Divergence of allosteric effects of rapacuronium on binding and function of muscarinic receptors
Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
20038295
PubMed Central
PMC2806265
DOI
10.1186/1471-2210-9-15
PII: 1471-2210-9-15
Knihovny.cz E-resources
- MeSH
- Acetylcholine metabolism MeSH
- Muscarinic Agonists pharmacology MeSH
- Allosteric Regulation drug effects MeSH
- Allosteric Site drug effects MeSH
- CHO Cells MeSH
- Cricetulus MeSH
- Guanosine 5'-O-(3-Thiotriphosphate) metabolism MeSH
- Binding, Competitive drug effects MeSH
- Cricetinae MeSH
- N-Methylscopolamine metabolism MeSH
- Neuromuscular Nondepolarizing Agents pharmacology MeSH
- Radioligand Assay methods MeSH
- Receptors, Muscarinic drug effects physiology MeSH
- Vecuronium Bromide analogs & derivatives pharmacology MeSH
- Animals MeSH
- Check Tag
- Cricetinae MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Acetylcholine MeSH
- Muscarinic Agonists MeSH
- Guanosine 5'-O-(3-Thiotriphosphate) MeSH
- N-Methylscopolamine MeSH
- Neuromuscular Nondepolarizing Agents MeSH
- rapacuronium MeSH Browser
- Receptors, Muscarinic MeSH
- Vecuronium Bromide MeSH
BACKGROUND: Many neuromuscular blockers act as negative allosteric modulators of muscarinic acetylcholine receptors by decreasing affinity and potency of acetylcholine. The neuromuscular blocker rapacuronium has been shown to have facilitatory effects at muscarinic receptors leading to bronchospasm. We examined the influence of rapacuronium on acetylcholine (ACh) binding to and activation of individual subtypes of muscarinic receptors expressed in Chinese hamster ovary cells to determine its receptor selectivity. RESULTS: At equilibrium rapacuronium bound to all subtypes of muscarinic receptors with micromolar affinity (2.7-17 microM) and displayed negative cooperativity with both high- and low-affinity ACh binding states. Rapacuronium accelerated [3H]ACh association with and dissociation from odd-numbered receptor subtypes. With respect to [35S]GTPgammaS binding rapacuronium alone behaved as an inverse agonist at all subtypes. Rapacuronium concentration-dependently decreased the potency of ACh-induced [35S]GTPgammaS binding at M2 and M4 receptors. In contrast, 0.1 microM rapacuronium significantly increased ACh potency at M1, M3, and M5 receptors. Kinetic measurements at M3 receptors showed acceleration of the rate of ACh-induced [35S]GTPgammaS binding by rapacuronium. CONCLUSIONS: Our data demonstrate a novel dichotomy in rapacuronium effects at odd-numbered muscarinic receptors. Rapacuronium accelerates the rate of ACh binding but decreases its affinity under equilibrium conditions. This results in potentiation of receptor activation at low concentrations of rapacuronium (1 microM) but not at high concentrations (10 microM). These observations highlight the relevance and necessity of performing physiological tests under non-equilibrium conditions in evaluating the functional effects of allosteric modulators at muscarinic receptors. They also provide molecular basis for potentiating M3 receptor-mediated bronchoconstriction.
See more in PubMed
Caulfield MP, Birdsall NJ. International union of pharmacology. XVII. classification of muscarinic acetylcholine receptors. Pharmacol Rev. 1998;50:279–290. PubMed
Bonner TI. The molecular basis of muscarinic receptor diversity. Trends Neurosci. 1989;12:148–151. doi: 10.1016/0166-2236(89)90054-4. PubMed DOI
Caulfield MP. Muscarinic receptors - characterization, coupling and function. Pharmacol Ther. 1993;58:319–379. doi: 10.1016/0163-7258(93)90027-B. PubMed DOI
Eglen RM, Watson N. Selective muscarinic receptor agonists and antagonists. Pharmacol Toxicol. 1996;78:59–68. doi: 10.1111/j.1600-0773.1996.tb00181.x. PubMed DOI
Tuček S, Proška J. Allosteric modulation of muscarinic acetylcholine receptors. Trends Pharmacol Sci. 1995;16:205–212. doi: 10.1016/S0165-6147(00)89023-9. PubMed DOI
Leppik RA, Miller RC, Eck M, Paquet JL. Role of acidic amino acids in the allosteric modulation by gallamine of antagonist binding at the M2 muscarinic acetylcholine receptor. Mol Pharmacol. 1994;45:983–990. PubMed
Gnagey AL, Seidenberg M, Ellis J. Site-directed mutagenesis reveals two epitopes involved in the subtype selectivity of the allosteric interactions of gallamine at muscarinic acetylcholine receptors. Mol Pharmacol. 1999;56:1245–1253. PubMed
Krejčí A, Tuček S. Changes of cooperativity between n-methylscopolamine and allosteric modulators alcuronium and gallamine induced by mutations of external loops of muscarinic m(3) receptors. Mol Pharmacol. 2001;60:761–767. PubMed
Jakubík J, Krejčí A, Doležal V. Asparagine, valine, and threonine in the third extracellular loop of muscarinic receptor have essential roles in the positive cooperativity of strychnine-like allosteric modulators. J Pharmacol Exp Ther. 2005;313:688–696. doi: 10.1124/jpet.104.080358. PubMed DOI
Jäger D, Schmalenbach C, Prilla S, Schrobang J, Kebig A, Sennwitz M, Heller E, Tränkle C, Holzgrabe U, Höltje H, Mohr K. Allosteric small molecules unveil a role of an extracellular e2/transmembrane helix 7 junction for G protein-coupled receptor activation. J Biol Chem. 2007;282:34968–34976. doi: 10.1074/jbc.M705563200. PubMed DOI
Lazareno S, Doležal V, Popham A, Birdsall NJM. Thiochrome enhances acetylcholine affinity at muscarinic m4 receptors: receptor subtype selectivity via cooperativity rather than affinity. Mol Pharmacol. 2004;65:257–266. doi: 10.1124/mol.65.1.257. PubMed DOI
Clark AL, Mitchelson F. The inhibitory effect of gallamine on muscarinic receptors. Br J Pharmacol. 1976;58:323–331. PubMed PMC
Stockton JM, Birdsall NJ, Burgen AS, Hulme EC. Modification of the binding properties of muscarinic receptors by gallamine. Mol Pharmacol. 1983;23:551–557. PubMed
Nedoma J, Dorofeeva NA, Tuček S, Shelkovnikov SA, Danilov AF. Interaction of the neuromuscular blocking drugs alcuronium, decamethonium, gallamine, pancuronium, ritebronium, tercuronium and d-tubocurarine with muscarinic acetylcholine receptors in the heart and ileum. Naunyn Schmiedebergs Arch Pharmacol. 1985;329:176–181. doi: 10.1007/BF00501209. PubMed DOI
Goudsouzian NG. Rapacuronium and bronchospasm. Anesthesiology. 2001;94:727–728. doi: 10.1097/00000542-200105000-00006. PubMed DOI
Ehlert FJ. Contractile role of M2 and M3 muscarinic receptors in gastrointestinal, airway and urinary bladder smooth muscle. Life Sci. 2003;74:355–366. doi: 10.1016/j.lfs.2003.09.023. PubMed DOI
Coulson FR, Fryer AD. Muscarinic acetylcholine receptors and airway diseases. Pharmacol Ther. 2003;98:59–69. doi: 10.1016/S0163-7258(03)00004-4. PubMed DOI
Jooste E, Klafter F, Hirshman CA, Emala CW. A mechanism for rapacuronium-induced bronchospasm: M2 muscarinic receptor antagonism. Anesthesiology. 2003;98:906–911. doi: 10.1097/00000542-200304000-00017. PubMed DOI
Jooste EH, Sharma A, Zhang Y, Emala CW. Rapacuronium augments acetylcholine-induced bronchoconstriction via positive allosteric interactions at the M3 muscarinic receptor. Anesthesiology. 2005;103:1195–1203. doi: 10.1097/00000542-200512000-00014. PubMed DOI
Jooste E, Zhang Y, Emala CW. Neuromuscular blocking agents" differential bronchoconstrictive potential in guinea pig airways. Anesthesiology. 2007;106:763–772. doi: 10.1097/01.anes.0000264763.48920.c9. PubMed DOI
Jakubík J, Bačáková L, El-Fakahany EE, Tuček S. Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors. Mol Pharmacol. 1997;52:172–179. PubMed
Jakubík J, El-Fakahany EE, Doležal V. Differences in kinetics of xanomeline binding and selectivity of activation of G proteins at M(1) and M(2) muscarinic acetylcholine receptors. Mol Pharmacol. 2006;70:656–666. doi: 10.1124/mol.106.023762. PubMed DOI
Ellis J, Huyler J, Brann MR. Allosteric regulation of cloned m1-m5 muscarinic receptor subtypes. Biochem Pharmacol. 1991;42:1927–1932. doi: 10.1016/0006-2952(91)90591-R. PubMed DOI
Jakubík J, Bačáková L, el-Fakahany EE, Tuček S. Subtype selectivity of the positive allosteric action of alcuronium at cloned m1-m5 muscarinic acetylcholine receptors. J Pharmacol Exp Ther. 1995;274:1077–1083. PubMed
Jakubík J, Bačáková L, el-Fakahany EE, Tuček S. Constitutive activity of the m1-m4 subtypes of muscarinic receptors in transfected cho cells and of muscarinic receptors in the heart cells revealed by negative antagonists. FEBS Lett. 1995;377:275–279. doi: 10.1016/0014-5793(95)01360-1. PubMed DOI
Spalding TA, Burstein ES. Constitutive activity of muscarinic acetylcholine receptors. J Recept Signal Transduct Res. 2006;26:61–85. doi: 10.1080/10799890600567349. PubMed DOI
Jakubík J, Haga T, Tuček S. Effects of an agonist, allosteric modulator, and antagonist on guanosine-gamma-[35S]thiotriphosphate binding to liposomes with varying muscarinic receptor/Go protein stoichiometry. Mol Pharmacol. 1998;54:899–906. PubMed
Jakubík J, Bačáková L, Lisá V, el-Fakahany EE, Tuček S. Activation of muscarinic acetylcholine receptors via their allosteric binding sites. Proc Natl Acad Sci USA. 1996;93:8705–8709. doi: 10.1073/pnas.93.16.8705. PubMed DOI PMC
Haga K, Haga T, Ichiyama A. Reconstitution of the muscarinic acetylcholine receptor: Guanine nucleotide-sensitive high affinity binding of agonists to purified muscarinic receptors reconstituted with GTP-binding proteins (Gi and Go) J Biol Chem. 1986;261:10133–10140. PubMed
Gurwitz D, Kloog Y, Sokolovsky M. High affinity binding of [3H]acetylcholine to muscarinic receptors: Regional distribution and modulation by guanine nucleotides. Mol Pharmacol. 1985;28:297–305. PubMed
Seifert R, Wenzel-Seifert K, Gether U, Kobilka BK. Functional differences between full and partial agonists: evidence for ligand-specific receptor conformations. J Pharmacol Exp Ther. 2001;297:1218–1226. PubMed
Ayoub MA, Couturier C, Lucas-Meunier E, Angers S, Fossier P, Bouvier M, Jockers R. Monitoring of ligand-independent dimerization and ligand-induced conformational changes of melatonin receptors in living cells by bioluminescence resonance energy transfer. J Biol Chem. 2002;277:21522–21528. doi: 10.1074/jbc.M200729200. PubMed DOI
Azzi M, Charest PG, Angers S, Rousseau G, Kohout T, Bouvier M, Piñeyro G. Beta-arrestin-mediated activation of MAPK by inverse agonists reveals distinct active conformations for G protein-coupled receptors. Proc Natl Acad Sci USA. 2003;100:11406–11411. doi: 10.1073/pnas.1936664100. PubMed DOI PMC
Birdsall NJ, Farries T, Gharagozloo P, Kobayashi S, Lazareno S, Sugimoto M. Subtype-selective positive cooperative interactions between brucine analogs and acetylcholine at muscarinic receptors: Functional studies. Mol Pharmacol. 1999;55:778–786. PubMed
Langmead CJ, Christopoulos A. Allosteric agonists of 7TM receptors: expanding the pharmacological toolbox. Trends Pharmacol Sci. 2006;27:475–481. doi: 10.1016/j.tips.2006.07.009. PubMed DOI
Schwartz TW, Holst B. Ago-allosteric modulation and other types of allostery in dimeric 7TM receptors. J Recept Signal Transduct Res. 2006;26:107–128. doi: 10.1080/10799890600567570. PubMed DOI
Jakubík J, El-Fakahany EE, Tuček S. Evidence for a tandem two-site model of ligand binding to muscarinic acetylcholine receptors. J Biol Chem. 2000;275:18836–18844. doi: 10.1074/jbc.M000112200. PubMed DOI
Ehlert FJ, Griffin MT. Two-state models and the analysis of the allosteric effect of gallamine at the M2 muscarinic receptor. J Pharmacol Exp Ther. 2008;325:1039–1060. doi: 10.1124/jpet.108.136960. PubMed DOI
Cheng Y, Prusoff WH. Relationship between the inhibition constant (k1) and the concentration of inhibitor which causes 50 per cent inhibition (i50) of an enzymatic reaction. Biochem Pharmacol. 1973;22:3099–3108. doi: 10.1016/0006-2952(73)90196-2. PubMed DOI
Ehlert FJ. Estimation of the affinities of allosteric ligands using radioligand binding and pharmacological null methods. Mol Pharmacol. 1988;33:187–194. PubMed
Allosteric Modulation of Muscarinic Acetylcholine Receptors