Impact of Species, Growth Conditions, and Plant Processing on the Phytochemistry and Antimicrobial Activity of Agrimonia Extracts
Jazyk angličtina Země Švýcarsko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40779740
PubMed Central
PMC12715982
DOI
10.1002/cbdv.202501283
Knihovny.cz E-zdroje
- Klíčová slova
- agrimony, antimicrobial activity, liquid chromatography, mass spectrometry, phytochemistry, polyphenols,
- MeSH
- Agrimonia * chemie růst a vývoj MeSH
- antibakteriální látky * farmakologie chemie izolace a purifikace MeSH
- antiinfekční látky * farmakologie chemie izolace a purifikace MeSH
- fytonutrienty * farmakologie chemie izolace a purifikace MeSH
- gramnegativní bakterie účinky léků MeSH
- grampozitivní bakterie účinky léků MeSH
- mikrobiální testy citlivosti MeSH
- rostlinné extrakty * chemie farmakologie izolace a purifikace MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky * MeSH
- antiinfekční látky * MeSH
- fytonutrienty * MeSH
- rostlinné extrakty * MeSH
Agrimonia eupatoria L., a herb used in traditional medicine, contains numerous secondary metabolites with beneficial properties. However, its phytochemistry, and consequently bioactivity, can be strongly influenced by various cultivation and processing factors. This study evaluates the impact of growth locality, plant part, ontogenetic phase, and postharvest processing on the phytochemical composition and antimicrobial potential of two agrimony species: A. eupatoria and Agrimonia procera. A total of 94 herbal samples extracted with 40% aqueous ethanol were analyzed using ultrahigh-performance liquid chromatography and high-resolution tandem mass spectrometry and simultaneously tested against selected Gram-positive, Gram-negative, and anaerobic bacteria and yeasts. Targeted screening of bioactive polyphenols revealed significant differences between the agrimony species, with phloridzin and orientin/isoorientin identified as new potential chemotaxonomic markers. Notable differences were also observed between roots and aerial parts. Postharvest processing, particularly drying, proved to be another important factor, reducing the overall polyphenol content compared to fresh-frozen plant material. Although all extracts exhibited strong activity, especially against Gram-positive bacteria, the highest antimicrobial potential was observed in roots extracts rich in procyanidins and catechins. The findings of this study enhance the understanding of agrimony phytochemistry and its variability, thereby supporting the effective production of medicinal preparations with the desired therapeutic effects.
Zobrazit více v PubMed
Cavero R. Y. and Calvo M. I., “Medicinal Plants Used for Respiratory Affections in Navarra and Their Pharmacological Validation,” Journal of Ethnopharmacology 158 (2014): 112806. PubMed
Correia H., González‐Paramás A., Amaral M. T., Santos‐Buelga C., and Batista M. T., “Polyphenolic Profile Characterization of PubMed
Malheiros J., Simões D. M., Figueirinha A., Cotrim M. D., and Fonseca D. A., “ PubMed
Muruzović M. Ž., Mladenović K. G., Stefanović O. D., Vasić S. M., and Čomić L. R., “Extracts of PubMed PMC
Paluch Z., Biriczová L., Pallag G., Carvalheiro Marques E., Vargová N., and Kmoníčková E., “The Therapeutic Effects of PubMed PMC
Granica S., Kluge H., Horn G., Matkowski A., and Kiss A. K., “The Phytochemical Investigation of PubMed
Huzio N., Grytsyk A., Raal A., Grytsyk L., and Koshovyi O., “Phytochemical and Pharmacological Research in PubMed PMC
Kuczmannová A., Gál P., Varinská L., et al., “ PubMed PMC
Loučková A., Hůrková K., and Hajšlová J., “Charakterizace Biologicky Aktivních Látek v řepíku lékařském,” Chemické Listy 115 (2021): 487–490.
Karlińska E., Romanowska B., and Kosmala M., “The Aerial Parts of PubMed PMC
Kubínová R., Švajdlenka E., and Jankovská D., “Anticholinesterase, Antioxidant Activity and Phytochemical Investigation Into Aqueous Extracts From Five Species of PubMed
Kiselova Y., Galunska B., Ivanova D., and Yankova T., “Total Antioxidant Capacity and Polyphenol Content Correlation in Aqueous‐Alcoholic Plant Extracts Used in Phytotherapy,” Scripta Scientifica Medica 36 (2004): 11–13.
Generalić I., Skroza D., Šurjak J., et al., “Seasonal Variations of Phenolic Compounds and Biological Properties in Sage ( PubMed
Sentkowska A., Ivanova‐Petropulos V., and Pyrzynska K., “What Can Be Done to Get More—Extraction of Phenolic Compounds From Plant Materials,” Food Analytical Methods 17 (2024): 594–610.
Schymanski E. L., Jeon J., Gulde R., et al., “Identifying Small Molecules via High Resolution Mass Spectrometry: Communicating Confidence,” Environmental Science & Technology 48 (2014): 2097–2098. PubMed
Nešović M., Gašić U., Tosti T., et al., “Distribution of Polyphenolic and Sugar Compounds in Different Buckwheat Plant Parts,” RSC Advances 11 (2021): 25816–25829. PubMed PMC
Wu L., Liu J., Chen K., Zhang L., and Li Y., “Triterpenoids From the Roots of PubMed
Ryz N. R., Remillard D. J., and Russo E. B., “Cannabis Roots: A Traditional Therapy With Future Potential for Treating Inflammation and Pain,” Cannabis and Cannabinoid Research 2 (2017): 210–216. PubMed PMC
Acosta‐Estrada B. A., Gutiérrez‐Uribe J. A., and Serna‐Saldívar S. O., “Bound Phenolics in Foods, a Review,” Food Chemistry 152 (2014): 46–55. PubMed
Shahidi F. and Yeo J., “Insoluble‐Bound Phenolics in Food,” Molecules 21 (2016): 1216. PubMed PMC
Dos Santos K. Szewczyk, Pietrzak W., Klimek K., Grzywa‐Celińska A., Celiński R., and Gogacz M., “LC‐ESI‐MS/MS Identification of Biologically Active Phenolics in Different Extracts of PubMed PMC
Hoffmann T., Friedlhuber R., Steinhauser C., et al., “Histochemical Screening, Metabolite Profiling and Expression Analysis Reveal PubMed
Enayati A., Khori V., Saeedi Y., and Yassa N.*, “Antioxidant Activity and Cardioprotective Effect of
Hossain M. B., Rai D. K., Brunton N. P., Martin‐Diana A. B., and Barry‐Ryan C., “Characterization of Phenolic Composition in PubMed
Jurić T., Katanić Stanković J. S., Rosić G., et al., “Protective Effects of
Dziadek K., Kopeć A., Dziadek M., Sadowska U., and Cholewa‐Kowalska K., “The Changes in Bioactive Compounds and Antioxidant Activity of Chia ( PubMed PMC
Rababah T. M., Al‐u'datt M., Alhamad M., et al., “Effects of Drying Process on Total Phenolics, Antioxidant Activity and Flavonoid Contents of Common Mediterranean Herbs,” International Journal of Agricultural and Biological Engineering 8 (2015): 145–150.
Mayer A. M., “Polyphenol Oxidases in Plants and Fungi: Going Places? A Review,” Phytochemistry 67 (2006): 2318–2331. PubMed
Ioniţă E., Gurgu L., Aprodu I., et al., “Characterization, Purification, and Temperature/Pressure Stability of Polyphenol Oxidase Extracted From Plums (
Panadare D. and Rathod V. K., “Extraction and Purification of Polyphenol Oxidase: A Review,” Biocatalysis and Agricultural Biotechnology 14 (2018): 431–437.
Křížkovská B., Hoang L., Brdová D., et al., “Modulation of the Bacterial Virulence and Resistance by Well‐Known European Medicinal Herbs,” Journal of Ethnopharmacology 312 (2023): 116484. PubMed
Tajkarimi M. M., Ibrahim S. A., and Cliver D. O., “Antimicrobial Herb and Spice Compounds in Food,” Food Control 21 (2010): 1199–1218.
Bělonožníková K., Sladkovská E., Kavan D., et al., “Effect of PubMed PMC
Care F. R. A. M., Subagio B. S., and Rahman H., “Porous Concrete Basic Property Criteria as Rigid Pavement Base Layer in Indonesia,” MATEC Web of Conferences 147 (2018): 02008.
Chanwitheesuk A., Teerawutgulrag A., Kilburn J. D., and Rakariyatham N., “Antimicrobial Gallic Acid From
Panizzi L., Caponi C., Catalano S., Cioni P. L., and Morelli I., “In Vitro Antimicrobial Activity of Extracts and Isolated Constituents of PubMed
Choińska R., Dąbrowska K., Świsłocka R., Lewandowski W., and Świergiel A. H., “Antimicrobial Properties of Mandelic Acid, Gallic Acid and Their Derivatives,” Mini‐Reviews in Medicinal Chemistry 21 (2021): 2544–2550. PubMed
Torres‐León C., Ventura‐Sobrevilla J., Serna‐Cock L., Ascacio‐Valdés J. A., Contreras‐Esquivel J., and Aguilar C. N., “Pentagalloylglucose (PGG): A Valuable Phenolic Compound With Functional Properties,” Journal of Functional Foods 37 (2017): 176–189.
Abouelenein D., Caprioli G., and Mustafa A. M., “Phloridzin: Advances on Resources, Biosynthetic Pathway, Bioavailability, Bioactivity, and Pharmacology,” in Handbook of Dietary Flavonoids, ed. Xiao J. (Springer International Publishing, 2023), 1–29.
Ginovyan M., Ayvazyan A., Nikoyan A., Tumanyan L., and Trchounian A., “Phytochemical Screening and Detection of Antibacterial Components From Crude Extracts of some Armenian Herbs Using TLC‐Bioautographic Technique,” Current Microbiology 77 (2020): 1223–1232. PubMed
Holubec V., ed., Inventory and Description of Cultivars of Agricultural Crops Since the Beginning of Czechoslovak and Czech Breeding to the Year 2000. I., Field and Horticulture Crops Except Fruit Woody Plants (Výzkumný Ústav Rostlinné Výroby, V.V.I, 2017).
Kaplan Z., ed., Klíč Ke Květeně České Republiky (Academia, 2019).
Slavík B., ed., Květena České republiky (Flora of the Czech Republic) (Academia, 1995).
Ministry of Health of the Czech Republic . Český lékopis 2023—doplněk 2024 (ČL 2023—Dopl. 2024): Pharmacopoea Bohemica MMXXIII—Addendum MMXXIV (Ph. B. MMXXIII—Add. MMXXIV) (Grada Publishing, 2024).
Germplasm Resources Information Network (GRIN Czech), “Agrimonia”. Czech Agrifood Research Center (CARC). accessed June 25, 2025, https://grinczech.carc.cz/gringlobal/search.aspx.
Skalický V., “
Janča J. and Zentrich J. A., Herbář Léčivých Rostlin, (1) (Eminent; 1994).
Viktorová J., Kumar R., Řehořová K., et al., “Antimicrobial Activity of Extracts of Two Native Fruits of Chile: Arrayan ( PubMed PMC
Holasová K., Křížkovská B., Hoang L., et al., “Flavonolignans From Silymarin Modulate Antibiotic Resistance and Virulence in PubMed