The Effect of Mycotoxins and Silymarin on Liver Lipidome of Mice with Non-Alcoholic Fatty Liver Disease
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
34827721
PubMed Central
PMC8615755
DOI
10.3390/biom11111723
PII: biom11111723
Knihovny.cz E-zdroje
- Klíčová slova
- lipidome, mass spectrometry, metabolome, mice liver, mycotoxins, silymarin,
- MeSH
- játra * metabolismus účinky léků MeSH
- lipidomika * MeSH
- metabolismus lipidů účinky léků MeSH
- mykotoxiny * toxicita MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- nealkoholová steatóza jater * metabolismus farmakoterapie chemicky indukované MeSH
- silymarin * farmakologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- mykotoxiny * MeSH
- silymarin * MeSH
Milk thistle-based dietary supplements have become increasingly popular. The extract from milk thistle (Silybum marianum) is often used for the treatment of liver diseases because of the presence of its active component, silymarin. However, the co-occurrence of toxic mycotoxins in these preparations is quite frequent as well. The objective of this study was to investigate the changes in composition of liver lipidome and other clinical characteristics of experimental mice fed by a high-fat methionine-choline deficient diet inducing non-alcoholic fatty liver disease. The mice were exposed to (i) silymarin, (ii) mycotoxins (trichothecenes, enniatins, beauvericin, and altertoxins) and (iii) both silymarin and mycotoxins, and results were compared to the controls. The liver tissue extracts were analyzed by ultra-high performance liquid chromatography coupled with high-resolution tandem mass spectrometry. Using tools of univariate and multivariate statistical analysis, we were able to identify 48 lipid species from the classes of diacylglycerols, triacylglycerols, free fatty acids, fatty acid esters of hydroxy fatty acids and phospholipids clearly reflecting the dysregulation of lipid metabolism upon exposure to mycotoxin and/or silymarin.
Institute for Clinical and Experimental Medicine 140 21 Prague Czech Republic
Institute of Molecular Genetics of the Czech Academy of Sciences 142 20 Prague Czech Republic
Zobrazit více v PubMed
Fenclova M., Novakova A., Viktorova J., Jonatova P., Dzuman Z., Ruml T., Kren V., Hajslova J., Vitek L., Stranska-Zachariasova M. Poor Chemical and Microbiological Quality of the Commercial Milk Thistle-Based Dietary Supplements May Account for Their Reported Unsatisfactory and Non-Reproducible Clinical Outcomes. Sci. Rep. 2019;9:11118. doi: 10.1038/s41598-019-47250-0. PubMed DOI PMC
Peraica M., Radić B., Lucić A., Pavlović M. Toxic Effects of Mycotoxins in Humans. Bull. World Health Organ. 1999;77:754–766. PubMed PMC
Ahmed Adam M.A., Tabana Y.M., Musa K.B., Sandai D.A. Effects of Different Mycotoxins on Humans, Cell Genome and Their Involvement in Cancer (Review) Oncol. Rep. 2017;37:1321–1336. doi: 10.3892/or.2017.5424. PubMed DOI
Prosperini A., Berrada H., Ruiz M.J., Caloni F., Coccini T., Spicer L.J., Perego M.C., Lafranconi A. A Review of the Mycotoxin Enniatin B. Front. Public Health. 2017;5:304. doi: 10.3389/fpubh.2017.00304. PubMed DOI PMC
Tralamazza S.M., Piacentini K.C., Iwase C.H.T., Rocha L. de O. Toxigenic Alternaria Species: Impact in Cereals Worldwide. Curr. Opin. Food Sci. 2018;23:57–63. doi: 10.1016/j.cofs.2018.05.002. DOI
Marín S., Cano-Sancho G., Sanchis V., Ramos A.J. The Role of Mycotoxins in the Human Exposome: Application of Mycotoxin Biomarkers in Exposome-Health Studies. Food Chem. Toxicol. 2018;121:504–518. doi: 10.1016/j.fct.2018.09.039. PubMed DOI
Belser-Ehrlich S., Harper A., Hussey J., Hallock R. Human and Cattle Ergotism since 1900: Symptoms, Outbreaks, and Regulations. Toxicol. Ind. Health. 2013;29:307–316. doi: 10.1177/0748233711432570. PubMed DOI
Krishnamachari K.A., Bhat R.V., Nagarajan V., Tilak T.B. Hepatitis Due to Aflatoxicosis. An Outbreak in Western India. Lancet. 1975;1:1061–1063. doi: 10.1016/S0140-6736(75)91829-2. PubMed DOI
Meggs W.J. Epidemics of Mold Poisoning Past and Present. Toxicol. Ind. Health. 2009;25:571–576. doi: 10.1177/0748233709348277. PubMed DOI
Marin S., Ramos A.J., Cano-Sancho G., Sanchis V. Mycotoxins: Occurrence, Toxicology, and Exposure Assessment. Food Chem. Toxicol. 2013;60:218–237. doi: 10.1016/j.fct.2013.07.047. PubMed DOI
Eshelli M., Qader M.M., Jambi E.J., Hursthouse A.S., Rateb M.E. Current Status and Future Opportunities of Omics Tools in Mycotoxin Research. Toxins. 2018;10:433. doi: 10.3390/toxins10110433. PubMed DOI PMC
Liu G., Yan T., Wang J., Huang Z., Chen X., Jia G., Wu C., Zhao H., Xue B., Xiao L., et al. Biological System Responses to Zearalenone Mycotoxin Exposure by Integrated Metabolomic Studies. J. Agric. Food Chem. 2013;61:11212–11221. doi: 10.1021/jf403401v. PubMed DOI
Ji J., Zhu P., Cui F., Pi F., Zhang Y., Li Y., Wang J., Sun X. The Antagonistic Effect of Mycotoxins Deoxynivalenol and Zearalenone on Metabolic Profiling in Serum and Liver of Mice. Toxins. 2017;9:28. doi: 10.3390/toxins9010028. PubMed DOI PMC
Ji J., Zhu P., Blaženović I., Cui F., Gholami M., Sun J., Habimana J., Zhang Y., Sun X. Explaining Combinatorial Effects of Mycotoxins Deoxynivalenol and Zearalenone in Mice with Urinary Metabolomic Profiling. Sci. Rep. 2018;8:3762. doi: 10.1038/s41598-018-21555-y. PubMed DOI PMC
Szabó A., Szabó-Fodor J., Fébel H., Mézes M., Balogh K., Bázár G., Kocsó D., Ali O., Kovács M. Individual and Combined Effects of Fumonisin B1, Deoxynivalenol and Zearalenone on the Hepatic and Renal Membrane Lipid Integrity of Rats. Toxins. 2017;10:4. doi: 10.3390/toxins10010004. PubMed DOI PMC
Smith M.-C., Hymery N., Troadec S., Pawtowski A., Coton E., Madec S. Hepatotoxicity of Fusariotoxins, Alone and in Combination, towards the HepaRG Human Hepatocyte Cell Line. Food Chem. Toxicol. 2017;109:439–451. doi: 10.1016/j.fct.2017.09.022. PubMed DOI
Grenier B., Oswald I. Mycotoxin Co-Contamination of Food and Feed: Meta-Analysis of Publications Describing Toxicological Interactions. World Mycotoxin J. 2011;4:285–313. doi: 10.3920/WMJ2011.1281. DOI
Alassane-Kpembi I., Kolf-Clauw M., Gauthier T., Abrami R., Abiola F.A., Oswald I.P., Puel O. New Insights into Mycotoxin Mixtures: The Toxicity of Low Doses of Type B Trichothecenes on Intestinal Epithelial Cells Is Synergistic. Toxicol. Appl. Pharmacol. 2013;272:191–198. doi: 10.1016/j.taap.2013.05.023. PubMed DOI
Veprikova Z., Zachariasova M., Dzuman Z., Zachariasova A., Fenclova M., Slavikova P., Vaclavikova M., Mastovska K., Hengst D., Hajslova J. Mycotoxins in Plant-Based Dietary Supplements: Hidden Health Risk for Consumers. J. Agric. Food Chem. 2015;63:6633–6643. doi: 10.1021/acs.jafc.5b02105. PubMed DOI
Chambers C.S., Holečková V., Petrásková L., Biedermann D., Valentová K., Buchta M., Křen V. The Silymarin Composition… and Why Does It Matter??? Food Res. Int. 2017;100:339–353. doi: 10.1016/j.foodres.2017.07.017. PubMed DOI
Khatoon A., Khan M.Z., Khan A., Saleemi M.K., Javed I. Amelioration of Ochratoxin A-Induced Immunotoxic Effects by Silymarin and Vitamin E in White Leghorn Cockerels. J. Immunotoxicol. 2013;10:25–31. doi: 10.3109/1547691X.2012.686533. PubMed DOI
Sozmen M., Devrim A.K., Tunca R., Bayezit M., Dag S., Essiz D. Protective Effects of Silymarin on Fumonisin B1-Induced Hepatotoxicity in Mice. J. Vet. Sci. 2014;15:51–60. doi: 10.4142/jvs.2014.15.1.51. PubMed DOI PMC
Naseer O., Khan J.A., Khan M.S., Omer M.O., Chishti G.A., Sohail M.L., Saleem M.U. Comparative Efficacy of Silymarin and Choline Chloride (Liver Tonics) in Preventing the Effects of Aflatoxin B1 in Bovine Calves. Pol. J. Vet. Sci. 2016;19 doi: 10.1515/pjvs-2016-0068. PubMed DOI
Khaleghipour B., Khosravinia H., Toghiyani M., Azarfar A. Efficacy of Silymarin-Nanohydrogle Complex in Attenuation of Aflatoxins Toxicity in Japanese Quails. Ital. J. Anim. Sci. 2020;19:351–359. doi: 10.1080/1828051X.2020.1743782. DOI
El-Sheshtawy S.M., El-Zoghby A.F., Shawky N.A., Samak D.H. Aflatoxicosis in Pekin Duckling and the Effects of Treatments with Lycopene and Silymarin. Vet. World. 2021;14:788–793. doi: 10.14202/vetworld.2021.788-793. PubMed DOI PMC
Egresi A., Süle K., Szentmihályi K., Blázovics A., Fehér E., Hagymási K., Fébel H. Impact of Milk Thistle (Silybum Marianum) on the Mycotoxin Caused Redox-Homeostasis Imbalance of Ducks Liver. Toxicon. 2020;187:181–187. doi: 10.1016/j.toxicon.2020.09.002. PubMed DOI
Raj J., Vasiljević M., Tassis P., Farkaš H., Männer K. Efficacy of a Multicomponent Mycotoxin Detoxifying Agent on Concurrent Exposure to Zearalenone and T-2 Mycotoxin in Weaned Pigs. Livest. Sci. 2020;242:104295. doi: 10.1016/j.livsci.2020.104295. DOI
Viktorova J., Stranska-Zachariasova M., Fenclova M., Vitek L., Hajslova J., Kren V., Ruml T. Complex Evaluation of Antioxidant Capacity of Milk Thistle Dietary Supplements. Antioxidants. 2019;8:317. doi: 10.3390/antiox8080317. PubMed DOI PMC
Šuk J., Jašprová J., Biedermann D., Petrásková L., Valentová K., Křen V., Muchová L., Vítek L. Isolated Silymarin Flavonoids Increase Systemic and Hepatic Bilirubin Concentrations and Lower Lipoperoxidation in Mice. Oxid. Med. Cell. Longev. 2019;2019:6026902. doi: 10.1155/2019/6026902. PubMed DOI PMC
Kleiner D.E., Brunt E.M., Van Natta M., Behling C., Contos M.J., Cummings O.W., Ferrell L.D., Liu Y.-C., Torbenson M.S., Unalp-Arida A., et al. Design and Validation of a Histological Scoring System for Nonalcoholic Fatty Liver Disease. Hepatology. 2005;41:1313–1321. doi: 10.1002/hep.20701. PubMed DOI
Koelmel J.P., Kroeger N.M., Ulmer C.Z., Bowden J.A., Patterson R.E., Cochran J.A., Beecher C.W.W., Garrett T.J., Yost R.A. LipidMatch: An Automated Workflow for Rule-Based Lipid Identification Using Untargeted High-Resolution Tandem Mass Spectrometry Data. BMC Bioinform. 2017;18:331. doi: 10.1186/s12859-017-1744-3. PubMed DOI PMC
Svegliati-Baroni G., Pierantonelli I., Torquato P., Marinelli R., Ferreri C., Chatgilialoglu C., Bartolini D., Galli F. Lipidomic Biomarkers and Mechanisms of Lipotoxicity in Non-Alcoholic Fatty Liver Disease. Free Radic. Biol. Med. 2019;144:293–309. doi: 10.1016/j.freeradbiomed.2019.05.029. PubMed DOI
Smith T., Kawa K., Eckl V., Morton C., Stredney R. Herbal Supplement Sales in US Increase 7.7% in 2016 Consumer Preferences Shifing toward Ingredients with General Wellness Benefits, Driving Growth of Adaptogens and Digestive Health Products. HerbalGram. 2017;115:56–65.
Féher J., Lengyel G. Silymarin in the Prevention and Treatment of Liver Diseases and Primary Liver Cancer. Curr. Pharm. Biotechnol. 2012;13:210–217. doi: 10.2174/138920112798868818. PubMed DOI
Zhong S., Fan Y., Yan Q., Fan X., Wu B., Han Y., Zhang Y., Chen Y., Zhang H., Niu J. The Therapeutic Effect of Silymarin in the Treatment of Nonalcoholic Fatty Disease: A Meta-Analysis (PRISMA) of Randomized Control Trials. Medicine. 2017;96:e9061. doi: 10.1097/MD.0000000000009061. PubMed DOI PMC
Ferenci P., Scherzer T., Kerschner H., Rutter K., Beinhardt S., Hofer H., Schöniger–Hekele M., Holzmann H., Steindl–Munda P. Silibinin Is a Potent Antiviral Agent in Patients with Chronic Hepatitis C Not Responding to Pegylated Interferon/Ribavirin Therapy. Gastroenterology. 2008;135:1561–1567. doi: 10.1053/j.gastro.2008.07.072. PubMed DOI
Seeff L.B., Bonkovsky H.L., Navarro V.J., Wang G. Herbal Products and the Liver: A Review of Adverse Effects and Mechanisms. Gastroenterology. 2015;148:517–532. doi: 10.1053/j.gastro.2014.12.004. PubMed DOI
de Avelar C.R., Pereira E.M., de Farias Costa P.R., de Jesus R.P., de Oliveira L.P.M. Effect of Silymarin on Biochemical Indicators in Patients with Liver Disease: Systematic Review with Meta-Analysis. World J. Gastroenterol. 2017;23:5004–5017. doi: 10.3748/wjg.v23.i27.5004. PubMed DOI PMC
Fried M.W., Navarro V.J., Afdhal N., Belle S.H., Wahed A.S., Hawke R.L., Doo E., Meyers C.M., Reddy K.R. Silymarin in NASH and C Hepatitis (SyNCH) Study Group Effect of Silymarin (Milk Thistle) on Liver Disease in Patients with Chronic Hepatitis C Unsuccessfully Treated with Interferon Therapy: A Randomized Controlled Trial. JAMA. 2012;308:274–282. doi: 10.1001/jama.2012.8265. PubMed DOI PMC
Yang Z., Zhuang L., Lu Y., Xu Q., Chen X. Effects and Tolerance of Silymarin (Milk Thistle) in Chronic Hepatitis C Virus Infection Patients: A Meta-Analysis of Randomized Controlled Trials. Biomed. Res. Int. 2014;2014:941085. doi: 10.1155/2014/941085. PubMed DOI PMC
Chen Y., Lopez S., Hayward D.G., Park H.Y., Wong J.W., Kim S.S., Wan J., Reddy R.M., Quinn D.J., Steiniger D. Determination of Multiresidue Pesticides in Botanical Dietary Supplements Using Gas Chromatography–Triple-Quadrupole Mass Spectrometry (GC-MS/MS) J. Agric. Food Chem. 2016;64:6125–6132. doi: 10.1021/acs.jafc.6b00746. PubMed DOI
Nardin T., Piasentier E., Barnaba C., Larcher R. Targeted and Untargeted Profiling of Alkaloids in Herbal Extracts Using Online Solid-Phase Extraction and High-Resolution Mass Spectrometry (Q-Orbitrap) J. Mass Spectrom. 2016;51:729–741. doi: 10.1002/jms.3838. PubMed DOI
Tournas V.H., Rivera Calo J., Sapp C. Fungal Profiles in Various Milk Thistle Botanicals from US Retail. Int. J. Food Microbiol. 2013;164:87–91. doi: 10.1016/j.ijfoodmicro.2013.03.026. PubMed DOI
Arroyo-Manzanares N., García-Campaña A.M., Gámiz-Gracia L. Multiclass Mycotoxin Analysis in Silybum Marianum by Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry Using a Procedure Based on QuEChERS and Dispersive Liquid-Liquid Microextraction. J. Chromatogr. A. 2013;1282:11–19. doi: 10.1016/j.chroma.2013.01.072. PubMed DOI
Tournas V.H., Sapp C., Trucksess M.W. Occurrence of Aflatoxins in Milk Thistle Herbal Supplements. Food Addit. Contam. Part A. 2012;29:994–999. doi: 10.1080/19440049.2012.664788. PubMed DOI
Gorden D.L., Myers D.S., Ivanova P.T., Fahy E., Maurya M.R., Gupta S., Min J., Spann N.J., McDonald J.G., Kelly S.L., et al. Biomarkers of NAFLD Progression: A Lipidomics Approach to an Epidemic1. J. Lipid Res. 2015;56:722–736. doi: 10.1194/jlr.P056002. PubMed DOI PMC
Mayo R., Crespo J., Martínez-Arranz I., Banales J.M., Arias M., Mincholé I., Aller de la Fuente R., Jimenez-Agüero R., Alonso C., de Luis D.A., et al. Metabolomic-based Noninvasive Serum Test to Diagnose Nonalcoholic Steatohepatitis: Results from Discovery and Validation Cohorts. Hepatol. Commun. 2018;2:807–820. doi: 10.1002/hep4.1188. PubMed DOI PMC
Mato J., Alonso C., Noureddin M., Lu S. Biomarkers and Subtypes of Deranged Lipid Metabolism in Non-Alcoholic Fatty Liver Disease. World J. Gastroenterol. 2019;25:3009–3020. doi: 10.3748/wjg.v25.i24.3009. PubMed DOI PMC
Gorden D.L., Ivanova P.T., Myers D.S., McIntyre J.O., VanSaun M.N., Wright J.K., Matrisian L.M., Brown H.A. Increased Diacylglycerols Characterize Hepatic Lipid Changes in Progression of Human Nonalcoholic Fatty Liver Disease; Comparison to a Murine Model. PLoS ONE. 2011;6:e22775. doi: 10.1371/journal.pone.0022775. PubMed DOI PMC
Ma D.W.L., Arendt B.M., Hillyer L.M., Fung S.K., McGilvray I., Guindi M., Allard J.P. Plasma Phospholipids and Fatty Acid Composition Differ between Liver Biopsy-Proven Nonalcoholic Fatty Liver Disease and Healthy Subjects. Nutr. Diabetes. 2016;6:e220. doi: 10.1038/nutd.2016.27. PubMed DOI PMC
Anjani K., Lhomme M., Sokolovska N., Poitou C., Aron-Wisnewsky J., Bouillot J.-L., Lesnik P., Bedossa P., Kontush A., Clement K., et al. Circulating Phospholipid Profiling Identifies Portal Contribution to NASH Signature in Obesity. J. Hepatol. 2015;62:905–912. doi: 10.1016/j.jhep.2014.11.002. PubMed DOI
Birerdinc A., Younossi Z. Can NASH Lipidome Provide Insight into the Pathogenesis of Obesity-Related Non-Alcoholic Fatty Liver Disease? J. Hepatol. 2015;62 doi: 10.1016/j.jhep.2015.01.005. PubMed DOI
Montefusco D.J., Allegood J.C., Spiegel S., Cowart L.A. Non-Alcoholic Fatty Liver Disease: Insights from Sphingolipidomics. Biochem. Biophys. Res. Commun. 2018;504:608–616. doi: 10.1016/j.bbrc.2018.05.078. PubMed DOI PMC
Nikolova-Karakashian M. Sphingolipids at the Crossroads of NAFLD and Senescence. Adv. Cancer Res. 2018;140:155–190. doi: 10.1016/bs.acr.2018.05.002. PubMed DOI
Bony S., Carcelen M., Olivier L., Devaux A. Genotoxicity Assessment of Deoxynivalenol in the Caco-2 Cell Line Model Using the Comet Assay. Toxicol. Lett. 2006;166:67–76. doi: 10.1016/j.toxlet.2006.04.010. PubMed DOI
Da Silva E.O., Bracarense A.P., Oswald I.P. Mycotoxins and Oxidative Stress: Where Are We? World Mycotoxin J. 2018;11:113–134. doi: 10.3920/WMJ2017.2267. DOI
Wu Q.-H., Wang X., Yang W., Nüssler A.K., Xiong L.-Y., Kuča K., Dohnal V., Zhang X.-J., Yuan Z.-H. Oxidative Stress-Mediated Cytotoxicity and Metabolism of T-2 Toxin and Deoxynivalenol in Animals and Humans: An Update. Arch. Toxicol. 2014;88:1309–1326. doi: 10.1007/s00204-014-1280-0. PubMed DOI
Ferrer E., Juan-García A., Font G., Ruiz M.J. Reactive Oxygen Species Induced by Beauvericin, Patulin and Zearalenone in CHO-K1 Cells. Toxicol. Vitro. 2009;23:1504–1509. doi: 10.1016/j.tiv.2009.07.009. PubMed DOI