In Situ Gel with Silver Nanoparticles Prepared Using Agrimonia eupatoria L. Shows Antibacterial Activity

. 2023 Feb 17 ; 13 (2) : . [epub] 20230217

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36836930

Grantová podpora
VEGA 2/0112/22 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
VEGA 1/0731/21 Vedecká Grantová Agentúra MŠVVaŠ SR a SAV
ITMS 26210120028 Ministry of Education, Science, Research and Sport of the Slovak Republic
APVV-18-0357 Slovak Research and Development Agency

Silver nanoparticles (Ag NPs) with antibacterial activity can be prepared in different ways. In our case, we used ecological green synthesis with Agrimonia eupatoria L. The plant extract was used with Ag NPs for the first time to prepare termosensitive in situ gels (ISGs). Such gels are used to heal human or animal skin and mucous membranes, as they can change from a liquid to solid state after application. Ag NPs were characterized with various techniques (FTIR, TEM, size distribution, zeta potential) and their antibacterial activity was tested against Staphylococcus aureus and Escherichia coli. In accordance with the TEM data, we prepared monodispersed spherical Ag NPs with an average size of about 20 nm. Organic active compounds from Agrimonia eupatoria L. were found on their surfaces using FTIR spectroscopy. Surprisingly, only the in situ gel with Ag NPs showed antibacterial activity against Escherichia coli, while Ag NPs alone did not. Ag NPs prepared via green synthesis using plants with medicinal properties and incorporated into ISGs have great potential for wound healing due to the antibacterial activity of Ag NPs and the dermatological activity of organic substances from plants.

Zobrazit více v PubMed

Cui H., You Y., Cheng G.W., Lan Z., Zou K.L., Mai Q.Y., Han Y.H., Chen H., Zhao Y.Y., Yu G.T. Advanced materials and technologies for oral diseases. Sci. Technol. Adv. Mater. 2023;24:1. doi: 10.1080/14686996.2022.2156257. PubMed DOI PMC

Sastri T.K., Gupta V.N., Chakraborty S., Madhusudhan S., Kumar H., Chand P., Jain V., Veeranna B., Gowda D.V. Novel Gels: An Emerging Approach for Delivering of Therapeutic Molecules and Recent Trends. Gels. 2022;8:316. doi: 10.3390/gels8050316. PubMed DOI PMC

Nguyen Q.V., Huynh D.P., Park J.H., Lee D.S. Injectable polymeric hydrogels for the delivery of therapeutic agents: A review. Eur. Polym. J. 2015;72:602–619. doi: 10.1016/j.eurpolymj.2015.03.016. DOI

Zahir-Jouzdani F., Wolf J.D., Atyabi F., Bernkop-Schnurch A. In situ gelling and mucoadhesive polymers: Why do they need each other? Expert Opin. Drug Deliv. 2018;15:1007–1019. doi: 10.1080/17425247.2018.1517741. PubMed DOI

Baláž M., Daneu N., Balážová Ľ., Dutková E., Tkáčiková Ľ., Briančin J., Vargová M., Balážová M., Zorkovská A., Baláž P. Bio-mechanochemical synthesis of silver nanoparticles with antibacterial activity. Adv. Powder Technol. 2017;28:3307–3312. doi: 10.1016/j.apt.2017.09.028. DOI

Shalabayev Z., Baláž M., Daneu N., Dutková E., Bujňáková Z., Kaňuchová M., Danková Z., Balážová Ľ., Urakaev F., Tkáčiková L., et al. Sulfur-Mediated Mechanochemical Synthesis of Spherical and Needle-like Copper Sulfide Nanocrystals with Antibacterial Activity. ACS Sustain. Chem. Eng. 2019;7:12897–12909. doi: 10.1021/acssuschemeng.9b01849. DOI

Baláž M., Balážová Ľ., Daneu N., Dutková E., Balážová M., Bujňáková Z., Shpotyuk Y. Plant-mediated synthesis of silver nanoparticles and their stabilization by wet stirred media milling. Nanoscale Res. Lett. 2017;12:1–9. doi: 10.1186/s11671-017-1860-z. PubMed DOI PMC

Kharissova O.V., Dias H.V.R., Kharisov B.I., Perez B.O., Perez V.M.J. The greener synthesis of nanoparticles. Trends Biotechnol. 2013;31:240–248. doi: 10.1016/j.tibtech.2013.01.003. PubMed DOI

Akyuz G., Kaymazlar E., Ay H., Andac M., Andac O. Use of Silver Nanoparticles Loaded Locust Bean Gum Coatings to Extend the Shelf-Life of Fruits. Biointerface Res. Appl. Chem. 2023;13:3.

Saravanan M., Arokiyaraj S., Lakshmi T., Pugazhendhi A. Synthesis of silver nanoparticles from Phenerochaete chrysosporium (MTCC-787) and their antibacterial activity against human pathogenic bacteria. Microb. Pathog. 2018;117:68–72. doi: 10.1016/j.micpath.2018.02.008. PubMed DOI

Saravanan M., Barik S.K., MubarakAli D., Prakash P., Pugazhendhi A. Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb. Pathog. 2018;116:221–226. doi: 10.1016/j.micpath.2018.01.038. PubMed DOI

Iqbal S., Khan F.A., Haris A., Mozuraitis R., Binyameen M., Azeem M. Essential oils of four wild plants inhibit the blood seeking behaviour of female Aedes aegytpi. Exp. Parasitol. 2023;244:108424. doi: 10.1016/j.exppara.2022.108424. PubMed DOI

Malheiros J., Simoes D.M., Figueirinha A., Cotrim M.D., Fonseca D.A. Agrimonia eupatoria L.: An integrative perspective on ethnomedicinal use, phenolic composition and pharmacological activity. J. Ethnopharmacol. 2022;296:115498. doi: 10.1016/j.jep.2022.115498. PubMed DOI

Santos T.N., Costa G., Ferreira J.P., Liberal J., Francisco V., Paranhos A., Cruz M.T., Castelo-Branco M., Figueiredo I.V., Batista M.T. Antioxidant, Anti-Inflammatory, and Analgesic Activities of Agrimonia eupatoria L. Infusion. Evid.-Based Complement. Altern. Med. 2017;2017:8309894. doi: 10.1155/2017/8309894. PubMed DOI PMC

Paluch Z., Biriczova L., Pallag G., Marques E.C., Vargova N., Kmonickova E. The Therapeutic Effects of Agrimonia eupatoria L. Physiol. Res. 2020;69:S555–S571. doi: 10.33549/physiolres.934641. PubMed DOI PMC

Singleton V.L., Rossi J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965;3:144–158.

Lamaison J.L., Carnat A. Levels of principal flavonoids in flowers and leaves of Crataegus monogyna Jacq and Crataegus laevigata (Poiret) dc (Rosaceae) Pharm. Acta Helv. 1990;65:315–320.

The Polish Farmaceutical Society . Farmakopea Polska V. Vol. 5 Polskie Towarzystwo Farmaceutyczne; Warsaw, Poland: 1999.

Sadeer N.B., Montesano D., Albrizio S., Zengin G., Mahomoodally M.F. The Versatility of Antioxidant Assays in Food Science and Safety-Chemistry, Applications, Strengths, and Limitations. Antioxidants. 2020;9:709. doi: 10.3390/antiox9080709. PubMed DOI PMC

Schmolka I.R. Artificial skin. 1. Preparation and properties of pluronic F-127 gels for treatment of burns. J. Biomed. Mater. Res. 1972;6:571–582. doi: 10.1002/jbm.820060609. PubMed DOI

Rojas J.J., Ochoa V.J., Ocampo S.A., Muñoz J.F. Screening for antimicrobial activity of ten medicinal plants used in Colombian folkloric medicine: A possible alternative in the treatment of non-nosocomial infections. BMC Complement. Altern. Med. 2006;6:1–6. doi: 10.1186/1472-6882-6-2. PubMed DOI PMC

Tomiq V., Eftimová J., Petrovič V. Influence of different extraction agents on the total polyphenol content, antioxidant activity and toxicity of Agrimonia eupatoria L. extracts. Folia Pharm. Cassoviensia. 2022;4:62–73.

Granica S., Krupa K., Klebowska A., Kiss A.K. Development and validation of HPLC-DAD-CAD-MS3 method for qualitative and quantitative standardization of polyphenols in Agrimoniae eupatoriae herba (Ph. Eur) J. Pharm. Biomed. Anal. 2013;86:112–122. doi: 10.1016/j.jpba.2013.08.006. PubMed DOI

Granica S., Kluge H., Horn G., Matkowski A., Kiss A.K. The phytochemical investigation of Agrimonia eupatoria L. and Agrimonia procera Wallr. as valid sources of Agrimoniae herba—The pharmacopoeial plant material. J. Pharm. Biomed. Anal. 2015;114:272–279. doi: 10.1016/j.jpba.2015.05.027. PubMed DOI

Kuczmannova A., Gal P., Varinska L., Treml J., Kovac I., Novotny M., Vasilenko T., Dall’Acqua S., Nagy M., Mucaji P. Agrimonia eupatoria L. and Cynara cardunculus L. water infusions: Phenolic profile and comparison of antioxidant activities. Molecules. 2015;20:20538–20550. doi: 10.3390/molecules201119715. PubMed DOI PMC

Kubinova R., Svajdlenka E., Jankovska D. Anticholinesterase, antioxidant activity and phytochemical investigation into aqueous extracts from five species of Agrimonia genus. Nat. Prod. Res. 2016;30:1174–1177. doi: 10.1080/14786419.2015.1043552. PubMed DOI

Pukalskiene M., Slapsyte G., Dedonyte V., Lazutka J.R., Mierauskiene J., Venskutonis P.R. Genotoxicity and antioxidant activity of five Agrimonia and Filipendula species plant extracts evaluated by comet and micronucleus assays in human lymphocytes and Ames Salmonella/microsome test. Food Chem. Toxicol. 2018;113:303–313. doi: 10.1016/j.fct.2017.12.031. PubMed DOI

Venskutonis P.R., Skemaite M., Sivik B. Assessment of radical scavenging capacity of Agrimonia extracts isolated by supercritical carbon dioxide. J. Supercrit. Fluids. 2008;45:231–237. doi: 10.1016/j.supflu.2008.01.012. DOI

Bilia A.R., Palme E., Marsili A., Pistelli L., Morelli I. A flavonol glycoside from Agrimonia eupatoria. Phytochemistry. 1993;32:1078–1079. doi: 10.1016/0031-9422(93)85262-P. DOI

Turker A.U., Yildirim A.B., Tas I., Ozkan E., Turker H. Evaluation of some traditional medicinal plants: Phytochemical profile, antibacterial and antioxidant potentials. Rom. Biotechnol. Lett. 2021;26:2499–2510. doi: 10.25083/rbl/26.2/2499.2510. DOI

Huzio N., Grytsyk A., Raal A., Grytsyk L., Koshovyi O. Phytochemical and pharmacological research in Agrimonia eupatoria L. herb extract with anti-inflammatory and hepatoprotective properties. Plants. 2022;11:2371. doi: 10.3390/plants11182371. PubMed DOI PMC

Patil M.P., Seo Y.B., Kim G.D. Morphological changes of bacterial cells upon exposure of silver-silver chloride nanoparticles synthesized using Agrimonia pilosa. Microb. Pathog. 2018;116:84–90. doi: 10.1016/j.micpath.2018.01.018. PubMed DOI

Balážová Ľ., Čižmárová A., Baláž M., Daneu N., Salayová A., Bedlovičová Z., Tkáčiková Ľ. Green Synthesis of Silver Nanoparticles and Their Antibacterial Activity. Chem. Listy. 2022;116:135–140. doi: 10.54779/chl20220135. DOI

Kováčová M., Daneu N., Tkáčiková Ľ., Dutkova E., Lukáčová Bujňáková Z., Baláž M. Sustainable one-step solid-state synthesis of antibacterially active silver nanoparticles using mechanochemistry. Nanomaterials. 2020;10:2119. doi: 10.3390/nano10112119. PubMed DOI PMC

Mulvaney P. Surface plasmon spectroscopy of nanosized metal particles. Langmuir. 1996;12:788–800. doi: 10.1021/la9502711. DOI

Yang N., Li W.H. Mango peel extract mediated novel route for synthesis of silver nanoparticles and antibacterial application of silver nanoparticles loaded onto non-woven fabrics. Ind. Crops Prod. 2013;48:81–88. doi: 10.1016/j.indcrop.2013.04.001. DOI

Moopantakath J., Imchen M., Sreevalsan A., Siddhardha B., Martinez-Espinosa R.M., Kumavath R. Biosynthesis of Silver Chloride Nanoparticles (AgCl-NPs) from Extreme Halophiles and Evaluation of Their Biological Applications. Curr. Microbiol. 2022;79:9. doi: 10.1007/s00284-022-02970-x. PubMed DOI

Boonupara T., Kajitvichyanukul P. Facile synthesis of plasmonic Ag/AgCl nanoparticles with aqueous garlic extract (Allium Sativum L.) for visible-light triggered antibacterial activity. Mater. Lett. 2020;277:128362. doi: 10.1016/j.matlet.2020.128362. DOI

Hassan K.T., Ibraheem I.J., Hassan O.M., Obaid A.S., Ali H.H., Salih T.A., Kadhim M.S. Facile green synthesis of Ag/AgCl nanoparticles derived from Chara algae extract and evaluating their antibacterial activity and synergistic effect with antibiotics. J. Environ. Chem. Eng. 2021;9:4. doi: 10.1016/j.jece.2021.105359. DOI

Royji Albeladi S.S., Malik M.A., Al-Thabaiti S.A. Facile biofabrication of silver nanoparticles using Salvia officinalis leaf extract and its catalytic activity towards Congo red dye degradation. J. Mater. Res. Technol. 2020;9:10031–10044. doi: 10.1016/j.jmrt.2020.06.074. DOI

Szydłowska-Czerniak A., Tułodziecka A., Szłyk E. A silver nanoparticle-based method for determination of antioxidant capacity of rapeseed and its products. Analyst. 2012;137:3750–3759. doi: 10.1039/c2an35326a. PubMed DOI

Liu W.J., Hou X.Q., Chen H., Liang J.Y., Sun J.B. Chemical constituents from Agrimonia pilosa Ledeb. and their chemotaxonomic significance. Nat. Prod. Res. 2016;30:2495–2499. doi: 10.1080/14786419.2016.1198351. PubMed DOI

Bhutto A.A., Kalay Ş., Sherazi S.T.H., Culha M. Quantitative structure–activity relationship between antioxidant capacity of phenolic compounds and the plasmonic properties of silver nanoparticles. Talanta. 2018;189:174–181. doi: 10.1016/j.talanta.2018.06.080. PubMed DOI

Shabana M., Werglarz Z., Geszprych A., Mansour R., El-Ansaei M. Phenolic constituents of agrimony (Agrimonia eupatoria L.) herb. Herba Pol. 2003;49:24–28.

Lee K.Y., Hwang L., Jeong E.J., Kim S.H., Kim Y.C., Sung S.H. Effect of Neuroprotective Flavonoids of Agrimonia eupatoria on Glutamate-Induced Oxidative Injury to HT22 Hippocampal Cells. Biosci. Biotechnol. Biochem. 2010;74:1704–1706. doi: 10.1271/bbb.100200. PubMed DOI

Al-Snafi A. The pharmacological and therapeutic importance of Agrimonia eupatoria—A review. Asian J. Pharm. Sci. Technol. 2015;5:112–117.

Le Men J., Pourrat H. Répartition de L’acide Ursolique dans les Feuilles de Diverses Rosacées. Travaux Des Laboratoires de Matière Médicale et de Pharmacie Galénique de La Faculté de Pharmacie de Paris la Cour d’Appel; Paris, France: 1955. p. 4. Acide Ursolique (Cinquième Mémoire)

Giuliano E., Paolino D., Fresta M., Cosco D. Mucosal Applications of Poloxamer 407-Based Hydrogels: An Overview. Pharmaceutics. 2018;10:159. doi: 10.3390/pharmaceutics10030159. PubMed DOI PMC

Bain M.K., Bhowmick B., Maity D., Mondal D., Mollick M.M.R., Rana D., Chattopadhyay D. Synergistic effect of salt mixture on the gelation temperature and morphology of methylcellulose hydrogel. Int. J. Biol. Macromol. 2012;51:831–836. doi: 10.1016/j.ijbiomac.2012.07.028. PubMed DOI

Boonrat O., Tantishaiyakul V., Hirun N. Micellization and gelation characteristics of different blends of pluronic F127/methylcellulose and their use as mucoadhesive in situ gel for periodontitis. Polym. Bull. 2022;79:4515–4534. doi: 10.1007/s00289-021-03722-w. DOI

Zhu Z.L., Zhai Y.L., Zhang N., Leng D.L., Ding P.T. The development of polycarbophil as a bioadhesive material in pharmacy. Asian J. Pharm. Sci. 2013;8:218–227. doi: 10.1016/j.ajps.2013.09.003. DOI

Kulkarni A.S., Dhanwe V.P., Dhumure A.B., Khan A., Shinde V.S., Khanna P.K. In situ formation of silver nanoparticles in thermosensitive glycogels and evaluation of its antibacterial activity. Indian J. Chem. Sect. A-Inorg. Bio-Inorg. Phys. Theor. Anal. Chem. 2016;55:441–446.

Edison T.J.I., Sethuraman M.G. Instant green synthesis of silver nanoparticles using Terminalia chebula fruit extract and evaluation of their catalytic activity on reduction of methylene blue. Process Biochem. 2012;47:1351–1357. doi: 10.1016/j.procbio.2012.04.025. DOI

Sathishkumar M., Rajamanickam A.T., Saroja M. Characterization, antimicrobial activity and photocatalytic degradation properties of pure and biosynthesized zinc sulfide nanoparticles using plant extracts. J. Mater. Sci. Mater. Electron. 2018;29:14200–14209. doi: 10.1007/s10854-018-9553-7. DOI

Izak-Nau E., Huk A., Reidy B., Uggerud H., Vadset M., Eiden S., Voetz M., Himly M., Duschl A., Dusinska M., et al. Impact of storage conditions and storage time on silver nanoparticles’ physicochemical properties and implications for their biological effects. Rsc. Adv. 2015;5:84172–84185. doi: 10.1039/C5RA10187E. DOI

Velgosova O., Cizmarova E., Malek J., Kavulicova J. Effect of storage conditions on long-term stability of Ag nanoparticles formed via green synthesis. Int. J. Miner. Metall. Mater. 2017;24:1177–1182. doi: 10.1007/s12613-017-1508-0. DOI

Wang Y.C., Zheng Y., Zhang L., Wang Q.W., Zhang D.R. Stability of nanosuspensions in drug delivery. J. Control. Release. 2013;172:1126–1141. doi: 10.1016/j.jconrel.2013.08.006. PubMed DOI

Alcantara M.T.S., Lincopan N., Santos P.M., Ramirez P.A., Brant A.J.C., Riella H.G., Lugao A.B. Simultaneous hydrogel crosslinking and silver nanoparticle formation by using ionizing radiation to obtain antimicrobial hydrogels. Radiat. Phys. Chem. 2020;169:108777. doi: 10.1016/j.radphyschem.2020.108777. DOI

Mock J.J., Barbic M., Smith D.R., Schultz D.A., Schultz S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 2002;116:6755–6759. doi: 10.1063/1.1462610. DOI

Muruzovic M.Z., Mladenovic K.G., Stefanovic O.D., Vasic S.M., Comic L.R. Extracts of Agrimonia eupatoria L. as sources of biologically active compounds and evaluation of their antioxidant, antimicrobial, and antibiofilm activities. J. Food Drug Anal. 2016;24:539–547. doi: 10.1016/j.jfda.2016.02.007. PubMed DOI PMC

Watkins F., Pendry B., Sanchez-Medina A., Corcoran O. Antimicrobial assays of three native British plants used in Anglo-Saxon medicine for wound healing formulations in 10th century England. J. Ethnopharmacol. 2012;144:408–415. doi: 10.1016/j.jep.2012.09.031. PubMed DOI

Cardoso O., Donato M.M., Luxo C., Almeida N., Liberal J., Figueirinha A., Batista M.T. Anti-Helicobacter pylori potential of Agrimonia eupatoria L. and Fragaria vesca. J. Funct. Foods. 2018;44:299–303. doi: 10.1016/j.jff.2018.03.027. DOI

Cwikla C., Schmidt K., Matthias A., Bone K.M., Lehmann R., Tiralongo E. Investigations into the Antibacterial Activities of Phytotherapeutics against Helicobacter pylori and Campylobacter jejuni. Phytother. Res. 2010;24:649–656. doi: 10.1002/ptr.2933. PubMed DOI

Komiazyk M., Palczewska M., Sitkiewicz I., Pikula S., Groves P. Neutralization of cholera toxin by Rosaceae family plant extracts. BMC Complement. Altern. Med. 2019;19:140. doi: 10.1186/s12906-019-2540-6. PubMed DOI PMC

Shaaban M.T., Zayed M., Salama H.S. Antibacterial Potential of Bacterial Cellulose Impregnated with Green Synthesized Silver Nanoparticle Against, S. aureus and P. aeruginosa. Curr. Microbiol. 2023;80:2. doi: 10.1007/s00284-023-03182-7. PubMed DOI PMC

Vijayakumar G., Kim H.J., Rangarajulu S.K. In Vitro Antibacterial and Wound Healing Activities Evoked by Silver Nanoparticles Synthesized through Probiotic Bacteria. Antibiotics. 2023;12:141. doi: 10.3390/antibiotics12010141. PubMed DOI PMC

Pal S., Tak Y.K., Song J.M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007;73:1712–1720. doi: 10.1128/AEM.02218-06. PubMed DOI PMC

Salayová A., Bedlovičová Z., Daneu N., Bujňáková Z., Balážová Ľ., Tkáčiková Ľ., Baláž M. Green synthesis of silver nanoparticles with antibacterial activity using various medicinal plant extracts: Morphology and an-tibacterial efficacy. Nanomaterials. 2021;11:1005. doi: 10.3390/nano11041005. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...