík J, Bačáková L, Lisá V, el-Fakahany EE, Tuček S. Activation of muscarinic acetylcholine receptors via their allosteric binding sites. Proc Natl Acad Sci USA. 1996;93:8705–8709. doi: 10.1073/pnas.93.16.8705. PubMed DOI PMC

Haga K, Haga T, Ichiyama A. Reconstitution of the muscarinic acetylcholine receptor: Guanine nucleotide-sensitive high affinity binding of agonists to purified muscarinic receptors reconstituted with GTP-binding proteins (Gi and Go) J Biol Chem. 1986;261:10133–10140. PubMed

Gurwitz D, Kloog Y, Sokolovsky M. High affinity binding of [3H]acetylcholine to muscarinic receptors: Regional distribution and modulation by guanine nucleotides. Mol Pharmacol. 1985;28:297–305. PubMed

Seifert R, Wenzel-Seifert K, Gether U, Kobilka BK. Functional differences between full and partial agonists: evidence for ligand-specific receptor conformations. J Pharmacol Exp Ther. 2001;297:1218–1226. PubMed

Ayoub MA, Couturier C, Lucas-Meunier E, Angers S, Fossier P, Bouvier M, Jockers R. Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. J Biol Chem. 2002;277:21522–21528. doi: 10.1074/jbc.M200729200. PubMed DOI

Azzi M, Charest PG, Angers S, Rousseau G, Kohout T, Bouvier M, Piñeyro G. Beta-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc Natl Acad Sci USA. 2003;100:11406–11411. doi: 10.1073/pnas.1936664100. PubMed DOI PMC

Birdsall NJ, Farries T, Gharagozloo P, Kobayashi S, Lazareno S, Sugimoto M. Subtype-selective positive cooperative interactions between brucine analogs and acetylcholine at muscarinic receptors: Functional studies. Mol Pharmacol. 1999;55:778–786. PubMed

Langmead CJ, Christopoulos A. Allosteric agonists of 7TM receptors: expanding the pharmacological toolbox. Trends Pharmacol Sci. 2006;27:475–481. doi: 10.1016/j.tips.2006.07.009. PubMed DOI

Schwartz TW, Holst B. Ago-allosteric modulation and other types of allostery in dimeric 7TM receptors. J Recept Signal Transduct Res. 2006;26:107–128. doi: 10.1080/10799890600567570. PubMed DOI

Jakubík J, El-Fakahany EE, Tuček S. Evidence for a tandem two-site model of ligand binding to muscarinic acetylcholine receptors. J Biol Chem. 2000;275:18836–18844. doi: 10.1074/jbc.M000112200. PubMed DOI

Ehlert FJ, Griffin MT. Two-state models and the analysis of the allosteric effect of gallamine at the M2 muscarinic receptor. J Pharmacol Exp Ther. 2008;325:1039–1060. doi: 10.1124/jpet.108.136960. PubMed DOI

Cheng Y, Prusoff WH. Relationship between the inhibition constant (k1) and the concentration of inhibitor which causes 50 per cent inhibition (i50) of an enzymatic reaction. Biochem Pharmacol. 1973;22:3099–3108. doi: 10.1016/0006-2952(73)90196-2. PubMed DOI

Ehlert FJ. Estimation of the affinities of allosteric ligands using radioligand binding and pharmacological null methods. Mol Pharmacol. 1988;33:187–194. PubMed

Newest 20 citations...

See more in
Medvik | PubMed

Allosteric Modulation of Muscarinic Acetylcholine Receptors

. 2010 Aug 30 ; 3 (9) : 2838-2860. [epub] 20100830

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...